bioRxiv preprint doi: https://doi.org/10.1101/018226; this version posted April 21, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

On the structure of neuronal population activity

under fluctuations in attentional state

Alexander S. Ecker’?3* George H. Denfield*, Matthias Bethge!**" and Andreas S.

. *
Toliag>%5

!Centre for Integrative Neuroscience and Institute for Theoretical Physics, University of
Tiibingen, Germany
2Max Planck Institute for Biological Cybernetics, Tiibingen, Germany
3Bernstein Centre for Computational Neuroscience, Tiibingen, Germany
4Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
’Department of Computational and Applied Mathematics, Rice University, Houston,
TX, USA
*These authors contributed equally

April 21, 2015

. Abstract

2 Attention is commonly thought to improve behavioral performance by increasing response gain and sup-
3 pressing shared variability in neuronal populations. However, both the focus and the strength of attention
a are likely to vary from one experimental trial to the next, thereby inducing response variability unknown
5 to the experimenter. Here we study analytically how fluctuations in attentional state affect the structure
6 of population responses in a simple model of spatial and feature attention. In our model, attention acts
7 on the neural response exclusively by modulating each neuron’s gain. Neurons are conditionally indepen-
8 dent given the stimulus and the attentional gain, and correlated activity arises only from trial-to-trial
° fluctuations of the attentional state, which are unknown to the experimenter. We find that this simple
10 model can readily explain many aspects of neural response modulation under attention, such as increased
1 response gain, reduced individual and shared variability, increased correlations with firing rates, limited
12 range correlations, and differential correlations. We therefore suggest that attention may act primar-
13 ily by increasing response gain of individual neurons without affecting their correlation structure. The
1a experimentally observed reduction in correlations may instead result from reduced variability of the at-
15 tentional gain when a stimulus is attended. Moreover, we show that attentional gain fluctuations — even
16 if unknown to a downstream readout — do not impair the readout accuracy despite inducing limited-range
17 correlations.
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" 1 Introduction
35 Attention was traditionally thought of as acting by increasing response gain of a relevant population
36 of neurons (Maunsell and Treue 2006; Reynolds and Chelazzi 2004). More recent studies found that
37 attention also reduces pairwise correlations between neurons (Cohen and Maunsell 2009; Herrero et al.
38 2013; Mitchell et al. 2009). Based on a simple pooling model (Zohary et al. 1994) these authors argued
30 that the effects of increased gain are dwarfed by the effects of reduced correlations and, therefore, attention
40 is more appropriately viewed as shaping the noise distribution.
a1 However, in an experiment the subject’s state of attention can be controlled only indirectly and is
a2 bound to vary from one trial to the next. As a consequence, measuring neuronal variability or correlations
43 under attention has a fundamental caveat: it is unclear to what extent the observed neuronal covariability
4 reflects interesting aspects of information processing in the neuronal population or simply trial-to-trial
a5 fluctuations in the subject’s state of attention, which is unknown to the experimenter. Despite ample
a6 evidence that attention fluctuates from trial to trial (Cohen and Maunsell 2010; Cohen and Maunsell
a7 2011), the effects of such fluctuations on neuronal population activity have so far not been investigated.
as Here we analyze a simple neural population model, where neurons with overlapping receptive fields
a9 encode the direction of motion of a stimulus. We assume that neurons produce spikes independently
50 according to a Poisson process with rate A; and treat attention as a process that modulates the neurons’
51 gain. The firing rates are given by

i = gifi(0), (1)
52 where g; is the attentional gain (a combination of spatial and feature attention) and f;(6) is the direction
53 tuning curve of neuron i. We assume that there is always a stimulus in the neurons’ receptive field, but
54 this stimulus is not necessarily attended.
55 Crucially, in our model the subject’s attentional state is not constant across trials, even within the
56 same attentional condition. Thus, g; is a random variable that varies from trial to trial, and its precise
57 value is unknown to the experimenter. As a consequence, the correlations in g; across neurons will induce
58 correlations between the observed neural responses. In the following sections, we analyze this correlation
50 structure in detail. In addition, we investigate the consequences of these correlations for reading out the
60 direction of motion of the stimulus from the population response if the readout does not have access to
61 the attentional state.
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Figure 1. Model of spatial attention. A. Example stimulus. Neurons’ receptive fields are assumed to
be at the same location (circle). B. Tuning curve under sensory stimulation (dashed) and with spatial
attention directed to the stimulus in the receptive field (solid). C. Distribution of attentional gain («).
D. Population response of a homogeneous population of neurons under sensory stimulation (dashed)
and with attention directed to the stimulus in the receptive fields (solid).

2 Results

2.1 Fluctuations in spatial attention

We first consider the simplest case of pure spatial attention and a common gain « for all neurons (Fig. 1):

where o > 0 is the amount of spatial attention allocated to the stimulus in the neurons’ receptive field.
We do not require any distributional assumptions on «, except for its mean E[a] = p and variance

Var[a] = 02 (Fig. 1C). Under this model, the average spike count of a neuron is given by

Ely:l0] = pfi(0). (3)

By convention we refer to the case of u = 1 as the sensory response, which is the neural response to the
stimulus in the absence of any attentional modulation. In experimental conditions where the stimulus is
attended 1, > 1. When attention is directed towards a different stimulus p,, < 1 (depending on whether
responses are suppressed relative to the sensory response under such conditions). Note that although
we use homogeneous neural populations in the figures (all neurons have the same tuning curve up to a
preferred direction ¢;, i.e. fi(0) = f(0 — ¢;)), all results hold more generally for arbitrary tuning curves.

Because the attentional state fluctuates from trial to trial, the underlying firing rate also fluctuates.

By applying the law of total variance we obtain the spike count variance (Fig. 2A):

Varly;|0] = pfi(0) +a* f2(6). (4)
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Figure 2. Effect of fluctuations in attentional state on spike count statistics. Solid lines: analytical
solutions (Egs. 3-7). Parameter values used here were ;1 = 0.1, 0 € {0.05,0.1,0.15} (dark to light red).
A. Spike count variance as a function of mean spike count. Dashed line: identity (Poisson process). B.
Covariance as a function of product of spike counts. C. Correlation coefficient as function of geometric
mean firing rate. The three groups of lines correspond to different levels of o as in the other panels.
Darker colors within a group indicate increasing ratios f;(0)/f;(0). D. Matrix of correlation coefficients
for § = 0° and o = 0.1. Tuning curves: f;(0) = exp(kcos(d — ¢;) + €), kK = 2, average firing rate across
all 0: 10 spikes/s. E. Average correlation coefficient (over all directions of motion ) as a function of
difference of the preferred directions of the two neurons. Despite a common gain for all neurons,
correlations decay with tuning difference. Parameters as in panel E. F. As in panel E, but for different
tuning widths (k € {0.5,1,2,4, 8}, shown in inset at the top). The decay of the correlations with the
difference of the preferred directions is stronger for narrow tuning curves. Red line corresponds to
panels D and E. Mean firing rate: 10 spikes/s for all tuning widths.

76 The first term is equal to the average spike count and results from the Poisson process assumption,
77 while the second term is quadratic in the firing rate, which results from the multiplicative nature of the
78 fluctuating gain « (Goris et al. 2014). Such an expanding mean-variance relation has been observed in
70 many experimental studies (Britten et al. 1993; Dean 1981; Goris et al. 2014; Tolhurst et al. 1983). Note
80 that if the attentional gain does not fluctuate, we recover the Poisson process.
81 Similar to the variances, we can compute the covariance between two neurons, which is given by the
82 product of the firing rates and the variance of the attentional gain (Fig. 2B):

Covlyi, ;0] = o> fi(0) f;(0) i F ] (5)
83 Recall that neurons are assumed to be conditionally independent given the attentional gain. Thus, any
8a covariability arises exclusively from gain fluctuations. As a result, the covariance matrix (Fig. 2D) can
85 be expressed as a diagonal matrix plus a rank-one matrix:

C = pDiag (f) + o*fF 7T, (6)
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Note that the assumption of conditional independence could be relaxed without affecting any of the
major results qualitatively: the diagonal matrix in the equation above would simply be replaced by the
(non-diagonal) point process covariance matrix.

Experimental studies more typically quantify spike count correlations rather than covariances. We

therefore also calculated the correlation coefficient p;; of two neurons (Fig. 2C):

o fifj
a \/m/o? T (Wl E 5 ™

The spike count correlations induced by a fluctuating attentional gain increase with firing rates f;(9).
This effect, which has also been observed in numerous experimental studies (Cohen and Maunsell 2009;
Ecker et al. 2014; Mitchell et al. 2009; Smith and Sommer 2013), arises because the independent (Poisson)
variability is linear in the firing rate, whereas the covariance induced by gain fluctuations is quadratic
and therefore dominates for large firing rates. Thus, correlations increase with the geometric mean firing
rate, but there is no simple one-to-one mapping between the two quantities (it also depends on the ratio
of the firing rates, Fig. 2C). The covariance, in contrast, is proportional to the product of the firing rates
with a constant of proportionality of o2 (Fig. 2B), suggesting that the latter might be more appropriate
to consider when analyzing experimental data.

In addition, the correlation structure induced by gain fluctuations is non-trivial even if all neurons
share the same gain (Fig. 2E, F; see also Ecker et al. (2014)). Due to the nonlinear shape of the tuning
function and the nonlinear way the neurons’ tuning functions affect spike count correlations, the correla-
tions decrease with increased difference in two neurons’ preferred directions (Fig. 2F). The slope of the
decay depends mainly on the dynamic range of the tuning curve. If neurons have a high baseline firing
rate compared to their peak firing rate, correlations decrease only marginally with preferred direction.
In contrast, sharply tuned neurons with close to zero baseline firing rates exhibit strong limited-range
structure.

This limited-range correlation structure has been observed in numerous experimental studies (Bair
et al. 2001; Cohen and Maunsell 2009; Ecker et al. 2010; Smith and Kohn 2008; Zohary et al. 1994) and
has been hypothesized to reflect shared input among similarly tuned neurons. However, our simple model
shows that these seemingly structured correlations can arise from a very simple, non-specific mechanism:

a common fluctuating gain that drives all neurons equally, irrespective of their tuning properties.

2.2 Fluctuations of feature attention

Feature attention is different from spatial attention in that the sign of the gain modulation depends on
the similarity of the attended direction to the neuron’s preferred direction of motion (Fig. 3). Following

the feature-similarity gain model (Treue and Martinez-Trujillo 1999), we model feature attention by

Ai = (14 Bhi(v)) fi(0), (8)

where §3 is the feature gain that controls how strongly the feature ¢ (in this case direction of motion) is
attended on the given trial and h;(v)) is the gain profile (Fig. 3B) that determines the sign and relative
strength of modulation for each neuron depending on the similarity of its preferred direction ¢; to the
attended direction ¢. We assume that h;(¢)) most strongly enhances neurons with preferred directions

equal to the attended direction and suppresses those with opposite preferred directions (Fig. 3B).


https://doi.org/10.1101/018226
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/018226; this version posted April 21, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

129

130

available under aCC-BY-NC-ND 4.0 International license.

A B,-\ 1 c 0.4
—~ > 2
D) I i
< A s° J/\ 5" J/\
ey [a)
| — _1 | — 0 D B
-180 0 180 -180 0 180 V2T vV V+2T
Direction 8 Q- Gain 8
D
1+v

Firing rate A/(0)

%/)'g H =
04 Attended direction ¢ A A A A A A A A A
T T T T 1
-180 -90 0 90 180

Preferred direction ¢;

Figure 3. Model of feature attention. A. Tuning curve of a single neuron under sensory stimulation
(black dotted) and with feature attention directed to different directions ranging from preferred (red) to
null (blue). Note that the entire tuning curve of the neuron is gain-modulated and the modulation does
not depend on the stimulus #. B. The gain of a neuron depends on which direction of motion ) is
attended relative to the neuron’s preferred direction ¢;. C. Distribution of gain (8) fluctuations. A
Gaussian is shown for illustration purposes; the analysis holds for any distribution with E[S] = v and
Var[8] = 72. D. Population response of a homogeneous population of neurons under sensory stimulation
(black dotted) and with attention directed to different directions of motion ranging from 0° (red) to
180° (blue). The stimulus is # = 0. The curves show the average response of the neurons as a function
of their preferred direction. Attending to a direction of motion biases the population response towards
this attended stimulus. While each neuron’s tuning curve is gain-modulated as a whole (panel A), the
population response is no longer equal to the individual neurons’ tuning curves, but instead
sharpened/broadened and its peak is moved.

Because feature attention both increases and decreases different neurons’ gain depending on their
preferred direction relative to the attended direction of motion, it biases the population response towards
the attended direction (Fig. 3D). Thus, unlike in the case of spatial attention the shape of the population
response is no longer identical to that of the individual neuron’s tuning curve. We start by assuming that
the subject always attends the same direction (i.e. v is constant) and consider the effect of fluctuations in
the strength of attention, that is the gain 8. We will come back to fluctuations in the attended direction
below.

Similar to spatial attention, fluctuations in feature attention lead to overdispersion of the spike counts

relative to a Poisson process (because rate variability is added).

Ely|0,¢] = (1 +vhi(¥)) fi(0) (9)
Var[yi[0,¢] = (1 + vhi(v)) fi(8) + 723 () £ (6), (10)
where v = E[3] and 72 = Var|f] are the mean and the variance of the feature attention gain, respectively.

The degree of overdispersion not only increases with the neuron’s firing rate, but also depends on the

neuron’s preferred direction relative to the attended direction (Fig. 4A). Interestingly, spike counts are
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more overdispersed at the null direction than at the preferred direction (Fig. 4A: compare blue vs. black

and green vs. yellow). The Fano factor (variance/mean) is given by

Thi ()

Flydo vl =1+ G w2

Elyi], (11)
which is higher when h; is negative than when it is positive. Neurons with preferred directions orthogonal
to the attended direction are not overdispersed since h; = 0.

As feature attention induces both increases as well as decreases in neuronal gain, the induced corre-

lation structure is different from that induced by spatial attention. For the covariances, we obtain

Covlyi, y;10,v] = 72hi(4)h; () f:(6) £;(0) i # ] (12)

The sign of the covariance is determined by the product of h; and h;, which depends on the attended
direction and the preferred directions of the two neurons (Fig. 4B). For two neurons with identical
preferred directions, the covariance is always positive while for two neurons with orthogonal preferred
directions it is always negative. For any pair of neurons in between, it can be both positive and negative,
depending on the stimulus (Fig. 4B). Again, the covariance matrix can be written as diagonal plus rank
one:

C =F +r*uu”, (13)

where F;; = (1 4+ vh;(v)) f:(6) and w; = h;(¢) f:(0).

As for spatial attention, averaging correlations over multiple stimulus conditions to represent the cor-
relation structure as a function of the neurons’ tuning similarity misses much of the underlying structure
(Fig. 4C): spike count correlations are positively correlated with tuning similarity (Fig. 4D), but the
stimulus dependence (Fig. 4C) is again ignored. As before, the exact shape of the decay depends on
the tuning width: for narrow tuning curves, neurons with opposite preferred directions are only weakly
anti-correlated, whereas for broad tuning curves, those neurons are strongly anti-correlated (Fig. 4D, blue
to red lines).

So far we have assumed that the attended direction of motion is constant and only the strength of
attention fluctuates from trial to trial. Now we turn to the case where the attended direction fluctuates
from trial to trial. We assume that, on average, the subject attends the correct direction, i.e. E[¢)] = 6,
but with some variance Var[i)] = ¢>. We further assume the gain 3 is constant. In this case, means and

covariances of the observed spike counts are given by

Elyil0, 8] = (1 + Bhi) f: (14)
Covlyi, y;10, 8] = 6i5(1 + Bha) fi + > B> il fif;, (15)

where hl = ﬁhi and we have abbreviated h; = h;(#) and f; = fi;(0). As before, we can write the

covariance matrix as diagonal plus rank one:
C=F+q¢vwo, (16)

where Fj; = (14 Bh;)fi and v; = Bh) f;. This pattern of correlations (Fig. 5) differs from those observed
before for gain fluctuations in an important way: the sign of the correlation between two neurons depends

only on whether their preferred directions are on the same side (both clockwise or counter-clockwise) of
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Figure 4. Effect of fluctuations in the feature attention gain on spike count statistics. Parameters here
are: 9 =0, v = 0.1, 72 = 0.01. A. Spike count variance as a function of mean spike count. Colors
indicate different attended directions relative to the neurons’ preferred direction (¢; — v; illustrated by
colored triangles in inset on the bottom right). B. Covariance matrix for stimulus § = 0. Neurons are
ordered by preferred directions. Mean firing rate across the population: 20 spikes/s. C. As panel B, but
the correlation coefficient matrix is shown. D. Dependence of spike count correlations on tuning
similarity (difference of preferred directions). Fluctuations in feature attention induce limited range
correlations irrespective of the shape of the tuning curve. The higher the baseline firing rate the
stronger the negative correlations for neurons with opposite preferred directions. Inset: different tuning
widths used.

the stimulus direction or on different sides. As we will show more formally in the next section, this pattern
of correlations is known as differential correlations (Moreno-Bote et al. 2014). Again, when plotted as a
function of the difference of two neurons’ preferred directions, the correlations exhibit the typical limited-
range structure (Fig. 5C), except for very narrow tuning curves, where the correlations are minimal
around pairs with orthogonal preferred directions (Fig. 5C, blue lines). Also note that these correlations
are substantially weaker than those induced by gain fluctuations (Figs. 2, 4), despite a relatively wide
distribution of attended directions (SD: 10°).

2.3 Effect of attention-induced correlations on population coding

How interneuronal correlations affect the representational accuracy of neuronal populations has been a
matter of immense interest (and debate) over the last years. Thus, we want to briefly consider how
correlations induced by attentional fluctuations affect the coding accuracy of a population code.

Before doing so we need to make a choice: does the downstream readout have access to the state of
attention or not? If it does, the picture is fairly simple: attentional fluctuations do not affect the readout
accuracy, since the attentional state can be accounted for and there is no additional noise compared with
a scenario without attentional fluctuations. The only downside is a potentially more complex readout. In
contrast, if we assume that the readout does not have access to the attentional state, the situation becomes
more interesting. In this case the attentional fluctuations act like additional (internally generated) noise,
which could impair the readout. In the following we consider this latter scenario.

To quantify the accuracy of a population code, we use the Fisher information (Kay 1993) with respect
to direction of motion. The Fisher information is useful because it quantifies the amount of information
in a population of neurons without assuming a specific decoder. For a population of independent neurons,
the Fisher information is linear in the number of neurons.

We start by considering spatial attention. Since the gain is the same for all neurons, gain fluctuations

should not affect the coding accuracy of the population with respect to the direction of the stimulus,
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Figure 5. Effect of fluctuations in the attended direction on correlation structure. Parameters here
are: E[¢] =0, ¢ =10°, = 0.1, 0 = 0, mean firing rate across the population: 20 spikes/s. A.
Covariance matrix. Neurons are ordered by preferred directions. B. As panel A, but the correlation
coefficient matrix is shown. C. Dependence of spike count correlations on tuning similarity (difference
of preferred directions). Fluctuations in the attended direction induce limited range correlations, whose
shape depends on the width of the tuning curves. Inset: different tuning widths used.

which is encoded in the differential activation pattern of the neurons. This is indeed the case. The Fisher
information of a population of Poisson neurons whose firing rates are modulated by a common gain with

mean p is given by

J = i G —0(1) = J (17)
7Mi:1 fi(0) -

Thus, unobserved gain fluctuations reduce the information in the population only by a constant term (for
derivation see Appendix). For reasonably large populations (e.g. N > 100) this term can be neglected
and the information is approximately equal to that of an independent population (Jy). This result can
be understood intuitively by considering the structure of the covariance matrix (Eq. 5): the dominant
eigenvector points in the direction of the tuning function f, which is orthogonal to changes in the stimulus,
f’. Therefore, gain flucutations do not impair the readout of the direction of motion.

The same result holds for fluctuations in the feature attention gain, so long as the attended direction
matches the one shown and does not fluctuate from trial to trial. A fluctuating gain sharpens and
broadens the population hill from trial to trial, but leaves its peak unchanged. Again, the dominant
eigenvector (u; = h;f;, Eq. 12) points in a direction that is orthogonal to changes in the stimulus (details
see Appendix).

The situation changes if the focus of attention (i.e. the attended direction) fluctuates from trial to
trial or the attended direction does not match the one shown: since feature attention biases the population
response towards the attended direction, such attentional fluctuations have the same effect as noise on
the input [differential correlations, (Moreno-Bote et al. 2014)]. To illustrate this finding, we switch to a
slightly modified and more specific response model than above. Assuming f;(6) = exp(k cos(f — ¢;)) and
h; = cos(1) — ¢;), and noting that (1 + Sh;) =~ exp(Bh;), we can write the log-firing rate as

log A; = Bcos(vp — ¢;) + kcos(0 — ¢;). (18)
We can combine the two cosine terms and obtain:

log A\; =y cos(0 + A0 — ¢;) (19)

10
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where
v = \/H2 + %2 + 2k cos(y) — 0) (20)
Af = arccos (M) . (21)
2vkK

Thus, feature attention biases the population response away from the stimulus direction ¢ towards the
attended direction ¥. The magnitude of the bias Af depends on both the strength of feature attention
[ and the attended direction 1. Consequently, if 1) # 6 fluctuations in either the attended feature or the
degree of feature attention have the same effect on the population response as variance of the stimulus
direction that is shown, i.e. they induce differential correlations. This result can also be understood by
considering the structure of the covariance matrix (Eq. 16): the dominant eigenvector v; = A} f; points in
the same direction as changes in the stimulus, f’. We can therefore approximate the Fisher information

by (see Moreno-Bote et al. 2014)
Jo 1

O
1+¢eJy g’

(22)

where Jj is again the information in an independent population and ¢ = Var[A6] depends on both the
distribution of attended directions and the variance of the gain. In this case, the information in the
population saturates at a finite value 1/e that depends only on the distribution of the attention signal
and can be substantially lower than the limit imposed by the information in feedforward signal (see also
Discussion). When the subject attends the correct direction on average (i.e. E[¢)] = 0) and the variance
of the attended direction (Var[¢]) is small, we find

(5/B+1)*

T N

(23)
Thus, the saturation level depends on the strength (3) of attention relative to the tuning width (k) and

the variance in the attended direction.

2.4 Identifying attentional fluctuations in experimental data

We saw above that fluctuations in attentional state can introduce interesting patterns of correlations in
neural activity, all of which are roughly consistent with the published literature on attention. However,
as long as one considers only single neurons and pairwise statistics, any result can be consistent with
many hypotheses. For instance, attentional fluctuations induce correlations that depend on firing rates
(Fig. 2C), but the same result is also predicted by the thresholding nonlinearity of neurons (Rocha et al.
2007) and therefore need not result from attentional fluctuations. Similarly, all types of attentional fluc-
tuations considered above lead to correlations that decrease with the difference of two neurons’ preferred
directions (limited range correlations, Figs. 2E, 4D, 5C), but this correlation structure can also arise from
shared sensory noise (Shadlen and Newsome 1998).

So how would one go about identifying attentional fluctuations in experimental data? Clearly, one
has to consider the response patterns of simultaneously recorded populations of neurons rather than just
pairwise correlations. In the following, we discuss some predictions our model makes for the structure of
the neural population response.

A first approach suggested by our analyses above: we showed that in all cases we analyzed the covari-

ance matrix induced by attentional fluctuations is diagonal plus rank one. Thus, attentional fluctuations

11
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A —1o) — a (spatial gain) B
— f(6) — P (feature gain)

j — ¢ (att'd feature)
0 OJ 0
/ N\ SZ ;
. A
T 1

Weight

A Stimulus 6
T T T T 1 T T T

-180-90 0 90 180 -180-90 O 90 180 —180-90 O 90 180
Preferred direction ¢;

Figure 6. Identifying attentional fluctuations from variability in neuronal population activity. A. The
subspace identified by Factor Analysis depends on the stimulus direction. Black triangles: stimulus
direction (left: § = 0°, right: 6 = 60°). Solid lines: basis functions corresponding to fluctuations in
spatial attention gain (red), feature attention gain (dark blue), and attended direction (light blue);
population tuning curve (black) and its derivative (gray). Horizontal dashed line: (average) attended
direction. B. Principal components identified by Exponential Family PCA are independent of the
stimulus since the log-link turns a multiplicative modulation into an additive offset. Colors as in panel

A.

are restricted to a low-dimensional subspace that could be identified from simultaneously recorded neu-
rons by Factor Analysis. However, the disadvantage of this approach is that the low-dimensional subspace
depends on the stimulus in a non-trivial way (Fig. 6A for § = 0° [left] and 8 = 60° [right]; see also Eqgs. 5,
12, 16). This stimulus dependence precludes pooling of data over multiple stimulus conditions. Moreover,
if the attended direction does not match the stimulus direction, the major axes of variability do not peak
at either direction, but somewhere in between (Fig. 6A, blue lines in the right panel, where ¥ = 0° and
6 = 60°). Thus, it is non-trivial to recover the quantities of interest for the experimenter — the attended
feature (direction) and the degree of attention allocated (the gain).

A model that could directly extract attentional gains (spatial and feature gain) and the attended
feature would be desirable. Fortunately, all three can be inferred from population activity in a straight-
forward manner using methods such as Exponential Family Principal Component Analysis (E-PCA)
(Collins et al. 2001; Mohamed et al. 2009) or Poisson Linear Dynamical Systems (PLDS) (Buesing et al.
2012; Macke et al. 2011). Similar to above (Eq. 18), we assume f;(0) = exp(k;cos(6 — ¢;) + ¢€;) and
h; = cos(v¥) — ¢;) and write the log-firing rate as

log A\; = a + Bcos(yp — ¢;) + Kicos(0 — ;) + €, (24)
which can be rewritten as a linear function of the attentional state and the stimulus:
log\; = a+ k;rb + m-k;rx + €, (25)

where a and b = 3 - [cos®), siny]T represent the state of spatial and feature attention, respectively,
x = [cosf, sinf]T is the stimulus, k; = [cos¢;, sing;|T is the neuron’s preferred direction, r; the
(inverse) tuning width, and ¢; controls the mean firing rate. This model is a Generalized Linear Model
(GLM) with Poisson observations and log(z) as the link function. Thus, E-PCA or PLDS will recover
the subspace corresponding to fluctuations in attentional state {a,b}. This subspace is spanned by
u; = [1, cos¢;, sing;] and independent of the stimulus (see Fig. 6B). The attentional gains are a and
B = ||b||, while the attended direction is ¥ = Zb.

12
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2.5 A new view on the reduction of shared variability under attention

There is ample experimental evidence that attention fluctuates from trial to trial (Cohen and Maunsell
2010; Cohen and Maunsell 2011), and we showed in the previous sections that such fluctuations induce
patterns of (correlated) variability that are highly consistent with the reported data on attention (Cohen
and Maunsell 2009; Herrero et al. 2013; Mitchell et al. 2009). Interestingly, in our model, both the
magnitude of overdispersion in single neurons’ spike counts and the average level of correlations are
determined by the variance of the attentional gain (02 = Var[g]), but not by its average modulation
(v = Elg]). This observation suggests that the average attentional modulation (1) between an attended
and an unattended condition (which can be reliably measured based on average responses) does not
predict the level of correlations in either condition, since the latter is controlled by an independent
variable (¢2). Indeed, this is one of the central experimental findings: directing spatial attention to a
certain location increases the average responses of neurons whose receptive fields represent this location,
but reduces independent and shared variability among those neurons (Cohen and Maunsell 2009; Herrero
et al. 2013; Mitchell et al. 2009). Thus, if our model is correct, then the data suggest that attention not
only increases response gain, but also reduces the trial-to-trial variability of the gain.

This view of attention has important implications for the role of interneuronal correlations under
attention. Recent studies (Cohen and Maunsell 2009; Mitchell et al. 2009) have argued that spatial
attention improves behavioral performance primarily by reducing correlations. However, as we showed
above, fluctuations of spatial attention do not affect the representational accuracy of the neuronal pop-
ulation. Therefore, under our model the experimentally observed reduction in correlations is irrelevant

when reading out a neuronal population. The only difference that matters is the increase in gain.

13
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3 Discussion

We find that a simple model of neuronal responses can account for a range of empirically observed
phenomena relating attention, neuronal variability and coding properties of neuronal populations. Our
model unites two central findings in the literature on attention, that attention acts as a multiplicative
gain factor on neuronal responses (Maunsell and Treue 2006) and that attention fluctuates from trial-to-
trial (Cohen and Maunsell 2010). The importance of the combined effects of these observations has not
previously been fully appreciated, as we show that such a model is sufficient to account for super-Poisson
variability (see also Ecker and Tolias 2014; Goris et al. 2014) as well as a variety of pairwise correlation
structures, most notably the “limited-range” structure and “differential correlations” (Abbott and Dayan
1999; Ecker et al. 2010; Moreno-Bote et al. 2014; Smith and Kohn 2008).

Our results argue that it is likely that a large fraction of variability in the neuronal response can be
attributed to fluctuations in behaviorally relevant, internally-generated signals, such as attention, rather
than shared noise (Ecker and Tolias 2014; Ecker et al. 2010, 2014; Goris et al. 2014; Nienborg and
Cumming 2009). This view suggests the hypothesis that correlations that arise from such fluctuating
signals generally should not impair coding of sensory information. We find that this assertion is true for
the case of fluctuations in the magnitude of the gain. The Fisher information of our model population
of neurons is not limited by fluctuations in the strength of attentional gain (i.e., is independent of the
variance of the gain term), despite those fluctuations generating a “limited-range” correlation structure
typically thought to impair coding.

However, theoretical work has shown that the effect of different patterns of correlations on the coding
of sensory information is nuanced and can depend greatly on specific assumptions that are made regarding
a variety of neuronal properties, such as the shapes of tuning curves in the population, subtle details of
the assumed correlation structure, or different readouts (Abbott and Dayan 1999; Ecker et al. 2011; Josi¢
et al. 2009; Shamir and Sompolinsky 2006; Sompolinsky et al. 2001; Wilke and Eurich 2002). The recent
work of Moreno-Bote et al. (2014) has helped to clarify the problem of when and what types of correlation
structures are detrimental to coding with their description of “differential correlations,” a specific pattern
of correlation proportional to the product of the derivative of the tuning curves that leads to information
saturation. Our model generates this pattern of correlated variability when the fluctuations in attention
occur around a specific feature rather than a specific gain value. Thus, it is noteworthy that a model only
slightly more complicated than typical Poisson spiking models can generate the diversity of correlation
structures noted in the experimental and theoretical literature as being important for population coding.

In addition to offering a parsimonious account of neuronal variability and co-variability, our model
has implications for how we should interpret the effect of attention as it relates to improvements in
perceptual performance. Chiefly, if the reduction of correlations observed under attention is indeed due
to a reduction of gain fluctuations — as our model would suggest — the reduction of correlations is irrelevant
with respect to the coding accuracy of the population and cannot be the mechanism improving behavioral
performance as suggested by recent experimental studies (Cohen and Maunsell 2009; Herrero et al. 2013;
Mitchell et al. 2009).

Our model leads to a second interesting observation: It is likely that not only the attentional gain
fluctuates from trial to trial, but also the attended feature itself. Such fluctuations introduce differential
correlations, which indeed impair the readout (unless it has exact access to the attended feature). Thus,
the attentional mechanism itself places a limit on how accurately a stimulus can be represented by a

sensory population, and this limit can at least in principle be substantially lower than the amount of
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sensory information entering the brain through the eye. This insight may trigger the question: why, then,
should there be an attentional mechanism in the first place? There are a number of possible answers to
this question.

First, we can think of attention as a prior. Using prior information to bias an estimate towards
more likely solutions will on average improve the estimate. In situations where the stimulus is noisy and
decisions have to be made fast, such a bias is most beneficial and outweighs the small extra noise added
due to variability in the prior. Conversely, in situations where there is lots of sensory evidence, the full
information content present in the eye is rarely necessary in real-world situations, and, therefore, the
noise added due to attentional fluctuations does not matter either.

Second, it should be noted that for change-detection paradigms that are typically employed in atten-
tion experiments, the estimation framework that asks how well a stimulus value can be reconstructed
(e.g. Fisher information) is not quite appropriate. In such tasks the subject never judges the absolute
direction (or any other feature) of the stimulus, but instead has to detect a small change, that is the
difference between two subsequent stimuli. In this case any errors introduced due to fluctuations in the
attended direction cancel out, since they affect both stimuli roughly equally, at least so long as attentional
fluctuations occur at a timescale that is slow enough, such that the attentional state is approximately

the same for both the pre- and post-change stimulus.

4 Appendix

4.1 Model setup

We model a population of direction-selective neurons with overlapping receptive fields and a diverse range
of preferred directions ¢;. We use a simple model of spatial and feature attention, where a neuron’s firing

rate \; is the product of an attentional gain g;(v)) and a tuning function f;(6):

Ai(0,9) = gi(¢) f:(0) (26)

Here, 1 is the attended direction of motion and 6 the direction of the stimulus that is shown. Neurons
are assumed to be conditionally independent given the firing rate \; (i.e. no noise correlations). The
attentional gain depends on whether attention is directed to the location of the neurons’ receptive fields
and on the attended direction of motion. For spatial attention, we use ¢g; = «, which is the same
for all neurons, since they all have overlapping receptive fields. For feature attention we use g;(¢) =
14 8h(1)—i), where § the feature attention gain, and h(-) the gain profile. We follow the feature similarity
gain model (Treue and Martinez-Trujillo 1999), where a neuron’s gain is enhanced if the attended feature
matches the neuron’s preference and suppressed otherwise. A common choice for h is a cosine: h(v—¢;) =
cos(¢) — ;).

Note that from the perspective of the model there is no fundamental difference between spatial and
feature attention. If we treat space as a variable that is being encoded by the population, any derivations
for feature attention also apply to spatial attention. However, because we consider only a local population
with overlapping receptive fields, spatial attention is a special case: the gain profile within the population
is constant and therefore spatial attention can be expressed in a simpler way using a single common
gain a. Thus, whenever we refer to spatial attention, this applies to a situation where all neurons in

the population that is being considered share the same preferred feature. Likewise, whenever we refer to
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feature attention, this applies to any situation where the neurons in the population span a large range of
preferred features. We chose this (somewhat arbitrary) distinction, because it reflects the typical situation
in an experiment, where neurons with similar retinotopic locations are recorded, which typically span a

large range of preferred orientations or directions.

4.2 Effect of fluctuating gains on spike count statistics

Throughout this paper we assume that spatial and feature attention are independent processes and con-
sider them in isolation. We further assume that the experimenter does not have access to the attentional

state on individual trials, but can only control its average over many trials:

E[a]
E[5]

[ (27)
v. (28)

In addition the attentional state fluctuates from trial to trial with unknown variance

Var[a] = o* (29)
Var[3] = 72. (30)

To compute means and (co-)variances of the observed spike counts we need only the means and variances
of @ and . The expected spike counts (Egs. 3, 9) follow from the linearity of the expectation. Variances
and covariances can be computed by application of the Law of Total Variance (here for the case of spatial

attention, feature attention follows the same logic):
Covlyi, y;] = E[Covlyi, yj|a]] + Cov[Elyila], E[y;|a]], (31)

where the outer expectation (covariance) is taken over « and the inner covariance (expectation) over y;
and y;. Plugging the definitions of A\; = E[y;|a] and using the assumption of conditionally independent
Poisson spiking Cov[y;,y;j|a] = d;;A;, we obtain the expressions for variances and covariances stated in
the main text (Egs. 4-6, 10-13).

4.3 Effect of fluctuations in attended feature on spike count statistics

Calculating the means and covariances under fluctuations in the attended direction 1 follows the same
approach as above. However, since the gain profile h;(¢)) can be non-linear, we need a few additional
assumptions. We assume that v is distributed around some direction 19 = E[t] with variance ¢*> = Var[1/].

For reasonably small ¢ we can approximate the gain profile by its first-order Taylor expansion

hi(1) & hi(tho) + (v — o) b (o), (32)

where h/ is the derivative with respect to ¢. Using this approximation we can write E[h;(¢)] = h;(1g)
and Var[h;(v)] &~ ¢?h%(1o), which leads (again after applying the Law of Total Variance) to the results
in the main text (Eqs. 14-16).
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370 4.4 Coding accuracy under fluctuations of spatial attention
380 Here we show that fluctuations in spatial attention have a negligible effect on the amount of information
381 about the orientation of the stimulus. For simplicity we assume that neurons produce spikes conditionally
382 independently given the stimulus orientation # and the attentional gain g:

yil0, g ~ Poisson(X;) A\ = gfi(0) (33)

The attentional gain g is shared among all neurons and drawn from a Gamma distribution with shape

2

u?/o? and scale 0?/u, which implies E[g] = p and Var[g] = 0. Assuming that the experimenter does

not know the attentional gain, the distribution P(y|6) obtained by marginalizing over g is a multivariate

negative binomial distribution:

P(yl6) = / o [Pl o)t (34)

-/ o e () [ O g (35)

") ()7
-G (IG) e e )

i

m
o=

= |9
S

[

2

ML) () ()

For the Fisher information J = E[ gz log P(y|9)} we need the derivatives of the log-likelihood:

yz_f;> - (’;—vaZyz-)Zf{ (38)

i L+Xfi

2 PG\ (8 (S (D) - (A
102 log P(y|0) = (Z Yi 72 ) (02 +Zyl) (% +Zfi)2 (39)

Plugging into the formula for Fisher information, re-ordering the summations over y and 4, and using the
facts - P(y|0) =1 and ) P(y|0)y; = E[y:] = puf;, we obtain

ZP(y|e>[<Zyi%#>(aﬁz JEDELTHEIT

d
20108 P(yl|0) = < |

(32 + 2 f)
) n( )
=pu — 41
Z fz ﬂ +> fi (41)
383 The first term in the above equation is the Fisher information of an independent population of neurons
384 and therefore O(N), while the second term is O(1): for homogeneous population of neurons, where
385 fi(0) = f(0 — ¢;), it is zero; for heterogeneous populations it is O(1), as we show in the next paragraph.
386 Thus, fluctuations in spatial attention do not impair the coding accuracy of the population with respect

387 to orientation.
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To show that the second term above is O(1) for heterogeneous populations, we assume that the
neurons’ tuning curves are independent random variables (see Ecker et al. 2011; Shamir and Sompolinsky
2006). In this case the quantity of interest is the expected value with respect to different realizations of

the heterogeneity:

p ] rEE]
%+ZﬁLV%+mzm‘om' 1)

Here the approximation holds because for large N the width of the distribution of }_ f; becomes narrower

relative to its mean and therefore the expected value of the second term converges to the ratio of the

expected values of numerator and denominator. The equality holds because > f; = O(N) and

B (X )| = var [ 2] = 3 varts = o) (43)

which holds because E[>_ f/] = 0.

4.5 Coding accuracy under fluctuations of feature attentional gain

Fluctuations in feature attention are more difficult to study analytically. Unfortunately, the Gamma-
Poisson mixture model employed above does not generalize to the case where the gain is weighted dif-
ferently for each neuron (i.e. the gain profile h;), or at least we are not aware of a model that has a
closed-form expression for the marginal probability mass function when the gain is unknown. Therefore,
we here approximate the population activity by a multivariate Gaussian distribution with matching mean
and covariance matrix (Eq. 9-13) and focus on linear readout. Under this approximation, the (linear)

Fisher Information is given by
J=(fTo e, (44)

The inverse of the covariance matrix is obtained by applying a rank-one update:

F~luyuTF-!
Cl=pt_-— - 45
72 +ulTF-1u’ (45)

where F;; = (14 vh;(v)) f:(0) and u; = h;(¢) f:(0) as above. Plugging in and simplifying we obtain
P N2
hifi
(Z 1+uhi)
T Y 1]erth
= Jo— O(1). (47)

J=Jy— (46)

As above for spatial attention, the O(1) correction term is exactly zero for homogeneous populations and

the derivation for heterogeneous populations follows the same line of argument as above.

4.6 Coding accuracy under fluctuations of attended feature

As described in the main text, fluctuations of the attended feature create differential correlations, i.e.

response variability that is identical to variability induced by changes in the stimulus. Here we derive
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the results using the Generalized Linear Model (Eq. 25) formulation:
log A\; = Beos(v) — ¢;) + kcos(0 — ¢;)
= (b + HX)Tki
= )A(Tki,
where b = B[cos ¥, sint)]T, x = [cos @, sinf]T, and k; = [cos ¢;, sin ¢;]T. Since % is independent of the
neurons, it is obvious that attention has exactly the same effect as a change in the stimulus. Assuming

(51)

E[¢] = 6, Var[)] is small, and (without loss of generality) § = 0, we have
11

1
b~ , X R
ol :

(52)

)

Moreover, we can write the attention-perturbed stimulus 0 as
flo U
K+

411
1

For large N the Poisson noise averages out and therefore the resulting Fisher information is simply the
(53)

1 —_
Var[)

inverse of the variance of the (attention-perturbed) stimulus:
1 2
. (x/B+1)

Var [9}
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