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Abstract1

Attention is commonly thought to improve behavioral performance by increasing response gain and sup-2

pressing shared variability in neuronal populations. However, both the focus and the strength of attention3

are likely to vary from one experimental trial to the next, thereby inducing response variability unknown4

to the experimenter. Here we study analytically how fluctuations in attentional state affect the structure5

of population responses in a simple model of spatial and feature attention. In our model, attention acts6

on the neural response exclusively by modulating each neuron’s gain. Neurons are conditionally indepen-7

dent given the stimulus and the attentional gain, and correlated activity arises only from trial-to-trial8

fluctuations of the attentional state, which are unknown to the experimenter. We find that this simple9

model can readily explain many aspects of neural response modulation under attention, such as increased10

response gain, reduced individual and shared variability, increased correlations with firing rates, limited11

range correlations, and differential correlations. We therefore suggest that attention may act primar-12

ily by increasing response gain of individual neurons without affecting their correlation structure. The13

experimentally observed reduction in correlations may instead result from reduced variability of the at-14

tentional gain when a stimulus is attended. Moreover, we show that attentional gain fluctuations – even15

if unknown to a downstream readout – do not impair the readout accuracy despite inducing limited-range16

correlations.17
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1 Introduction34

Attention was traditionally thought of as acting by increasing response gain of a relevant population35

of neurons (Maunsell and Treue 2006; Reynolds and Chelazzi 2004). More recent studies found that36

attention also reduces pairwise correlations between neurons (Cohen and Maunsell 2009; Herrero et al.37

2013; Mitchell et al. 2009). Based on a simple pooling model (Zohary et al. 1994) these authors argued38

that the effects of increased gain are dwarfed by the effects of reduced correlations and, therefore, attention39

is more appropriately viewed as shaping the noise distribution.40

However, in an experiment the subject’s state of attention can be controlled only indirectly and is41

bound to vary from one trial to the next. As a consequence, measuring neuronal variability or correlations42

under attention has a fundamental caveat: it is unclear to what extent the observed neuronal covariability43

reflects interesting aspects of information processing in the neuronal population or simply trial-to-trial44

fluctuations in the subject’s state of attention, which is unknown to the experimenter. Despite ample45

evidence that attention fluctuates from trial to trial (Cohen and Maunsell 2010; Cohen and Maunsell46

2011), the effects of such fluctuations on neuronal population activity have so far not been investigated.47

Here we analyze a simple neural population model, where neurons with overlapping receptive fields48

encode the direction of motion of a stimulus. We assume that neurons produce spikes independently49

according to a Poisson process with rate λi and treat attention as a process that modulates the neurons’50

gain. The firing rates are given by51

λi = gifi(θ), (1)

where gi is the attentional gain (a combination of spatial and feature attention) and fi(θ) is the direction52

tuning curve of neuron i. We assume that there is always a stimulus in the neurons’ receptive field, but53

this stimulus is not necessarily attended.54

Crucially, in our model the subject’s attentional state is not constant across trials, even within the55

same attentional condition. Thus, gi is a random variable that varies from trial to trial, and its precise56

value is unknown to the experimenter. As a consequence, the correlations in gi across neurons will induce57

correlations between the observed neural responses. In the following sections, we analyze this correlation58

structure in detail. In addition, we investigate the consequences of these correlations for reading out the59

direction of motion of the stimulus from the population response if the readout does not have access to60

the attentional state.61

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 21, 2015. ; https://doi.org/10.1101/018226doi: bioRxiv preprint 

https://doi.org/10.1101/018226
http://creativecommons.org/licenses/by-nc-nd/4.0/


Direction θ 

-180 0 180

λ
0
(θ

)

Gain α 

D
e

n
s
it
y

0

0.2

0.4

Preferred direction φi

–180 –90 900 180

0

1

1+μ

A B C

D

μ–2σ μ+2σμ

F
ir
in

g
 r

a
te

 λ
i(
0

)

Figure 1. Model of spatial attention. A. Example stimulus. Neurons’ receptive fields are assumed to
be at the same location (circle). B. Tuning curve under sensory stimulation (dashed) and with spatial
attention directed to the stimulus in the receptive field (solid). C. Distribution of attentional gain (α).
D. Population response of a homogeneous population of neurons under sensory stimulation (dashed)
and with attention directed to the stimulus in the receptive fields (solid).

2 Results62

2.1 Fluctuations in spatial attention63

We first consider the simplest case of pure spatial attention and a common gain α for all neurons (Fig. 1):64

λi = αfi(θ), (2)

where α > 0 is the amount of spatial attention allocated to the stimulus in the neurons’ receptive field.65

We do not require any distributional assumptions on α, except for its mean E[α] = µ and variance66

Var[α] = σ2 (Fig. 1C). Under this model, the average spike count of a neuron is given by67

E[yi|θ] = µfi(θ). (3)

By convention we refer to the case of µ = 1 as the sensory response, which is the neural response to the68

stimulus in the absence of any attentional modulation. In experimental conditions where the stimulus is69

attended µa > 1. When attention is directed towards a different stimulus µu ≤ 1 (depending on whether70

responses are suppressed relative to the sensory response under such conditions). Note that although71

we use homogeneous neural populations in the figures (all neurons have the same tuning curve up to a72

preferred direction φi, i.e. fi(θ) = f(θ − φi)), all results hold more generally for arbitrary tuning curves.73

Because the attentional state fluctuates from trial to trial, the underlying firing rate also fluctuates.74

By applying the law of total variance we obtain the spike count variance (Fig. 2A):75

Var[yi|θ] = µfi(θ) + σ2f2
i (θ). (4)
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Figure 2. Effect of fluctuations in attentional state on spike count statistics. Solid lines: analytical
solutions (Eqs. 3–7). Parameter values used here were µ = 0.1, σ ∈ {0.05, 0.1, 0.15} (dark to light red).
A. Spike count variance as a function of mean spike count. Dashed line: identity (Poisson process). B.

Covariance as a function of product of spike counts. C. Correlation coefficient as function of geometric
mean firing rate. The three groups of lines correspond to different levels of σ as in the other panels.
Darker colors within a group indicate increasing ratios fi(θ)/fj(θ). D. Matrix of correlation coefficients
for θ = 0◦ and σ = 0.1. Tuning curves: fi(θ) = exp(κ cos(θ − φi) + ǫ), κ = 2, average firing rate across
all θ: 10 spikes/s. E. Average correlation coefficient (over all directions of motion θ) as a function of
difference of the preferred directions of the two neurons. Despite a common gain for all neurons,
correlations decay with tuning difference. Parameters as in panel E. F. As in panel E, but for different
tuning widths (κ ∈ {0.5, 1, 2, 4, 8}, shown in inset at the top). The decay of the correlations with the
difference of the preferred directions is stronger for narrow tuning curves. Red line corresponds to
panels D and E. Mean firing rate: 10 spikes/s for all tuning widths.

The first term is equal to the average spike count and results from the Poisson process assumption,76

while the second term is quadratic in the firing rate, which results from the multiplicative nature of the77

fluctuating gain α (Goris et al. 2014). Such an expanding mean-variance relation has been observed in78

many experimental studies (Britten et al. 1993; Dean 1981; Goris et al. 2014; Tolhurst et al. 1983). Note79

that if the attentional gain does not fluctuate, we recover the Poisson process.80

Similar to the variances, we can compute the covariance between two neurons, which is given by the81

product of the firing rates and the variance of the attentional gain (Fig. 2B):82

Cov[yi, yj |θ] = σ2fi(θ)fj(θ) i 6= j. (5)

Recall that neurons are assumed to be conditionally independent given the attentional gain. Thus, any83

covariability arises exclusively from gain fluctuations. As a result, the covariance matrix (Fig. 2D) can84

be expressed as a diagonal matrix plus a rank-one matrix:85

C = µDiag (f) + σ2ffT. (6)
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Note that the assumption of conditional independence could be relaxed without affecting any of the86

major results qualitatively: the diagonal matrix in the equation above would simply be replaced by the87

(non-diagonal) point process covariance matrix.88

Experimental studies more typically quantify spike count correlations rather than covariances. We89

therefore also calculated the correlation coefficient ρij of two neurons (Fig. 2C):90

ρij =

√

fifj
(µ/σ2 + fi) (µ/σ2 + fj)

(7)

The spike count correlations induced by a fluctuating attentional gain increase with firing rates fi(θ).91

This effect, which has also been observed in numerous experimental studies (Cohen and Maunsell 2009;92

Ecker et al. 2014; Mitchell et al. 2009; Smith and Sommer 2013), arises because the independent (Poisson)93

variability is linear in the firing rate, whereas the covariance induced by gain fluctuations is quadratic94

and therefore dominates for large firing rates. Thus, correlations increase with the geometric mean firing95

rate, but there is no simple one-to-one mapping between the two quantities (it also depends on the ratio96

of the firing rates, Fig. 2C). The covariance, in contrast, is proportional to the product of the firing rates97

with a constant of proportionality of σ2 (Fig. 2B), suggesting that the latter might be more appropriate98

to consider when analyzing experimental data.99

In addition, the correlation structure induced by gain fluctuations is non-trivial even if all neurons100

share the same gain (Fig. 2E, F; see also Ecker et al. (2014)). Due to the nonlinear shape of the tuning101

function and the nonlinear way the neurons’ tuning functions affect spike count correlations, the correla-102

tions decrease with increased difference in two neurons’ preferred directions (Fig. 2F). The slope of the103

decay depends mainly on the dynamic range of the tuning curve. If neurons have a high baseline firing104

rate compared to their peak firing rate, correlations decrease only marginally with preferred direction.105

In contrast, sharply tuned neurons with close to zero baseline firing rates exhibit strong limited-range106

structure.107

This limited-range correlation structure has been observed in numerous experimental studies (Bair108

et al. 2001; Cohen and Maunsell 2009; Ecker et al. 2010; Smith and Kohn 2008; Zohary et al. 1994) and109

has been hypothesized to reflect shared input among similarly tuned neurons. However, our simple model110

shows that these seemingly structured correlations can arise from a very simple, non-specific mechanism:111

a common fluctuating gain that drives all neurons equally, irrespective of their tuning properties.112

2.2 Fluctuations of feature attention113

Feature attention is different from spatial attention in that the sign of the gain modulation depends on114

the similarity of the attended direction to the neuron’s preferred direction of motion (Fig. 3). Following115

the feature-similarity gain model (Treue and Martinez-Trujillo 1999), we model feature attention by116

λi = (1 + βhi(ψ))fi(θ), (8)

where β is the feature gain that controls how strongly the feature ψ (in this case direction of motion) is117

attended on the given trial and hi(ψ) is the gain profile (Fig. 3B) that determines the sign and relative118

strength of modulation for each neuron depending on the similarity of its preferred direction φi to the119

attended direction ψ. We assume that hi(ψ) most strongly enhances neurons with preferred directions120

equal to the attended direction and suppresses those with opposite preferred directions (Fig. 3B).121
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Figure 3. Model of feature attention. A. Tuning curve of a single neuron under sensory stimulation
(black dotted) and with feature attention directed to different directions ranging from preferred (red) to
null (blue). Note that the entire tuning curve of the neuron is gain-modulated and the modulation does
not depend on the stimulus θ. B. The gain of a neuron depends on which direction of motion ψ is
attended relative to the neuron’s preferred direction φi. C. Distribution of gain (β) fluctuations. A
Gaussian is shown for illustration purposes; the analysis holds for any distribution with E[β] = ν and
Var[β] = τ2. D. Population response of a homogeneous population of neurons under sensory stimulation
(black dotted) and with attention directed to different directions of motion ranging from 0◦ (red) to
180◦ (blue). The stimulus is θ = 0. The curves show the average response of the neurons as a function
of their preferred direction. Attending to a direction of motion biases the population response towards
this attended stimulus. While each neuron’s tuning curve is gain-modulated as a whole (panel A), the
population response is no longer equal to the individual neurons’ tuning curves, but instead
sharpened/broadened and its peak is moved.

Because feature attention both increases and decreases different neurons’ gain depending on their122

preferred direction relative to the attended direction of motion, it biases the population response towards123

the attended direction (Fig. 3D). Thus, unlike in the case of spatial attention the shape of the population124

response is no longer identical to that of the individual neuron’s tuning curve. We start by assuming that125

the subject always attends the same direction (i. e. ψ is constant) and consider the effect of fluctuations in126

the strength of attention, that is the gain β. We will come back to fluctuations in the attended direction127

below.128

Similar to spatial attention, fluctuations in feature attention lead to overdispersion of the spike counts

relative to a Poisson process (because rate variability is added).

E[yi|θ, ψ] = (1 + νhi(ψ))fi(θ) (9)

Var[yi|θ, ψ] = (1 + νhi(ψ))fi(θ) + τ2h2i (ψ)f
2
i (θ), (10)

where ν = E[β] and τ2 = Var[β] are the mean and the variance of the feature attention gain, respectively.129

The degree of overdispersion not only increases with the neuron’s firing rate, but also depends on the130

neuron’s preferred direction relative to the attended direction (Fig. 4A). Interestingly, spike counts are131

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 21, 2015. ; https://doi.org/10.1101/018226doi: bioRxiv preprint 

https://doi.org/10.1101/018226
http://creativecommons.org/licenses/by-nc-nd/4.0/


more overdispersed at the null direction than at the preferred direction (Fig. 4A: compare blue vs. black132

and green vs. yellow). The Fano factor (variance/mean) is given by133

F [yi|θ, ψ] = 1 +
τ2h2i (ψ)

(1 + νhi(ψ))2
E[yi] , (11)

which is higher when hi is negative than when it is positive. Neurons with preferred directions orthogonal134

to the attended direction are not overdispersed since hi = 0.135

As feature attention induces both increases as well as decreases in neuronal gain, the induced corre-136

lation structure is different from that induced by spatial attention. For the covariances, we obtain137

Cov[yi, yj |θ, ψ] = τ2hi(ψ)hj(ψ)fi(θ)fj(θ) i 6= j (12)

The sign of the covariance is determined by the product of hi and hj , which depends on the attended138

direction and the preferred directions of the two neurons (Fig. 4B). For two neurons with identical139

preferred directions, the covariance is always positive while for two neurons with orthogonal preferred140

directions it is always negative. For any pair of neurons in between, it can be both positive and negative,141

depending on the stimulus (Fig. 4B). Again, the covariance matrix can be written as diagonal plus rank142

one:143

C = F + τ2uuT, (13)

where Fii = (1 + νhi(ψ))fi(θ) and ui = hi(ψ)fi(θ).144

As for spatial attention, averaging correlations over multiple stimulus conditions to represent the cor-145

relation structure as a function of the neurons’ tuning similarity misses much of the underlying structure146

(Fig. 4C): spike count correlations are positively correlated with tuning similarity (Fig. 4D), but the147

stimulus dependence (Fig. 4C) is again ignored. As before, the exact shape of the decay depends on148

the tuning width: for narrow tuning curves, neurons with opposite preferred directions are only weakly149

anti-correlated, whereas for broad tuning curves, those neurons are strongly anti-correlated (Fig. 4D, blue150

to red lines).151

So far we have assumed that the attended direction of motion is constant and only the strength of

attention fluctuates from trial to trial. Now we turn to the case where the attended direction fluctuates

from trial to trial. We assume that, on average, the subject attends the correct direction, i. e. E[ψ] = θ,

but with some variance Var[ψ] = q2. We further assume the gain β is constant. In this case, means and

covariances of the observed spike counts are given by

E[yi|θ, β] = (1 + βhi)fi (14)

Cov[yi, yj |θ, β] = δij(1 + βhi)fi + q2β2h′ih
′

jfifj, (15)

where h′i = d
dψ
hi and we have abbreviated hi ≡ hi(θ) and fi ≡ fi(θ). As before, we can write the152

covariance matrix as diagonal plus rank one:153

C = F + q2vvT, (16)

where Fii = (1 + βhi)fi and vi = βh′ifi. This pattern of correlations (Fig. 5) differs from those observed154

before for gain fluctuations in an important way: the sign of the correlation between two neurons depends155

only on whether their preferred directions are on the same side (both clockwise or counter-clockwise) of156
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Figure 4. Effect of fluctuations in the feature attention gain on spike count statistics. Parameters here
are: ψ = 0, ν = 0.1, τ2 = 0.01. A. Spike count variance as a function of mean spike count. Colors
indicate different attended directions relative to the neurons’ preferred direction (φi − ψ; illustrated by
colored triangles in inset on the bottom right). B. Covariance matrix for stimulus θ = 0. Neurons are
ordered by preferred directions. Mean firing rate across the population: 20 spikes/s. C. As panel B, but
the correlation coefficient matrix is shown. D. Dependence of spike count correlations on tuning
similarity (difference of preferred directions). Fluctuations in feature attention induce limited range
correlations irrespective of the shape of the tuning curve. The higher the baseline firing rate the
stronger the negative correlations for neurons with opposite preferred directions. Inset: different tuning
widths used.

the stimulus direction or on different sides. As we will show more formally in the next section, this pattern157

of correlations is known as differential correlations (Moreno-Bote et al. 2014). Again, when plotted as a158

function of the difference of two neurons’ preferred directions, the correlations exhibit the typical limited-159

range structure (Fig. 5C), except for very narrow tuning curves, where the correlations are minimal160

around pairs with orthogonal preferred directions (Fig. 5C, blue lines). Also note that these correlations161

are substantially weaker than those induced by gain fluctuations (Figs. 2, 4), despite a relatively wide162

distribution of attended directions (SD: 10◦).163

2.3 Effect of attention-induced correlations on population coding164

How interneuronal correlations affect the representational accuracy of neuronal populations has been a165

matter of immense interest (and debate) over the last years. Thus, we want to briefly consider how166

correlations induced by attentional fluctuations affect the coding accuracy of a population code.167

Before doing so we need to make a choice: does the downstream readout have access to the state of168

attention or not? If it does, the picture is fairly simple: attentional fluctuations do not affect the readout169

accuracy, since the attentional state can be accounted for and there is no additional noise compared with170

a scenario without attentional fluctuations. The only downside is a potentially more complex readout. In171

contrast, if we assume that the readout does not have access to the attentional state, the situation becomes172

more interesting. In this case the attentional fluctuations act like additional (internally generated) noise,173

which could impair the readout. In the following we consider this latter scenario.174

To quantify the accuracy of a population code, we use the Fisher information (Kay 1993) with respect175

to direction of motion. The Fisher information is useful because it quantifies the amount of information176

in a population of neurons without assuming a specific decoder. For a population of independent neurons,177

the Fisher information is linear in the number of neurons.178

We start by considering spatial attention. Since the gain is the same for all neurons, gain fluctuations179

should not affect the coding accuracy of the population with respect to the direction of the stimulus,180
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Figure 5. Effect of fluctuations in the attended direction on correlation structure. Parameters here
are: E[ψ] = 0, q = 10◦, β = 0.1, θ = 0, mean firing rate across the population: 20 spikes/s. A.

Covariance matrix. Neurons are ordered by preferred directions. B. As panel A, but the correlation
coefficient matrix is shown. C. Dependence of spike count correlations on tuning similarity (difference
of preferred directions). Fluctuations in the attended direction induce limited range correlations, whose
shape depends on the width of the tuning curves. Inset: different tuning widths used.

which is encoded in the differential activation pattern of the neurons. This is indeed the case. The Fisher181

information of a population of Poisson neurons whose firing rates are modulated by a common gain with182

mean µ is given by183

J = µ
N
∑

i=1

f ′

i(θ)
2

fi(θ)
−O(1) ≈ J0. (17)

Thus, unobserved gain fluctuations reduce the information in the population only by a constant term (for184

derivation see Appendix). For reasonably large populations (e.g. N > 100) this term can be neglected185

and the information is approximately equal to that of an independent population (J0). This result can186

be understood intuitively by considering the structure of the covariance matrix (Eq. 5): the dominant187

eigenvector points in the direction of the tuning function f , which is orthogonal to changes in the stimulus,188

f ′. Therefore, gain flucutations do not impair the readout of the direction of motion.189

The same result holds for fluctuations in the feature attention gain, so long as the attended direction190

matches the one shown and does not fluctuate from trial to trial. A fluctuating gain sharpens and191

broadens the population hill from trial to trial, but leaves its peak unchanged. Again, the dominant192

eigenvector (ui = hifi, Eq. 12) points in a direction that is orthogonal to changes in the stimulus (details193

see Appendix).194

The situation changes if the focus of attention (i. e. the attended direction) fluctuates from trial to195

trial or the attended direction does not match the one shown: since feature attention biases the population196

response towards the attended direction, such attentional fluctuations have the same effect as noise on197

the input [differential correlations, (Moreno-Bote et al. 2014)]. To illustrate this finding, we switch to a198

slightly modified and more specific response model than above. Assuming fi(θ) = exp(κ cos(θ− φi)) and199

hi = cos(ψ − φi), and noting that (1 + βhi) ≈ exp(βhi), we can write the log-firing rate as200

logλi = β cos(ψ − φi) + κ cos(θ − φi). (18)

We can combine the two cosine terms and obtain:201

logλi = γ cos(θ +∆θ − φi) (19)
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where

γ =
√

κ2 + β2 + 2κβ cos(ψ − θ) (20)

∆θ = arccos

(

γ2 + κ2 − β2

2γκ

)

. (21)

Thus, feature attention biases the population response away from the stimulus direction θ towards the202

attended direction ψ. The magnitude of the bias ∆θ depends on both the strength of feature attention203

β and the attended direction ψ. Consequently, if ψ 6= θ fluctuations in either the attended feature or the204

degree of feature attention have the same effect on the population response as variance of the stimulus205

direction that is shown, i. e. they induce differential correlations. This result can also be understood by206

considering the structure of the covariance matrix (Eq. 16): the dominant eigenvector vi = h′ifi points in207

the same direction as changes in the stimulus, f ′. We can therefore approximate the Fisher information208

by (see Moreno-Bote et al. 2014)209

J ≈
J0

1 + εJ0
→

1

ε
, (22)

where J0 is again the information in an independent population and ε = Var[∆θ] depends on both the210

distribution of attended directions and the variance of the gain. In this case, the information in the211

population saturates at a finite value 1/ε that depends only on the distribution of the attention signal212

and can be substantially lower than the limit imposed by the information in feedforward signal (see also213

Discussion). When the subject attends the correct direction on average (i. e. E[ψ] = θ) and the variance214

of the attended direction (Var[ψ]) is small, we find215

J →
(κ/β + 1)2

Var[ψ]
. (23)

Thus, the saturation level depends on the strength (β) of attention relative to the tuning width (κ) and216

the variance in the attended direction.217

2.4 Identifying attentional fluctuations in experimental data218

We saw above that fluctuations in attentional state can introduce interesting patterns of correlations in219

neural activity, all of which are roughly consistent with the published literature on attention. However,220

as long as one considers only single neurons and pairwise statistics, any result can be consistent with221

many hypotheses. For instance, attentional fluctuations induce correlations that depend on firing rates222

(Fig. 2C), but the same result is also predicted by the thresholding nonlinearity of neurons (Rocha et al.223

2007) and therefore need not result from attentional fluctuations. Similarly, all types of attentional fluc-224

tuations considered above lead to correlations that decrease with the difference of two neurons’ preferred225

directions (limited range correlations, Figs. 2E, 4D, 5C), but this correlation structure can also arise from226

shared sensory noise (Shadlen and Newsome 1998).227

So how would one go about identifying attentional fluctuations in experimental data? Clearly, one228

has to consider the response patterns of simultaneously recorded populations of neurons rather than just229

pairwise correlations. In the following, we discuss some predictions our model makes for the structure of230

the neural population response.231

A first approach suggested by our analyses above: we showed that in all cases we analyzed the covari-232

ance matrix induced by attentional fluctuations is diagonal plus rank one. Thus, attentional fluctuations233
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Figure 6. Identifying attentional fluctuations from variability in neuronal population activity. A. The
subspace identified by Factor Analysis depends on the stimulus direction. Black triangles: stimulus
direction (left: θ = 0◦, right: θ = 60◦). Solid lines: basis functions corresponding to fluctuations in
spatial attention gain (red), feature attention gain (dark blue), and attended direction (light blue);
population tuning curve (black) and its derivative (gray). Horizontal dashed line: (average) attended
direction. B. Principal components identified by Exponential Family PCA are independent of the
stimulus since the log-link turns a multiplicative modulation into an additive offset. Colors as in panel
A.

are restricted to a low-dimensional subspace that could be identified from simultaneously recorded neu-234

rons by Factor Analysis. However, the disadvantage of this approach is that the low-dimensional subspace235

depends on the stimulus in a non-trivial way (Fig. 6A for θ = 0◦ [left] and θ = 60◦ [right]; see also Eqs. 5,236

12, 16). This stimulus dependence precludes pooling of data over multiple stimulus conditions. Moreover,237

if the attended direction does not match the stimulus direction, the major axes of variability do not peak238

at either direction, but somewhere in between (Fig. 6A, blue lines in the right panel, where ψ = 0◦ and239

θ = 60◦). Thus, it is non-trivial to recover the quantities of interest for the experimenter – the attended240

feature (direction) and the degree of attention allocated (the gain).241

A model that could directly extract attentional gains (spatial and feature gain) and the attended242

feature would be desirable. Fortunately, all three can be inferred from population activity in a straight-243

forward manner using methods such as Exponential Family Principal Component Analysis (E-PCA)244

(Collins et al. 2001; Mohamed et al. 2009) or Poisson Linear Dynamical Systems (PLDS) (Buesing et al.245

2012; Macke et al. 2011). Similar to above (Eq. 18), we assume fi(θ) = exp(κi cos(θ − φi) + ǫi) and246

hi = cos(ψ − φi) and write the log-firing rate as247

logλi = α+ β cos(ψ − φi) + κi cos(θ − φi) + ǫi, (24)

which can be rewritten as a linear function of the attentional state and the stimulus:248

logλi = a+ kT
i b+ κik

T
i x+ ǫi, (25)

where a and b = β · [cosψ, sinψ]T represent the state of spatial and feature attention, respectively,249

x = [cos θ, sin θ]T is the stimulus, ki = [cosφi, sinφi]
T is the neuron’s preferred direction, κi the250

(inverse) tuning width, and ǫi controls the mean firing rate. This model is a Generalized Linear Model251

(GLM) with Poisson observations and log(x) as the link function. Thus, E-PCA or PLDS will recover252

the subspace corresponding to fluctuations in attentional state {a,b}. This subspace is spanned by253

ui = [1, cosφi, sinφi] and independent of the stimulus (see Fig. 6B). The attentional gains are a and254

β = ||b||, while the attended direction is ψ = ∠b.255
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2.5 A new view on the reduction of shared variability under attention256

There is ample experimental evidence that attention fluctuates from trial to trial (Cohen and Maunsell257

2010; Cohen and Maunsell 2011), and we showed in the previous sections that such fluctuations induce258

patterns of (correlated) variability that are highly consistent with the reported data on attention (Cohen259

and Maunsell 2009; Herrero et al. 2013; Mitchell et al. 2009). Interestingly, in our model, both the260

magnitude of overdispersion in single neurons’ spike counts and the average level of correlations are261

determined by the variance of the attentional gain (σ2 = Var[g]), but not by its average modulation262

(µ = E[g]). This observation suggests that the average attentional modulation (µ) between an attended263

and an unattended condition (which can be reliably measured based on average responses) does not264

predict the level of correlations in either condition, since the latter is controlled by an independent265

variable (σ2). Indeed, this is one of the central experimental findings: directing spatial attention to a266

certain location increases the average responses of neurons whose receptive fields represent this location,267

but reduces independent and shared variability among those neurons (Cohen and Maunsell 2009; Herrero268

et al. 2013; Mitchell et al. 2009). Thus, if our model is correct, then the data suggest that attention not269

only increases response gain, but also reduces the trial-to-trial variability of the gain.270

This view of attention has important implications for the role of interneuronal correlations under271

attention. Recent studies (Cohen and Maunsell 2009; Mitchell et al. 2009) have argued that spatial272

attention improves behavioral performance primarily by reducing correlations. However, as we showed273

above, fluctuations of spatial attention do not affect the representational accuracy of the neuronal pop-274

ulation. Therefore, under our model the experimentally observed reduction in correlations is irrelevant275

when reading out a neuronal population. The only difference that matters is the increase in gain.276

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 21, 2015. ; https://doi.org/10.1101/018226doi: bioRxiv preprint 

https://doi.org/10.1101/018226
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 Discussion277

We find that a simple model of neuronal responses can account for a range of empirically observed278

phenomena relating attention, neuronal variability and coding properties of neuronal populations. Our279

model unites two central findings in the literature on attention, that attention acts as a multiplicative280

gain factor on neuronal responses (Maunsell and Treue 2006) and that attention fluctuates from trial-to-281

trial (Cohen and Maunsell 2010). The importance of the combined effects of these observations has not282

previously been fully appreciated, as we show that such a model is sufficient to account for super-Poisson283

variability (see also Ecker and Tolias 2014; Goris et al. 2014) as well as a variety of pairwise correlation284

structures, most notably the “limited-range” structure and “differential correlations” (Abbott and Dayan285

1999; Ecker et al. 2010; Moreno-Bote et al. 2014; Smith and Kohn 2008).286

Our results argue that it is likely that a large fraction of variability in the neuronal response can be287

attributed to fluctuations in behaviorally relevant, internally-generated signals, such as attention, rather288

than shared noise (Ecker and Tolias 2014; Ecker et al. 2010, 2014; Goris et al. 2014; Nienborg and289

Cumming 2009). This view suggests the hypothesis that correlations that arise from such fluctuating290

signals generally should not impair coding of sensory information. We find that this assertion is true for291

the case of fluctuations in the magnitude of the gain. The Fisher information of our model population292

of neurons is not limited by fluctuations in the strength of attentional gain (i.e., is independent of the293

variance of the gain term), despite those fluctuations generating a “limited-range” correlation structure294

typically thought to impair coding.295

However, theoretical work has shown that the effect of different patterns of correlations on the coding296

of sensory information is nuanced and can depend greatly on specific assumptions that are made regarding297

a variety of neuronal properties, such as the shapes of tuning curves in the population, subtle details of298

the assumed correlation structure, or different readouts (Abbott and Dayan 1999; Ecker et al. 2011; Josić299

et al. 2009; Shamir and Sompolinsky 2006; Sompolinsky et al. 2001; Wilke and Eurich 2002). The recent300

work of Moreno-Bote et al. (2014) has helped to clarify the problem of when and what types of correlation301

structures are detrimental to coding with their description of “differential correlations,” a specific pattern302

of correlation proportional to the product of the derivative of the tuning curves that leads to information303

saturation. Our model generates this pattern of correlated variability when the fluctuations in attention304

occur around a specific feature rather than a specific gain value. Thus, it is noteworthy that a model only305

slightly more complicated than typical Poisson spiking models can generate the diversity of correlation306

structures noted in the experimental and theoretical literature as being important for population coding.307

In addition to offering a parsimonious account of neuronal variability and co-variability, our model308

has implications for how we should interpret the effect of attention as it relates to improvements in309

perceptual performance. Chiefly, if the reduction of correlations observed under attention is indeed due310

to a reduction of gain fluctuations – as our model would suggest – the reduction of correlations is irrelevant311

with respect to the coding accuracy of the population and cannot be the mechanism improving behavioral312

performance as suggested by recent experimental studies (Cohen and Maunsell 2009; Herrero et al. 2013;313

Mitchell et al. 2009).314

Our model leads to a second interesting observation: It is likely that not only the attentional gain315

fluctuates from trial to trial, but also the attended feature itself. Such fluctuations introduce differential316

correlations, which indeed impair the readout (unless it has exact access to the attended feature). Thus,317

the attentional mechanism itself places a limit on how accurately a stimulus can be represented by a318

sensory population, and this limit can at least in principle be substantially lower than the amount of319

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 21, 2015. ; https://doi.org/10.1101/018226doi: bioRxiv preprint 

https://doi.org/10.1101/018226
http://creativecommons.org/licenses/by-nc-nd/4.0/


sensory information entering the brain through the eye. This insight may trigger the question: why, then,320

should there be an attentional mechanism in the first place? There are a number of possible answers to321

this question.322

First, we can think of attention as a prior. Using prior information to bias an estimate towards323

more likely solutions will on average improve the estimate. In situations where the stimulus is noisy and324

decisions have to be made fast, such a bias is most beneficial and outweighs the small extra noise added325

due to variability in the prior. Conversely, in situations where there is lots of sensory evidence, the full326

information content present in the eye is rarely necessary in real-world situations, and, therefore, the327

noise added due to attentional fluctuations does not matter either.328

Second, it should be noted that for change-detection paradigms that are typically employed in atten-329

tion experiments, the estimation framework that asks how well a stimulus value can be reconstructed330

(e. g. Fisher information) is not quite appropriate. In such tasks the subject never judges the absolute331

direction (or any other feature) of the stimulus, but instead has to detect a small change, that is the332

difference between two subsequent stimuli. In this case any errors introduced due to fluctuations in the333

attended direction cancel out, since they affect both stimuli roughly equally, at least so long as attentional334

fluctuations occur at a timescale that is slow enough, such that the attentional state is approximately335

the same for both the pre- and post-change stimulus.336

4 Appendix337

4.1 Model setup338

We model a population of direction-selective neurons with overlapping receptive fields and a diverse range339

of preferred directions φi. We use a simple model of spatial and feature attention, where a neuron’s firing340

rate λi is the product of an attentional gain gi(ψ) and a tuning function fi(θ):341

λi(θ, ψ) = gi(ψ)fi(θ) (26)

Here, ψ is the attended direction of motion and θ the direction of the stimulus that is shown. Neurons342

are assumed to be conditionally independent given the firing rate λi (i.e. no noise correlations). The343

attentional gain depends on whether attention is directed to the location of the neurons’ receptive fields344

and on the attended direction of motion. For spatial attention, we use gi = α, which is the same345

for all neurons, since they all have overlapping receptive fields. For feature attention we use gi(ψ) =346

1+βh(ψ−φi), where β the feature attention gain, and h(·) the gain profile. We follow the feature similarity347

gain model (Treue and Martinez-Trujillo 1999), where a neuron’s gain is enhanced if the attended feature348

matches the neuron’s preference and suppressed otherwise. A common choice for h is a cosine: h(ψ−φi) =349

cos(ψ − φi).350

Note that from the perspective of the model there is no fundamental difference between spatial and351

feature attention. If we treat space as a variable that is being encoded by the population, any derivations352

for feature attention also apply to spatial attention. However, because we consider only a local population353

with overlapping receptive fields, spatial attention is a special case: the gain profile within the population354

is constant and therefore spatial attention can be expressed in a simpler way using a single common355

gain α. Thus, whenever we refer to spatial attention, this applies to a situation where all neurons in356

the population that is being considered share the same preferred feature. Likewise, whenever we refer to357
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feature attention, this applies to any situation where the neurons in the population span a large range of358

preferred features. We chose this (somewhat arbitrary) distinction, because it reflects the typical situation359

in an experiment, where neurons with similar retinotopic locations are recorded, which typically span a360

large range of preferred orientations or directions.361

4.2 Effect of fluctuating gains on spike count statistics362

Throughout this paper we assume that spatial and feature attention are independent processes and con-

sider them in isolation. We further assume that the experimenter does not have access to the attentional

state on individual trials, but can only control its average over many trials:

E[α] = µ (27)

E[β] = ν. (28)

In addition the attentional state fluctuates from trial to trial with unknown variance

Var[α] = σ2 (29)

Var[β] = τ2. (30)

To compute means and (co-)variances of the observed spike counts we need only the means and variances363

of α and β. The expected spike counts (Eqs. 3, 9) follow from the linearity of the expectation. Variances364

and covariances can be computed by application of the Law of Total Variance (here for the case of spatial365

attention, feature attention follows the same logic):366

Cov[yi, yj] = E[Cov[yi, yj |α]] + Cov[E[yi|α] ,E[yj|α]] , (31)

where the outer expectation (covariance) is taken over α and the inner covariance (expectation) over yi367

and yj . Plugging the definitions of λi = E[yi|α] and using the assumption of conditionally independent368

Poisson spiking Cov[yi, yj |α] = δijλi, we obtain the expressions for variances and covariances stated in369

the main text (Eqs. 4–6, 10–13).370

4.3 Effect of fluctuations in attended feature on spike count statistics371

Calculating the means and covariances under fluctuations in the attended direction ψ follows the same372

approach as above. However, since the gain profile hi(ψ) can be non-linear, we need a few additional373

assumptions. We assume that ψ is distributed around some direction ψ0 = E[ψ] with variance q2 = Var[ψ].374

For reasonably small q2 we can approximate the gain profile by its first-order Taylor expansion375

hi(ψ) ≈ hi(ψ0) + (ψ − ψ0)h
′

i(ψ0), (32)

where h′i is the derivative with respect to ψ. Using this approximation we can write E[hi(ψ)] ≈ hi(ψ0)376

and Var[hi(ψ)] ≈ q2h′i(ψ0), which leads (again after applying the Law of Total Variance) to the results377

in the main text (Eqs. 14–16).378
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4.4 Coding accuracy under fluctuations of spatial attention379

Here we show that fluctuations in spatial attention have a negligible effect on the amount of information380

about the orientation of the stimulus. For simplicity we assume that neurons produce spikes conditionally381

independently given the stimulus orientation θ and the attentional gain g:382

yi|θ, g ∼ Poisson(λi) λi = gfi(θ) (33)

The attentional gain g is shared among all neurons and drawn from a Gamma distribution with shape

µ2/σ2 and scale σ2/µ, which implies E[g] = µ and Var[g] = σ2. Assuming that the experimenter does

not know the attentional gain, the distribution P (y|θ) obtained by marginalizing over g is a multivariate

negative binomial distribution:

P (y|θ) =

∫

P (g)
∏

i

P (yi|θ, g)dg (34)

=

∫

g
µ2

σ2
−1 exp

(

− gµ
σ2

)

Γ
(

µ2

σ2

)(

σ2

µ

)

µ2

σ2

∏

i

(gfi)
yi

yi!
exp(−gfi)dg (35)

=

(

µ
σ2

)

µ2

σ2

Γ
(

µ2

σ2

)

(

∏

i

fyii
yi!

)

∫

g
µ2

σ2
−1+

∑
yi exp

(

−g
( µ

σ2
+
∑

fi

))

dg (36)

=
Γ
(

µ2

σ2 +
∑

yi

)

Γ
(

µ2

σ2

)

(

∏

i

fyii
yi!

)

( µ
σ2

µ
σ2 +

∑

fi

)

µ2

σ2
(

1
µ
σ2 +

∑

fi

)

∑
yi

(37)

For the Fisher information J = E
[

d2

dθ2
logP (y|θ)

]

we need the derivatives of the log-likelihood:

d

dθ
logP (y|θ) =

(

∑

i

yif
′

i

fi

)

−

(

µ2

σ2 +
∑

yi

)

∑

f ′

i

µ
σ2 +

∑

fi
(38)

d2

dθ2
logP (y|θ) =

(

∑

i

yi
f ′′

i fi − (f ′

i)
2

f2
i

)

−

(

µ2

σ2
+
∑

yi

)

(
∑

f ′′

i )
(

µ
σ2 +

∑

fi
)

− (
∑

f ′

i)
2

(

µ
σ2 +

∑

fi
)2

(39)

Plugging into the formula for Fisher information, re-ordering the summations over y and i, and using the

facts
∑

y
P (y|θ) = 1 and

∑

y
P (y|θ)yi = E[yi] = µfi, we obtain

J = −
∑

y

P (y|θ)

[(

∑

i

yi
f ′′

i fi − (f ′

i)
2

f2
i

)

−

(

µ2

σ2
+
∑

yi

)

(
∑

f ′′

i )
(

µ
σ2 +

∑

fi
)

− (
∑

f ′

i)
2

(

µ
σ2 +

∑

fi
)2

]

(40)

= µ
∑

i

(f ′

i)
2

fi
−
µ (
∑

f ′

i)
2

µ
σ2 +

∑

fi
(41)

The first term in the above equation is the Fisher information of an independent population of neurons383

and therefore O(N), while the second term is O(1): for homogeneous population of neurons, where384

fi(θ) = f(θ − φi), it is zero; for heterogeneous populations it is O(1), as we show in the next paragraph.385

Thus, fluctuations in spatial attention do not impair the coding accuracy of the population with respect386

to orientation.387
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To show that the second term above is O(1) for heterogeneous populations, we assume that the388

neurons’ tuning curves are independent random variables (see Ecker et al. 2011; Shamir and Sompolinsky389

2006). In this case the quantity of interest is the expected value with respect to different realizations of390

the heterogeneity:391

E

[

µ (
∑

f ′

i)
2

µ
σ2 +

∑

fi

]

≈
µE
[

(
∑

f ′

i)
2
]

µ
σ2 + E[

∑

fi]
= O(1). (42)

Here the approximation holds because for large N the width of the distribution of
∑

fi becomes narrower392

relative to its mean and therefore the expected value of the second term converges to the ratio of the393

expected values of numerator and denominator. The equality holds because
∑

fi = O(N) and394

E

[

(

∑

f ′

i

)2
]

= Var
[

∑

f ′

i

]

=
∑

Var[f ′

i ] = O(N), (43)

which holds because E[
∑

f ′

i ] = 0.395

4.5 Coding accuracy under fluctuations of feature attentional gain396

Fluctuations in feature attention are more difficult to study analytically. Unfortunately, the Gamma-397

Poisson mixture model employed above does not generalize to the case where the gain is weighted dif-398

ferently for each neuron (i.e. the gain profile hi), or at least we are not aware of a model that has a399

closed-form expression for the marginal probability mass function when the gain is unknown. Therefore,400

we here approximate the population activity by a multivariate Gaussian distribution with matching mean401

and covariance matrix (Eq. 9–13) and focus on linear readout. Under this approximation, the (linear)402

Fisher Information is given by403

J = (f ′)TC−1f ′. (44)

The inverse of the covariance matrix is obtained by applying a rank-one update:404

C−1 = F−1 −
F−1uuTF−1

τ−2 + uTF−1u
, (45)

where Fii = (1 + νhi(ψ))fi(θ) and ui = hi(ψ)fi(θ) as above. Plugging in and simplifying we obtain

J = J0 −

(

∑ hif
′

i

1+νhi

)2

τ−2 +
∑ hifi

1+νhi

(46)

= J0 −O(1). (47)

As above for spatial attention, the O(1) correction term is exactly zero for homogeneous populations and405

the derivation for heterogeneous populations follows the same line of argument as above.406

4.6 Coding accuracy under fluctuations of attended feature407

As described in the main text, fluctuations of the attended feature create differential correlations, i. e.

response variability that is identical to variability induced by changes in the stimulus. Here we derive
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the results using the Generalized Linear Model (Eq. 25) formulation:

log λi = β cos(ψ − φi) + κ cos(θ − φi) (48)

= (b+ κx)Tki (49)

≡ x̂Tki, (50)

where b = β[cosψ, sinψ]T, x = [cos θ, sin θ]T, and ki = [cosφi, sinφi]
T. Since x̂ is independent of the408

neurons, it is obvious that attention has exactly the same effect as a change in the stimulus. Assuming409

E[ψ] = θ, Var[ψ] is small, and (without loss of generality) θ = 0, we have410

b ≈ β

[

1

ψ

]

, x ≈

[

1

0

]

. (51)

Moreover, we can write the attention-perturbed stimulus θ̂ as411

θ̂ ≈
x̂2
x̂1

=
ψ

κ+ β
. (52)

For large N the Poisson noise averages out and therefore the resulting Fisher information is simply the412

inverse of the variance of the (attention-perturbed) stimulus:413

J →
1

Var
[

θ̂
] =

(κ/β + 1)2

Var[ψ]
. (53)

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 21, 2015. ; https://doi.org/10.1101/018226doi: bioRxiv preprint 

https://doi.org/10.1101/018226
http://creativecommons.org/licenses/by-nc-nd/4.0/


References414

Abbott, L. F. and Peter Dayan (1999). “The Effect of Correlated Variability on the Accuracy of a415

Population Code”. In: Neural Computation 11.1. 00475, pp. 91–101.416

Bair, Wyeth, Ehud Zohary, and William T. Newsome (2001). “Correlated Firing in Macaque Visual417

Area MT: Time Scales and Relationship to Behavior”. In: The Journal of Neuroscience 21.5. 00299,418

pp. 1676–1697.419

Britten, Kenneth H. et al. (1993). “Responses of neurons in macaque MT to stochastic motion signals”.420

In: Visual Neuroscience 10.06, pp. 1157–1169.421

Buesing, Lars, Jakob H. Macke, and Maneesh Sahani (2012). “Learning stable, regularised latent models422

of neural population dynamics”. In: Network: Computation in Neural Systems 23.1-2. 00003, pp. 24–423

47.424

Cohen, Marlene R and John H R Maunsell (2009). “Attention improves performance primarily by reducing425

interneuronal correlations”. In: Nature Neuroscience 12.12, pp. 1594–1600. issn: 1097-6256.426

Cohen, Marlene R. and John H. R. Maunsell (2010). “A Neuronal Population Measure of Attention Pre-427

dicts Behavioral Performance on Individual Trials”. In: The Journal of Neuroscience 30.45, pp. 15241–428

15253.429

Cohen, Marlene R. and John H.R. Maunsell (2011). “Using Neuronal Populations to Study the Mecha-430

nisms Underlying Spatial and Feature Attention”. In: Neuron 70.6, pp. 1192–1204. issn: 0896-6273.431

Collins, Michael, Sanjoy Dasgupta, and Robert E. Schapire (2001). “A generalization of principal com-432

ponents analysis to the exponential family”. In: Advances in neural information processing systems.433

00259, pp. 617–624.434

Dean, A. F. (1981). “The variability of discharge of simple cells in the cat striate cortex”. en. In: Experi-435

mental Brain Research 44.4, pp. 437–440. issn: 0014-4819, 1432-1106.436

Ecker, Alexander S. and Andreas S. Tolias (2014). “Is there signal in the noise?” en. In: Nature Neuro-437

science 17.6. 00000, pp. 750–751. issn: 1097-6256.438

Ecker, Alexander S. et al. (2010). “Decorrelated Neuronal Firing in Cortical Microcircuits”. In: Science439

327.5965, pp. 584–587.440

Ecker, Alexander S. et al. (2011). “The Effect of Noise Correlations in Populations of Diversely Tuned441

Neurons”. In: The Journal of Neuroscience 31.40. 00032, pp. 14272 –14283.442

Ecker, Alexander S. et al. (2014). “State dependence of noise correlations in macaque primary visual443

cortex”. In: Neuron 82.1, pp. 235–248.444

Goris, Robbe L. T., J. Anthony Movshon, and Eero P. Simoncelli (2014). “Partitioning neuronal variabil-445

ity”. en. In: Nature Neuroscience 17.6. 00000, pp. 858–865. issn: 1097-6256.446

Herrero, Jose L. et al. (2013). “Attention-Induced Variance and Noise Correlation Reduction in Macaque447

V1 Is Mediated by NMDA Receptors”. In: Neuron 78.4, pp. 729–739. issn: 0896-6273.448

Josić, Krešimir et al. (2009). “Stimulus-Dependent Correlations and Population Codes”. In: Neural Com-449

putation 21.10. 00038, pp. 2774–2804. issn: 0899-7667.450

Kay, Steven M. (1993). Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory.451

1st ed. Prentice Hall. isbn: 0133457117.452

Macke, Jakob H. et al. (2011). “Empirical models of spiking in neural populations”. In: Advances in neural453

information processing systems 24, p. 13501358.454

Maunsell, John H.R. and Stefan Treue (2006). “Feature-based attention in visual cortex”. In: Trends in455

Neurosciences 29.6, pp. 317–322. issn: 0166-2236.456

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 21, 2015. ; https://doi.org/10.1101/018226doi: bioRxiv preprint 

https://doi.org/10.1101/018226
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mitchell, Jude F., Kristy A. Sundberg, and John H. Reynolds (2009). “Spatial Attention Decorrelates457

Intrinsic Activity Fluctuations in Macaque Area V4”. In: Neuron 63.6, pp. 879–888. issn: 0896-6273.458

Mohamed, Shakir, Zoubin Ghahramani, and Katherine A. Heller (2009). “Bayesian exponential family459

PCA”. In: Advances in Neural Information Processing Systems. 00037, pp. 1089–1096.460

Moreno-Bote, Rubén et al. (2014). “Information-limiting correlations”. en. In: Nature Neuroscience ad-461

vance online publication. 00000. issn: 1097-6256.462

Nienborg, Hendrikje and Bruce G. Cumming (2009). “Decision-related activity in sensory neurons reflects463

more than a neuron’s causal effect”. In: Nature 459.7243, pp. 89–92. issn: 0028-0836.464

Reynolds, John H. and Leonardo Chelazzi (2004). “Attentional Modulation of Visual Processing”. In:465

Annual Review of Neuroscience 27.1, pp. 611–647. issn: 0147-006X.466

Rocha, Jaime de la et al. (2007). “Correlation between neural spike trains increases with firing rate”. In:467

Nature 448.7155, pp. 802–806. issn: 0028-0836.468

Shadlen, Michael N. and William T. Newsome (1998). “The Variable Discharge of Cortical Neurons: Im-469

plications for Connectivity, Computation, and Information Coding”. In: The Journal of Neuroscience470

18.10. 01334, pp. 3870 –3896.471

Shamir, Maoz and Haim Sompolinsky (2006). “Implications of Neuronal Diversity on Population Coding”.472

In: Neural Computation 18.8, pp. 1951–1986.473

Smith, Matthew A. and Adam Kohn (2008). “Spatial and Temporal Scales of Neuronal Correlation in474

Primary Visual Cortex”. In: J. Neurosci. 28.48, pp. 12591–12603.475

Smith, Matthew A. and Marc A. Sommer (2013). “Spatial and Temporal Scales of Neuronal Correlation476

in Visual Area V4”. en. In: The Journal of Neuroscience 33.12. 00007, pp. 5422–5432. issn: 0270-6474,477

1529-2401.478

Sompolinsky, Haim et al. (2001). “Population coding in neuronal systems with correlated noise”. In:479

Physical Review E 64.5, p. 051904.480

Tolhurst, David J., J. A. Movshon, and A. F. Dean (1983). “The statistical reliability of signals in single481

neurons in cat and monkey visual cortex”. In: Vision research 23.8. 00658, pp. 775–785.482

Treue, Stefan and Julio C. Martinez-Trujillo (1999). “Feature-based attention influences motion processing483

gain in macaque visual cortex”. In: Nature 399.6736, pp. 575–579. issn: 0028-0836.484

Wilke, Stefan D. and Christian W. Eurich (2002). “On the functional role of noise correlations in the485

nervous system”. In: Neurocomputing 44-46, pp. 1023–1028. issn: 0925-2312.486

Zohary, Ehud, Michael N. Shadlen, and William T. Newsome (1994). “Correlated neuronal discharge rate487

and its implications for psychophysical performance”. In: Nature 370.6485. 00736, pp. 140–143.488

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 21, 2015. ; https://doi.org/10.1101/018226doi: bioRxiv preprint 

https://doi.org/10.1101/018226
http://creativecommons.org/licenses/by-nc-nd/4.0/

