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Abstract 17 

Neural circuits for behavior transform sensory inputs into motor outputs in patterns with strategic value. 18 

Determining how neurons along a sensorimotor circuit contribute to this transformation is central to 19 

understanding behavior. To do this, a quantitative framework to describe behavioral dynamics is needed. 20 

Here, we built a high-throughput optogenetic system for Drosophila larva to quantify the sensorimotor 21 

transformations underlying navigational behavior. We express CsChrimson, a red-shifted variant of 22 

Channelrhodopsin, in specific chemosensory neurons, and expose large numbers of freely moving 23 

animals to random optogenetic activation patterns. We quantify their behavioral responses and use 24 

reverse correlation analysis to uncover the linear and static nonlinear components of navigation dynamics 25 

as functions of optogenetic activation patterns of specific sensory neurons. We find that linear-nonlinear 26 

(LN) models accurately predict navigational decision-making for different optogenetic activation 27 

waveforms. We use our method to establish the valence and dynamics of navigation driven by 28 

optogenetic activation of different combinations of bitter sensing gustatory neurons. Our method captures 29 

the dynamics of optogenetically-induced behavior in compact, quantitative transformations that can be 30 

used to characterize circuits for sensorimotor processing and their contribution to navigational decision-31 

making.   32 
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Introduction 33 

To successfully navigate their environments, animals transform sensory inputs into motor outputs in 34 

patterns that strategically orient themselves towards improving conditions. The navigational strategies of 35 

insect larvae represent a long-standing paradigm for studying the mechanisms of animal orientation (1, 36 

2). The small size and simple nervous system of the Drosophila larva, combined with its powerful genetic 37 

toolbox and recent advances in optical neurophysiology and anatomical reconstruction of circuit structure 38 

and connectivity, opens the possibility of understanding the neural encoding of animal navigation from 39 

sensory inputs to motor outputs without gaps (3). To accomplish this a quantitative framework to describe 40 

navigation decision-making is needed. Such a framework can then be used to dissect the function of the 41 

neurons and circuits in charge of processing sensory information. 42 

Drosophila larva navigation involves the regulation of transitions between two basic motor states, runs 43 

during which the animal moves forward using rhythmic peristaltic waves and turns during which the larva 44 

sweeps its head back and forth until it selects the direction of a new run (4-6) (Fig 1A).  Attractive and 45 

repulsive responses can be estimated by the tendency of the larva to aggregate near or avoid an 46 

environmental stimulus (7). Attractive and repulsive responses can also be observed in the movement 47 

patterns of individual larvae (4, 8, 9). When the larva encounters improving conditions over time, it lowers 48 

the likelihood of ending each run with a turn, thereby lengthening runs in favorable directions. When the 49 

larva encounters improving conditions during each head sweep of a turn, it increases the likelihood of 50 

starting a new run, thereby starting more runs in favorable directions. Thus, subjecting the larva to an 51 

attractant tends to suppress transitions from runs to turns and stimulate transitions from turns to runs; 52 

subjecting the larva to a repellant has the opposite effects. 53 

Much progress has been made in understanding the molecular and cellular organization of the 54 

chemosensory system of the Drosophila larva, but how specific chemosensory neurons relay information 55 

to guide navigational movements remains poorly understood. (7, 10-12).  One challenge of studying 56 

chemotaxis is that it is difficult to provide sensory input to behaving animals with the flexibility, receptor-57 

specificity, and precision needed to build computational models of chemosensory-guided navigation. The 58 

recent development of a red-shifted version of Channelrhodopsin, CsChrimson, which is activated at 59 

wavelengths that are invisible to the larva’s phototaxis system, now allows us to specifically manipulate 60 

the activity of neurons in behaving animals with reliability and reproducibility (13). 61 

Here, we sought a mathematical characterization of the navigation dynamics evoked by optogenetic 62 

activation of different sets of neurons. We focus on the navigation driven by chemosensory inputs. 63 

Although the organization of the chemosensory periphery is well defined, the quantitative mapping from 64 

sensory activity to behavioral dynamics has not yet been determined. To do this, we engineered a high 65 

throughput experimental setup capable of recording the run and turn movements of freely moving larvae 66 

subjected to defined optogenetic activation of selected chemosensory neurons. By measuring large 67 
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numbers of animals responding to defined random patterns of optogenetic stimulation, we were able to 68 

collect enough data to use reverse-correlation analysis to connect optogenetic activation patterns of 69 

sensory neurons with motor patterns (14). We used this information to build linear-nonlinear (LN) models 70 

that accurately predict behavioral dynamics in response to diverse patterns of optogenetic activation of 71 

sensory neurons (15).  72 

We used our method to study how the optogenetic activation of olfactory receptor neurons (ORNs) and 73 

different sets of gustatory receptor neurons (GRNs) map to navigational movements. Analysis of 74 

gustatory neurons allowed us to investigate the navigational responses evoked by individual GRNs and 75 

their combinations. We find that compact LN models that connect optogenetic activation to behavioral 76 

responses are nonetheless sufficient to describe or predict navigational behavior, and should facilitate 77 

future studies to elucidate the circuit mechanisms that shape sensorimotor transformations.  78 

  79 
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Results 80 

Reverse-correlation analysis of navigation dynamics 81 

We can characterize the navigation strategy of the Drosophila larva by identifying the mathematical 82 

functions that describe transitions between two basic motor states: running and turning (Fig 1A). We 83 

sought these functions (fr→t, ft→r) for defined patterns of chemosensory stimulation delivered via 84 

optogenetics. We used transgenic animals that express the red-shifted Channelrhodopsin CsChrimson in 85 

selected olfactory and gustatory neurons using the UAS-Gal4 system (16). In our setup, we followed the 86 

movements of large numbers of late second instar larvae navigating the surface of a 22 cm x 22 cm agar 87 

plate under dark-field illumination provided by infrared LEDs (Fig 1B). The entire plate was subjected to 88 

spatially uniform optogenetic illumination from above using a matrix of 625 nm red LEDs, a wavelength 89 

chosen to activate CsChrimson while invisible to the larva’s photosensory system (13, 17). We tuned our 90 

light intensity (1.9 W/m
2
) to a level where negligible behavioral response is detected in wild type animals 91 

crossed with UAS-CsChrimson fed with 0.5mM all-trans-retinal. We made sure that this light intensity is 92 

strong enough to activate CsChrimson by testing it with a well-studied motor neuron line (Fig 1-figure 93 

Supplement 1).   94 

To obtain direct evidence that optogenetic illumination in our behavioral setup activates sensory neurons, 95 

we used electrophysiology. We made extracellular recordings of the dorsal organ of individual larvae 96 

expressing CsChrimson in specific olfactory receptor neurons, and recorded the responses to red light 97 

activation pulses of 0.2, 0.5 and 1 second of the same intensity used in the behavioral experiments. We 98 

found that optogenetic activation of the ORN expressing Or45a reliably and reproducibly induced spike 99 

trains during exposure to red light (Fig 1C). Similar results were obtained using larvae expressing 100 

CsChrimson in the ORN expressing Or42a (Fig 1D). These results confirm direct correspondence 101 

between ON/OFF pulses of CsChrimson activation and induced spiking in single sensory neurons.  102 

To map the input-output relationships with optogenetic interrogation of chemosensory neurons, we used 103 

reverse-correlation methods viewing the whole animal as a transducer. We subjected larvae to random 104 

patterns of optogenetic stimulation, and collected the statistics of all behavioral responses exhibited by 105 

the freely moving larvae. We used the simplest white process for reverse-correlation, a Bernoulli process 106 

where we assigned -1 for lights OFF and +1 for lights ON, and calculated the mean stimulus history that 107 

preceded each run to turn or turn to run transition (Fig 1E, F). These event-triggered stimulus histories 108 

represent how the animal uses optogenetic activation patterns of specific neurons to regulate each motor 109 

state transition and are proportional to the linear filter components of fr→t and ft→r (see Materials and 110 

Methods and Supplemental Methods). 111 

 112 

 113 
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Linear filters of repellant and attractive responses 114 

When freely crawling larvae encounter increasing chemoattractant concentrations during runs, they 115 

decrease the likelihood of initiating a turn. When they encounter increasing chemoattractant 116 

concentrations during the head sweep of a turn, they increase the likelihood of starting a new run. The 117 

Or42a receptor is activated by a number of volatile chemoattractants including ethyl butyrate and ethyl 118 

acetate (7, 8, 18). Genetically modified animals in which the Or42a expressing ORN is the only functional 119 

olfactory receptor neuron are capable of climbing olfactory gradients towards these attractants. These 120 

observations strongly suggest that the Or42a expressing ORN mediates attractant responses. To test our 121 

system, we subjected Or42a>CsChrimson larvae to random optogenetic stimulation. We found that run-122 

to-turn transitions coincided with a decrease in the probability of optogenetic activation (Fig 2A, left), 123 

whereas turn-to-run transitions coincided with an increase (Fig 2A, right). These patterns are consistent 124 

with an attractive response to Or42a activation. Importantly, the full shape of the event-triggered stimulus 125 

histories informs us about how the temporal optogenetic activation patterns of Or42a regulate each type 126 

of navigational movement. Methods that measure the tendency of larvae to aggregate near 127 

chemoattractants or net movement up chemoattractant gradients provide information about the overall 128 

tendency to navigate but not about the discrete decision-making processes that drive navigation. 129 

Random optogenetic activation of all the ORNs via expression of UAS-CsChrimson with the Orco 130 

olfactory-receptor-coreceptor driver (previously called Or83b) mediated an attractive response similar to 131 

the one shown with the Or42a driver alone (Fig 1E,F). This is consistent with most ORNs in the 132 

Drosophila larva being thought to mediate attractant responses (7, 19). One exception is the Or45a-133 

expressing ORN, which has recently been shown to mediate an aversive response in an optogenetic 134 

setup; larvae that express Channelrhodopsin in Or45a-expressing neurons will avoid an illuminated 135 

region of an agar plate (20). A role for the Or45a-expressing neurons in repellency is also consistent with 136 

the observation that they are the only ORNs that detect octyl acetate, a chemical repellant (7, 21). We 137 

sought the linear filters of this olfactory repellant response in our setup by quantifying the movements of 138 

Or45a>CsChrimson larvae subjected to random optogenetic stimulation (Fig 2B). Run-to-turn transitions 139 

in Or45a>CsChrimson larvae coincided with an increase in the probability of optogenetic illumination and 140 

turn-to-run transitions coincided with a decrease, consistent with repellant behavior. 141 

For comparison, we calculated event-triggered stimulus histories using larvae heterozygous for UAS-142 

CsChrimson and with the same genetic background as our Gal4 lines (w1118 x UAS-CsChrimson) 143 

subjected to random illumination (Fig 2C). These control larvae were raised in the same conditions and 144 

fed the same food as larvae used for all other experiments (Materials and Methods). These larvae 145 

showed no correlations between the probability of illumination and motor state transitions. Their motor 146 

state transitions were random and spontaneous.  147 
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In our setup, we flag turn-to-run transitions by the resumption of peristaltic forward movement and run-to-148 

turn transitions as the onset of head sweeping behavior. However, the decision to finish a run may begin 149 

at an earlier point, when the animal first begins to slow down. We measured the crawling speeds of larvae 150 

before flagged run-to-turn transitions, and found that runs decelerate ~1s before the onset of head 151 

sweeping behavior (Fig 2A-C). For both repellant and attractants, an increase and decrease in the 152 

probability of optogenetic illumination, respectively, coincides with the beginning of run deceleration (Fig 153 

2A,B). The average deceleration time was 1s for all experiments conducted in this study (Student’s t-test, 154 

p<0.01). 155 

Linear-Nonlinear models of behavior 156 

A satisfactory model of navigation should be able to predict behavioral responses to various stimulus 157 

waveforms. We asked whether we could use our measurements of event-triggered stimulus histories to 158 

build such a model. A simple and widely used formalism is the linear-nonlinear (LN) model. In LN models, 159 

the linear filter component is proportional to our measurement of the event-triggered stimulus history (15). 160 

First, the stimulus waveform is passed through this linear filter to make an initial prediction of the 161 

behavioral response. Linear estimates have common problems, such as taking negative values and 162 

failing to account for saturation. To correct these problems, the linear prediction is then scaled with a 163 

static nonlinear function. This static nonlinearity can be calculated by comparing a linear prediction with 164 

experimental measurements.  165 

We used larvae with CsChrimson in Or45a expressing neurons to test an LN model in predicting 166 

behavior. We calculated the static nonlinearity for both run-to-turn and turn-to-run transitions by 167 

comparing linear predictions obtained with the event-triggered stimulus histories shown in Fig 2B with 168 

experimental measurements (Fig 3A). Next, we implemented the linear filter and static nonlinearity in an 169 

LN model (Fig 3B) to predict the behavioral response of these larvae to different inputs, using step 170 

increases in optogenetic illumination as well as defined trains of pulses of different widths. We found 171 

remarkably good agreement in these predictions to both stimulus types (Fig 3C). We note that the LN 172 

prediction begins to fail to account for the turn-to-run transitions at long times following a step increase in 173 

optogenetic illumination. Turns typically last <4 seconds, which limits the length of stimulus history that 174 

can be used in a linear filter, which thus puts a ~4s upper bound on the length of stimulus response that 175 

can be predicted. Taken together, our results show that LN models governing stimulus-evoked transitions 176 

between motor states can be used to predict larval chemotaxis behavior with high accuracy (Fig. 3C).  177 

The LN model was also successful in predicting the behavior of Or42a-expressing neurons and other 178 

chemosensory neurons (Fig 3-figure supplement 1; Fig 3-figure supplement 2; detailed calculations are in 179 

Supplemental Methods). 180 

 181 

 182 
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Distinct temporal dynamics in optogenetically-induced chemotactic behavior 183 

The dynamics of behavioral responses are shaped by the linear filter component of LN models while the 184 

static nonlinearity only provides saturation and instantaneous scaling. To test if optogenetic activation of 185 

different chemosensory neurons could produce behavioral responses with distinct dynamics we 186 

undertook a search for different linear filters measured by event-triggered stimulus histories using 187 

reverse-correlation.  188 

The Gr21a receptor senses carbon dioxide, a powerful Drosophila repellant (9, 22). We measured the 189 

event-triggered stimulus histories of Gr21a>CsChrimson larvae subjected to random optogenetic 190 

stimulation. We found that run-to-turn transitions coincided with an increase in the probability of 191 

optogenetic illumination from baseline, whereas turn-to-run transitions coincided with a decrease (Fig 4A). 192 

These patterns are consistent with a repellant response. However, the linear filter associated with Gr21a 193 

for run-to-turn transition revealed important differences in shape and timing of stimulus history as 194 

compared with the filter for Or45a. The run-to-turn transition in both cases was preceded by a positive 195 

lobe in the probability of optogenetic activation lasting ~2s. This positive lobe was itself preceded by a 196 

pronounced negative lobe lasting ~1.5s for Gr21a but not for Or45a. 197 

How do differences in the shape and timing of linear filters translate into behavioral responses with 198 

different dynamics? To explore this question, we compared the prediction and experimental measurement 199 

of stepwise activation of Or45a and Gr21a expressing neurons (Fig 4B). Biphasic linear filters – such as 200 

that associated with Gr21a and also seen in other sensory systems like the E. coli chemotactic response 201 

– contribute to adaptation following transient stimulation (23). A step increase in stimulation with 202 

repellants will cause a transient increase in the probability of run-to-turn transition. We predicted and 203 

confirmed differences in the adaptive return to baseline behavior for Gr21a and Or45a. The probability of 204 

run-to-turn transition returns to baseline faster in the case of Gr21a. Since each point represents a 205 

distribution of binary values (larvae transitioning from running to turning and larvae not transitioning), we 206 

used a z-test to identify regions where P(r→t) is significantly higher than baseline with p<0.05. We found 207 

that P(r→t) of Gr21a larvae reach values significantly higher than baseline at least 0.5s earlier than Or45a 208 

larvae. In addition, Or45a larvae stay at elevated values of P(r→t)  for at least 0.75s longer than Gr21a 209 

larvae (Fig 4-figure supplement 1A).  210 

We also asked whether differences in behavioral dynamics caused by different linear filters might be 211 

found in attractant responses. Gr2a is expressed in the A1 and A2 GRNs of the dorsal organ as well as in 212 

two unidentified neurons in the terminal organ (12). The role of the Gr2a receptor is not known, but it is 213 

part of the subfamily of Gr68a which has been identified as a pheromone receptor in the adult fly (24). We 214 

calculated the event-triggered stimulus histories of Gr2a>CsChrimson larvae, and found that run-to-turn 215 

transitions coincided with a decrease in optogenetic activation, consistent with an attractant response (Fig 216 

4C). Interestingly, the linear filter associated with Gr2a was distinct from that of Or42a. In 217 
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Or42a>CsChrimson, the run-to-turn transition was preceded by a single negative lobe lasting ~2s. In 218 

Gr2a>CsChrimson larvae, the negative lobe was itself preceded by a positive lobe. As we did for 219 

repellants (Fig 4B), we asked whether the response dynamics to step decrease in optogenetic stimulation 220 

were distinct. We predicted and confirmed differences in behavioral dynamics. The most noticeable 221 

feature is that Or42a larvae reach different steady states of P(r→t) for lights ON or OFF; this creates 222 

differences in step response dynamics. We conducted a z-test to identify regions where P(r→t)  is 223 

significantly higher than baseline with p<0.05. Since the steady state P(r→t) for Or42a larvae is different 224 

for lights ON and lights OFF, we conducted the z-test with both values (Fig 4-figure supplement 1B). 225 

Because Or42a larvae start at a lower P(r→t), they take at least 1.75s longer than Gr2a larvae for P(r→t) 226 

to become significantly higher than the lights OFF steady-state P(r→t). Comparison with the steady state 227 

P(r→t) for lights ON confirms that the steady state P(r→t) for lights OFF is significantly higher with p<0.05 228 

(Fig 4-figure supplement 1B). 229 

We note that unlike the linear filters for run-to-turn transitions, the linear filters for turn-to-run transitions 230 

showed a similar shape for all Gal4 drivers that we used in this study. These filters only showed some 231 

variation in amplitude (Figs 1, 2, 4, 5).  232 

Navigational responses from bitter-sensing GRNs 233 

The molecular and cellular organization of the chemosensory system of the Drosophila larva is 234 

numerically simple. The 21 olfactory receptor neurons (ORNs) contained in the larval dorsal organ (DO) 235 

together express 25 members of the Or family of odorant receptors and the Orco coreceptor (11, 25). In 236 

contrast, 10 gustatory receptor neurons (GRNs) distributed in the dorsal organ and terminal organ – 237 

named A1, A2, B1, B2, and C1-C6 – together express 28 members of the Gr family of gustatory 238 

receptors. Whereas most ORNs express a single Or, GRNs can express multiple Grs and each Gr can be 239 

expressed in multiple GRNs (12). Thus, using larvae expressing CsChrimson under the control of 240 

different Grx-Gal4 drivers enabled us to assess the contribution of selected GRNs to behavior.  241 

The C1 neuron expresses 17 receptors, some of which are found in other neurons (e.g., Gr32a which is 242 

also found in B2) and some of which are specific to C1 (e.g., Gr9a). Most Grs are thought to respond to 243 

repulsive bitter compounds because they express the bitter markers Gr33a and Gr66a (12), suggesting 244 

that C1 is a broadly tuned mediator of repellant responses. Consistent with this hypothesis, optogenetic 245 

activation of C1 with random stimuli using Gr9a>CsChrimson larvae evoked a weak repellant response 246 

where the run-to-turn transition coincided with a slight increase in the probability of optogenetic 247 

illumination (Fig. 5A) (this response was significantly different than the control with p<0.05, see Fig5- 248 

Supplementary Fig1A).  Optogenetic activation of C1 together with B2 using Gr32a>CsChrimson larvae 249 

evoked a much stronger repellant response (Fig. 5B). Optogenetic activation of specifically the B2 neuron 250 

using Gr10>CsChrimson larvae evoked a repellant response (Fig. 5C) Optogenetic activation of C1 251 

together with C4 using Gr39a.b>CsChrimson larvae generated a strong repellant response (Fig. 5D). One 252 
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possibility is that co-activation of narrowly tuned GRNs that express fewer Grs potentiates the repellant 253 

response of the broadly tuned C1 GRN; however, this interpretation should be taken with caution since 254 

different Gal4 drivers may induce different spiking rates upon optogenetic activation with CsChrimson. 255 

We found that optogenetic activation of the C2 neuron alone using Gr94a>CsChrimson larvae evoked a 256 

weak attractive response (Fig 5E) (this response was significantly different than the control with p<0.05, 257 

see Fig5- Supplementary Fig1B). This is surprising because the C2 neuron also expresses the bitter 258 

receptors Gr33a and Gr66a, which should drive repellant responses, although these receptors are also 259 

found in other neurons. One possibility is that the attractant response driven by C2 is inverted when 260 

additional gustatory neurons are recruited. This hypothesis is supported by our observation that co-261 

activation of C1 and C2 using Gr39a.a>CsChrimson larvae exhibited a much stronger repellant response 262 

than activation of C1 alone (Fig. 5F). Co-activation of C1, C2, and C4 using Gr59d>CsChrimson larvae 263 

also exhibited a strong repellant response (Fig. 5G). The strongest repellant response was observed by 264 

co-activating C1-C4, B1, and B2 using Gr66a>CsChrimson larvae (Fig. 5H).  265 
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Discussion 266 

A fundamental step towards understanding how animal navigation is encoded in neural circuits is the 267 

development of a quantitative framework that accurately describes behavioral dynamics. To take this step 268 

with the Drosophila larva, we combined optogenetics with high-resolution behavioral analysis and 269 

reverse-correlation techniques to build linear-nonlinear models that provide an accurate estimate of the 270 

decision-making processes that guide navigation during optogenetically induced chemotaxis.  271 

Linear-nonlinear models separate time-dependencies and instantaneous scaling into two modules, the 272 

linear filter and static nonlinearity, respectively. We find that the LN model is capable of accounting for 273 

diverse dynamics across attractant and repellant responses in both the gustatory and olfactory systems. 274 

For example, LN models accurately predicted the differences in response speed and adaptation when 275 

different GRNs and ORNs were activated. One reason for the diversity of dynamics is that the Drosophila 276 

larva chemosensory system, in addition to encoding attractant and repellant responses, is also capable of 277 

shaping the dynamics of behavioral responses in ecologically important ways. For example, the priorities 278 

given to specific chemicals encountered in the environment might not only be measured in terms of their 279 

relative degrees of attraction or repulsion, but also in the speed of the behavioral response that they 280 

trigger or the speed of adaptation. We note that some of the observed differences in behavioral dynamics 281 

might be caused by using different transgenic lines and different Gal4 drivers with different potencies. It 282 

would thus be useful to confirm the differences in behavioral dynamics that are suggested by our 283 

optogenetic manipulations with direct stimulation of each GRN and ORN and quantitative behavioral 284 

analysis in defined environments using cell-specific odorants and tastants. 285 

Navigational dynamics evoked by specific sets of gustatory neurons have remained elusive because of 286 

the lack of chemicals that are specific to individual GRNs. Our reverse-correlation analysis using 287 

optogenetic activation with CsChrimson allowed us to determine not only the valence (attraction or 288 

repulsion) of navigation mediated by different combinations of GRNs, but also the dynamics of the evoked 289 

behavior. Although little is known about the circuits downstream of the GRNs, our analysis of 290 

sensorimotor transformations serves as a reference to determine how these circuits organize navigational 291 

decision-making.  292 

Although chemotactic navigation behavior involves just two motor states (running and turning), it is 293 

possible, in principle, to extend reverse-correlation analysis to a larger number of possible behavioral 294 

states. Vogelstein et al presented recently a study where they used optogenetic pulses to trigger different 295 

subsets of neurons throughout the larval brain (26, 27). They identified 29 statistically different behavioral 296 

states, likely because they were able to interrogate circuits for a much wider variety of larval behaviors 297 

than navigation. It would be useful to apply reverse-correlation methods such as ours to examine 298 

transitions between this rich set of behavioral states to identify how specific neurons mediate a broader 299 

range of behavioral decisions than navigation up or down stimulus gradients.  300 
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The wiring diagram of the Drosophila larva nervous system is likely to be the next whole animal 301 

connectome that will be reconstructed (28). Powerful genetic tools are making it possible to target specific 302 

neurons throughout the Drosophila nervous system with cellular resolution (27). The new availability of 303 

powerful optogenetic tools for activating and inactivating neurons, particularly red-shifted molecules that 304 

are outside the spectrum of Drosophila vision, are making it possible to pinpoint the role of specific 305 

neurons in overall behavior (13, 29). An essential step in building whole nervous system models of 306 

behavior that incorporate wiring and dynamics is computational modeling. Bringing together 307 

computational modeling of behavior with new tools for behavioral and physiological analysis, such as 308 

those described here, should open the door to a thorough understanding of behavioral circuits from 309 

sensory input to motor output in the small but surprisingly sophisticated nervous system of the Drosophila 310 

larva. 311 
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Materials and Methods 319 

Drosophila stocks 320 

All larvae were raised in the dark at 22 °C and fed yeast with 0.5 mM all-trans-retinal (ATR). All GrX-Gal4 321 

lines were previously described (30). The UAS-CsChrimson flies were a gift of Vivek Jayaraman. Other 322 

lines were provided by the Bloomington Stock Center: Or42a-Gal4 (BL#9970), Or45a-Gal4 (BL#9975), 323 

Orco-Gal4 (BL#23909), Gr21a-Gal4 (BL#23890), Gr66a-Gal4 (BL#28801), and w1118 (BL#5905).  324 

Behavioral assays 325 

Male Gal4 flies were crossed to UAS-CsChrimson virgins in small cages (Genesee Scientific) where eggs 326 

were laid on grape juice plates. Larvae were thoroughly washed in water, and late second instar larvae 327 

were selected under a dissecting microscope. For spatial navigation assays, groups of 20-30 larvae were 328 

placed in the center of a ~5 mm thick 22x22 cm agar (Fisher Scientific) plate and allowed to freely move 329 

for 20 minutes. Animals were recorded with a CCD Mightex camera with a long pass (740nm) infrared 330 

filter at 4Hz. 331 

Light stimulation was produced with a custom built LED matrix assembled with SMD 5050 flexible LED 332 

strip lights of 12V DC and 625nm wavelength (LEDlightninghut.com) and controlled with an H bridge 333 

driver and custom code written for a LabJack U3 controller. Random light sequences were synchronized 334 

with the acquisition of images of the camera. Illumination was at 850nm wavelength with custom built 335 

LED bars. Technical considerations for assembly of the experimental setup are explained in the 336 

Supplementary Methods. 337 

Electrophysiology 338 

We followed previously described methods (11).  In brief, action potentials of the olfactory receptor 339 

neurons (ORNs) were extracellularly recorded by placing a custom made tungsten recording electrode 340 

(with a piezo manipulator) through the cuticle into the dome of the dorsal organ of third instar larvae. The 341 

larva was placed on its ventrum on a metal rod and immobilized by wrapping Parafilm around the rod and 342 

the body, exposing only the very anterior part of the larva containing the domes of the dorsal organs. A 343 

reference electrode, a drawn out Borosilicate glass capillary filled with Ephrussi and Beadle solution, was 344 

previously inserted through the Parafilm into the larva’s body. Light stimulation was generated with an 345 

LED at 627nm (Luxeonstar) driven by a buckpuck (LUXdrive LEDdynamics) and synchronized via a 346 

photocoupler relay (Toshiba TLP597A) with the data acquisition system (Syntech IDAC-4). The 347 

electrophysiological optogenetics experiments were conducted in a completely dark room, and the 348 

intensity of the light stimulus at the location of the larva’s dorsal organ was set to 1.9 W/m
2
. 349 

 350 
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Data analysis 351 

The image stacks recorded were processed using MAGAT analyzer
 
and analyzed using custom code 352 

written in MATLAB (9). To produce the random stimulus a Bernoulli process was used. This process is 353 

wide-sense stationary, produces independent binary values (Lights ON or OFF) at every instant, and its 354 

autocorrelation function is the Dirac delta function. The linear transformations for r→t and t→r transitions 355 

were estimated by the event-triggered averages multiplied by the mean t→r or r→t rates respectively (31, 356 

32). The convolution of the filters with the stimulus was computed numerically without fitting any function 357 

to the filter. The number of larvae used in the experiments of each figure can be found in the respective 358 

legends. Details about the calculations, model construction and analysis of behavior can be found in the 359 

Supplementary Methods.  360 
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Figure Legends 361 

Figure 1. Experimental method for reverse-correlation analysis using optogenetics.  362 

(A) Larvae navigate by alternating between two basic motor states: runs and turns. The navigation 363 

strategy of the animal can be characterized by finding the mathematical functions, fr→t and ft→r that 364 

represent the stimulus dependence of transition rates. 365 

(B) Schematic of experimental setup. Larvae crawl on a 22x22 cm agar plate. Dark-field illumination is 366 

provided by lateral infrared LED bars and animal movements are recorded with a CCD camera equipped 367 

with an infrared long pass filter. Optogenetic illumination is provided by a matrix of red 625nm LEDs from 368 

above.  369 

(C) We made extracellular recordings in the olfactory organ of the Drosophila larvae. Here we show the 370 

rasters of the spikes induced by CsChrimson activation of the Or45a expressing ORN. We used 3 371 

different pulse widths: 0.2, 0.5 and 1 second, all of them with the same intensity used for behavior 372 

experiments (1.9 W/m
2
). The red bar in the top of each raster represents the period during which red 373 

lights were ON. Each vertical line in the raster represents one spike.  374 

(D) Analogous to figure (C) we measured induced spiking of Or42a. The red bar in the top of each raster 375 

represents the period during which red lights were ON. Each vertical line in the raster represents one 376 

spike 377 

(E) Mean stimulus history before each run-to-turn transition and (F) turn-to-run transition exhibited by 378 

Orco>CsChrimson larvae subjected to random ON/OFF optogenetic stimulation. The stimulus history for 379 

each motor state transition is aligned (dotted line) and averaged by assigning +1 to the LED ON state and 380 

-1 to the LED OFF state. Data represent mean (black line) +/- one SEM (grey shaded region) for 2018 381 

transitions exhibited by 135 larvae. Twenty event-triggered stimulus histories are shown in the raster to 382 

illustrate the random binary stimulus pattern used in our experiments.  383 

Figure 2. Olfactory receptor neurons evoked navigation strategy.   384 

(A) Event-triggered stimulus histories for run-to-turn (left panel) and turn-to-run (right panel) transitions 385 

exhibited by Or42a>CsChrimson larvae subjected to random optogenetic stimulation as described in Fig. 386 

1. Consistent with an attractive response, the likelihood of optogenetic activation falls before a run-to-turn 387 

transition and rises before a turn-to-run transition. In run-to-turn transitions, crawling speed begins to fall 388 

before the initiation of turning movements (green traces). The mean beginning of deceleration averaged 389 

over all animals is flagged by the red dot (+/- STD). The units of normalized speed are standard 390 

deviations away from the mean crawling speed during runs. Data represent mean (black line) +/- one 391 

SEM (grey shaded region) for 2752 transitions exhibited by 124 larvae. 392 

(B) Event-triggered stimulus histories exhibited by Or45a>CsChrimson larvae. Consistent with a repulsive 393 

response, the likelihood of optogenetic activation increases before a run-to-turn transition and decreases 394 

before a turn-to-run transition. Data represent mean (black line) +/- one SEM (grey shaded region) for 395 

3313 transitions exhibited by 119 larvae. The mean beginning of deceleration averaged over all animals 396 

is flagged by the red dot (+/- STD). 397 

(C) Control larvae event-triggered averages. Event-triggered averages of control larvae were uncorrelated 398 

with red light illumination patterns. Data represent mean (black line) +/- one SEM (grey shaded region) for 399 

4677 transitions exhibited by 121 larvae. The mean beginning of deceleration averaged over all animals 400 

is flagged by the red dot (+/- STD). 401 
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Figure 3. Linear-Nonlinear models of behavior.   402 

(A)  Estimating the static nonlinear function for run-to-turn and turn-to-run transitions exhibited by  403 

Or45a>CsChrimson larvae. Linear prediction using the event-triggered stimulus histories from Fig. 2B 404 

were compared with the experimental measurements that generated the stimulus histories. The static 405 

nonlinearity for the run-to-turn transition is fitted using least squares estimation of a sigmoidal function 406 

(R
2
=0.8792). The static nonlinearity for the turn-to-run transition is fitted with a line (R

2
=0.5041).  407 

(B)  Schematic representation of the linear-nonlinear model of navigation. Linear filters are convolved with 408 

the input signal and the result is scaled according to the static-nonlinear function fitted to estimate the 409 

probability rates for switching from one motor state to the other. (See Supplementary Methods for 410 

calculation details) 411 

(C) LN model predictions (blue lines) of behavioral responses to step changes in optogenetic illumination 412 

(left panels) and defined random flicker (right panels). Predictions are made using the linear filter 413 

measured in Fig. 2B and the static nonlinearity measured in Fig. 3A. Experimental measurements to 414 

compare with prediction (black dots) represent data from N=120 for the step response prediction and 415 

N=240 larvae for the flicker response prediction. 416 

Fig 4. Distinct navigation dynamics.  417 

(A) Event-triggered stimulus histories exhibited by Gr21a>CsChrimson larvae.  Linear filters of Gr21a 418 

neurons. Consistent with a repulsive response, the likelihood of optogenetic activation increases before a 419 

run-to-turn transition and decreases before a turn-to-run transition. Data represent mean (black line) +/- 420 

one SEM (grey shaded region) for 4680 transitions exhibited by 90 larvae. The mean beginning of 421 

deceleration averaged over all animals is flagged by the red dot (+/- STD). 422 

(B) LN prediction and experimental measurements of different repellant responses to step changes in 423 

optogenetic illumination. Faster adaptation to baseline is observed in the case of the Gr21a expressing 424 

neurons than Or45a. Step responses were measured with 115 Gr21>CsChrimson larvae and 120 425 

Or45a>CsChrimson larvae, each larva was subjected to 30 steps of optogenetic activation. (z-test 426 

substantiate significant difference in the dynamics of the cyan and black curves See Figure 4-figure 427 

supplement 1A) 428 

(C) Event-triggered stimulus histories exhibited by Gr2a>CsChrimson larvae. Consistent with an attractive 429 

response, the likelihood of optogenetic activation decays before a run-to-turn transition and raises before 430 

a turn-to-run transition. Data represent mean (black line) +/- one SEM (grey shaded region) for 3672 431 

transitions exhibited by 128 larvae. The mean beginning of deceleration averaged over all animals is 432 

flagged by the red dot (+/- STD). 433 

(D) Linear prediction and experimental measurements of different attractant responses to step changes in 434 

optogenetic illumination. Faster responses and adaptation to baseline are observed in the case of the 435 

Gr2a than Or42a. Step responses were measured with 195 Gr2a>CsChrimson larvae and 117 436 

Or42a>CsChrimson larvae, each larva was subjected to 30 steps of optogenetic activation. (z-test 437 

substantiate significant difference in the dynamics of the cyan and black curves See Figure 4-figure 438 

supplement 1B). 439 

Fig 5. Reverse-correlation analysis of bitter-sensing GRNs.  440 

Event-triggered stimulus histories exhibited by GrX>CsChrimson larvae using a set of GAL4 drivers that 441 

express in different subsets of GRNs. The cellular identities describing each expression pattern are taken 442 
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from Kwon et al. (2011). Each measurement represents 3270 to 4016 transitions taken from 87 to 134 443 

larvae. Curves represent mean (black line) +/- one SEM (grey shaded region). The mean beginning of 444 

deceleration averaged over all animals is flagged by the red dot (+/- STD). 445 

Figure supplements 446 

Figure 1-figure supplement 1. Optogenetic activation of OK6-Gal4 motor neurons 447 

To test if our experimental setup robustly activates CsChrimson, we expressed it in motor neurons using 448 

the OK6-Gal4 driver (33) . Effective activation would result in most muscles of the larvae contracting 449 

simultaneously and not allowing larvae to crawl. Consistent with that, during illumination 100% of the 85 450 

larvae tested stopped crawling during illumination and slowly recovered motility afterwards. The figure 451 

shows the mean speed (black line) +/- SEM (grey shaded area).    452 

Figure 3-figure supplement 1. Linear-Nonlinear models of Gr21a and Gr10a 453 

(A) Estimating the static nonlinear function for run-to-turn and turn-to-run transitions exhibited by 454 

Gr21a>CsChrimson larvae (left panels). Linear prediction using the event-triggered stimulus histories 455 

from Fig. 3A were compared with the experimental measurements that generated the stimulus histories. 456 

The static nonlinearity for the run-to-turn transition is fitted using least squares estimation of a sigmoidal 457 

function (R
2
 = 0.9494). The static nonlinearity for the turn-to-run transition is fitted with a line (R

2
= 458 

0.5082).  459 

LN model predictions (blue lines) and linear filter predictions (green lines) of behavioral responses to 460 

defined random flicker (right panels). Predictions are made using the linear filter measured in Fig. 3A and 461 

the static nonlinearity showed in the left panel. Experimental measurements to compare with prediction 462 

(black dots) represent data from N=156 larvae. 463 

(B) Estimating the static nonlinear function for run-to-turn transitions exhibited by Gr10a>CsChrimson 464 

larvae (left panel). Linear prediction using the event-triggered stimulus histories from Fig. 5 were 465 

compared with the experimental measurements that generated the stimulus histories. The static 466 

nonlinearity for the run-to-turn transition is fitted using least squares estimation of a sigmoidal function 467 

with (R
2
= 0.6221). At the resolution power employed in this study, the turn-to-run linear filter could not be 468 

distinguished from noise. 469 

LN model predictions (blue lines) and linear filter predictions (green lines) of behavioral responses to 470 

defined random flicker (right panels). Predictions are made using the linear filter measured in Fig. 5 and 471 

the static nonlinearity showed in the left panel. Experimental measurements to compare with prediction 472 

(black dots) represent data from N=183 larvae. 473 

Figure 3-figure supplement 2. Linear-Nonlinear models of Or42a and Gr2a 474 

(A) Estimating the static nonlinear function for run-to-turn and turn-to-run transitions exhibited by 475 

Or42a>CsChrimson larvae (left panels). Linear prediction using the event-triggered stimulus histories 476 

from Fig. 2A were compared with the experimental measurements that generated the stimulus histories. 477 

The static nonlinearity for the run-to-turn transition is fitted using least squares estimation of a sigmoidal 478 

function with (R
2
= 0.7617). The static nonlinearity for the turn-to-run transition is fitted with a sigmoid with 479 

(R
2
= 0.625).  480 

LN model predictions (blue lines) and linear filter predictions (green lines) of behavioral responses to 481 

defined random flicker (right panels). Predictions are made using the linear filter measured in Fig. 2A and 482 
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the static nonlinearity showed in the left panel. Experimental measurements to compare with prediction 483 

(black dots) represent data from N=207 larvae. 484 

(B) Estimating the static nonlinear function for run-to-turn transitions exhibited by Gr2a>CsChrimson 485 

larvae (left panel). Linear prediction using the event-triggered stimulus histories from Fig. 4C were 486 

compared with the experimental measurements that generated the stimulus histories. The static 487 

nonlinearity for the run-to-turn transition is fitted using least squares estimation of a sigmoidal function 488 

with (R
2
= 0.6752). LN model predictions (blue lines) and linear filter predictions (green lines) of behavioral 489 

responses to a step decrease (right panels). Predictions are made using the linear filter measured in Fig. 490 

4C and the static nonlinearity showed in the left panel. Experimental measurements to compare with 491 

prediction (black dots) represent data from N=195 larvae.  492 

Figure 4-figure supplement 1. Statistical analysis of behavioral dynamics 493 

Each dot shown in Fig 4B,D is a probability but is also the mean of the distribution of larvae undergoing a 494 

run to turn transition if we consider each larvae undergoing this transition as 1 and larvae not undergoing 495 

this transition as 0. Then we have a distribution for each point in the cyan and black curves shown; each 496 

of those distributions can be compared with the distribution before the light stimulus is presented. Since 497 

we have sufficient data such that np >= 5 and n(1-p) >= 5 in all cases (n is the number of samples and p 498 

is the probability of undergoing a transition) we conducted a z-test to compare the distribution at each 499 

time point after opotgenetic stimulation with the baseline distribution. We show the p-values for each point 500 

in the case of Gr21a and Or45a in (A). All the p-values lower than 0.05 are shown, we note that Gr21a 501 

larvae become significantly different than their baseline behavior 0.5s before than Or45a larvae; in 502 

addition, Or45a larvae stay at values different from their baseline behavior for at least 0.75s longer than 503 

Gr21a larvae. 504 

In the case of Or42a and Gr2a we conducted the same analysis (B middle) and obtained that Gr2a 505 

behavior becomes significantly different than baseline at least 1.75s before Or42a. However, in the case 506 

of Or42a, adaptation is only partial: Or42a larvae reach steady-state values of P(r->t) at different levels 507 

when red lights are ON or when red lights are OFF; because of that we also computed the z-test between 508 

Or42a after lights are turn OFF as compared to the distribution at the steady-state condition with lights 509 

ON. With this consideration we obtained a very small difference between Gr2a and Or42a rising time (B 510 

bottom). As observed, the distribution of Or42a larvae stayed at values significantly higher than the value 511 

of P(r->t) with lights ON.  512 

Figure 5-figure supplement 1. Statistical analysis of Gr9a and Gr94a triggered average 513 

The triggered averages of Gr9a and Gr94a showed very weak response. Because of this, we tested 514 

whether their observed behavior is significantly different than the control. Each point of the triggered 515 

averages is a distribution; thus we compared the distributions of each point with the corresponding one in 516 

the control with a t-test. In the case of Gr9a, it was only significantly different than the control for 0.75s of 517 

the 2s prior to the transition (panel A, bottom; the bottommost plot is a zoomed version of the middle plot). 518 

We obtained that Gr94a is significantly different than the control with p<0.05 1.75s before the transition 519 

(panel B, bottom). 520 

Figure 5-figure supplement 2. Normalized speed of Gr lines 521 

The normalized speed of each Gr line is shown. Normalized speed is computed using standard score. In 522 

all cases, the slowdown initiation happens 1s prior to the transition (t-test p<0.01). Red dots flag the 523 

slowdown initiation mean location (average of when the individual tracks start slowing down (changing the 524 

derivative of speed to negative) and the red bar is 2 standard deviations. The grey shaded regions near 525 
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the normalized speed value represent the SEM, in some cases is difficult to see because of the large 526 

number of samples used: Each measurement represents 3270 to 4016 transitions taken from 87 to 134 527 

larvae.   528 
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