Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

A quasi-digital approach to peptide sequencing using tandem nanopores with endo- and exo-peptidases

G. Sampath
doi: https://doi.org/10.1101/018432
G. Sampath
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

A method of sequencing peptides using tandem cells (RSC Adv., 2015, 5, 167-171; RSC Adv., 2015, 5, 30694-30700) and peptidases is considered. A double tandem cell (two tandem cells in tandem) has three nanopores in series, an amino-acid-specific endopeptidase attached downstream of the first pore, and an exopeptidase attached downstream of the second pore. The endopeptidase cleaves a peptide threaded through the first pore into fragments that are well separated in time. Fragments pass through the second pore and are each cleaved by the exopeptidase into a series of single residues; the latter pass through the third pore and cause separate current blockades that can be counted. This leads to an ordered list of integers corresponding to the number of residues in each fragment. With 20 cells, one per amino acid type, and 20 peptide copies, the resulting 20 lists of integers are used by a simple algorithm to assemble the sequence. This is a quasi-digital process that uses the lengths of subsequences to sequence the peptide, it differs from conventional analog methods which seek to identify monomers in a polymer via differences in blockade levels, residence times, or transverse currents. Several implementation issues are discussed. In particular the problem of fast analyte translocation, widely considered intransigent, may be resolved through the use of a sufficiently long (40-60 nm) third pore. This translates to a required bandwidth of 1-2 MHz, which is within the range of currently available CMOS circuits.

Footnotes

  • ↵1 E-mail: sampath_2068{at}yahoo.com

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted April 27, 2015.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
A quasi-digital approach to peptide sequencing using tandem nanopores with endo- and exo-peptidases
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A quasi-digital approach to peptide sequencing using tandem nanopores with endo- and exo-peptidases
G. Sampath
bioRxiv 018432; doi: https://doi.org/10.1101/018432
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
A quasi-digital approach to peptide sequencing using tandem nanopores with endo- and exo-peptidases
G. Sampath
bioRxiv 018432; doi: https://doi.org/10.1101/018432

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioengineering
Subject Areas
All Articles
  • Animal Behavior and Cognition (4379)
  • Biochemistry (9571)
  • Bioengineering (7082)
  • Bioinformatics (24821)
  • Biophysics (12595)
  • Cancer Biology (9944)
  • Cell Biology (14333)
  • Clinical Trials (138)
  • Developmental Biology (7942)
  • Ecology (12092)
  • Epidemiology (2067)
  • Evolutionary Biology (15979)
  • Genetics (10915)
  • Genomics (14728)
  • Immunology (9859)
  • Microbiology (23635)
  • Molecular Biology (9472)
  • Neuroscience (50815)
  • Paleontology (369)
  • Pathology (1538)
  • Pharmacology and Toxicology (2677)
  • Physiology (4005)
  • Plant Biology (8651)
  • Scientific Communication and Education (1508)
  • Synthetic Biology (2389)
  • Systems Biology (6420)
  • Zoology (1345)