Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Dynamics of an Expanding Black Rhinoceros (Diceros Bicornis Minor) Population

Peter R Law, Brad Fike, Peter C. Lent
doi: https://doi.org/10.1101/018523
Peter R Law
1Centre for African Conservation Ecology, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth, 6031, Republic of South Africa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: prldb@member.ams.org
Brad Fike
2P.O. Box 4038, Rosehill Mall, Port Alfred, 6170, Republic of South Africa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter C. Lent
3Department of Zoology and Entomology, University of Fort Hare, Alice, 5700, Republic of South Africa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Population dynamics is a central component of demography and critical for meta-population management, especially of endangered species. We employed complete individual life records to construct census data for a reintroduced black rhinoceros population over 22 years from its founding and investigated that population’s dynamics to inform black rhinoceros meta-population management practice and, more generally, megaherbivore ecology. Akaike’s information criterion applied to scalar models of population growth based on the generalized logistic unambiguously selected an exponential growth model (r = 0.102 ± 0.017), indicating a highly successful reintroduction, but yielding no evidence of density dependence. This result is consistent with, but does not confirm, the threshold model of density dependence that has influenced black rhinoceros meta-population management. Our analysis did support previous work contending that the generalized logistic is unreliable when fit to data that do not sample the entire range of possible population sizes. A stage-based matrix model of the exponential population dynamics exhibited mild transient behaviour. We found no evidence of environmental stochasticity, consistent with our previous studies of this population that found no influence of rainfall on demographic parameters. Process noise derived from demographic stochasticity, principally reflected in annual sex-specific recruitment numbers that differed from deterministic predictions of the matrix model. Demographically driven process noise should be assumed to be a component of megaherbivore population dynamics, as these populations are typically relatively small, and should be considered in managed removals and introductions. We suggest that an extended period of exponential growth is common for megaherbivore populations growing from small size and that an increase in age at first reproduction with increasing population size, manifest in the study population, may provide a warning of density feedback prior to detectable slowing of population growth rate for megaherbivores.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted May 27, 2015.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Dynamics of an Expanding Black Rhinoceros (Diceros Bicornis Minor) Population
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Dynamics of an Expanding Black Rhinoceros (Diceros Bicornis Minor) Population
Peter R Law, Brad Fike, Peter C. Lent
bioRxiv 018523; doi: https://doi.org/10.1101/018523
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Dynamics of an Expanding Black Rhinoceros (Diceros Bicornis Minor) Population
Peter R Law, Brad Fike, Peter C. Lent
bioRxiv 018523; doi: https://doi.org/10.1101/018523

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Ecology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4230)
  • Biochemistry (9123)
  • Bioengineering (6767)
  • Bioinformatics (23970)
  • Biophysics (12109)
  • Cancer Biology (9511)
  • Cell Biology (13753)
  • Clinical Trials (138)
  • Developmental Biology (7623)
  • Ecology (11675)
  • Epidemiology (2066)
  • Evolutionary Biology (15492)
  • Genetics (10632)
  • Genomics (14310)
  • Immunology (9473)
  • Microbiology (22824)
  • Molecular Biology (9087)
  • Neuroscience (48920)
  • Paleontology (355)
  • Pathology (1480)
  • Pharmacology and Toxicology (2566)
  • Physiology (3841)
  • Plant Biology (8322)
  • Scientific Communication and Education (1468)
  • Synthetic Biology (2295)
  • Systems Biology (6180)
  • Zoology (1299)