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Abstract 24 

Many ecosystems can experience regime shifts: surprising, large and persistent 25 

changes in the function and structure of ecosystems. Assessing whether continued 26 

global change will lead to further regime shifts, or has the potential to trigger 27 

cascading regime shifts has been a central question in global change policy. 28 

Addressing this issue has, however, been hampered by the focus of regime shift 29 

research on specific cases and types of regime shifts. To systematically assess the 30 

global risk of regime shifts we conducted a comparative analysis of 25 generic types 31 

of regime shifts across marine, terrestrial and polar systems; identifying their drivers, 32 

and impacts on ecosystem services. Our results show that the drivers of regime shifts 33 

are diverse and co-occur strongly, which suggests that continued global change can be 34 

expected to synchronously increase the risk of multiple regime shifts. Furthermore, 35 

many regime shift drivers are related to climate change and food production, whose 36 

links to the continued expansion of human activities makes them difficult to limit. 37 

Because many regime shifts can amplify the drivers of other regime shifts, continued 38 

global change can also be expected to increase the risk of cascading regime shifts. 39 

Nevertheless, the variety of scales at which regime shift drivers operate provides 40 

opportunities for reducing the risk of many types of regime shifts by addressing local 41 

or regional drivers, even in the absence of rapid reduction of global drivers. 42 

Introduction 43 

We are living in the Anthropocene, an epoch where human actions intentionally and 44 

accidentally are changing planetary processes1-5 and ecosystems6. While some of 45 

these changes have been gradual, others have led to surprising, large and persistent 46 

ecological regime shifts7,8. Such shifts challenge ecological management and 47 
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governance because they substantially alter the availability of ecosystems services9, 48 

while being difficult to predict and reverse7. While the importance of ecological 49 

regime shifts is increasingly recognized3,10-12, the variety of regime shifts and their 50 

drivers is less well known. 51 

 52 

Following the exponential growth of the world’s economy, most drivers of global 53 

change are increasing4,6,13, and due to these increases the frequency and intensity of 54 

regime shifts are expected to increase too14. However most research on regime shifts 55 

is ill-suited to examine this proposition. Research on regime shifts has typically 56 

focused on theoretical models8,15,16, empirical evidence of regime shifts17, or potential 57 

early warnings signals12,18. These approaches require in-depth knowledge of the 58 

causal structure of the system or high-quality temporal data, leading to a focus on the 59 

analysis of particular cases of regime shifts. Here we complement this work by 60 

synthesizing and comparing different types of regime shifts in terms of global change 61 

impacts and opportunities for management. Our aim is to understand: What are the 62 

main drivers of regime shifts globally? What are their most common impacts on 63 

ecosystem services? And, what can be done to manage or avoid them? 64 

Materials and Methods 65 

We addressed these questions using a diverse set of methods in a six phase process. 66 

First we developed a framework for data collection that facilitates comparison among 67 

regime shifts, namely the regime shifts database. Second, we identified and grouped 68 

the different drivers into hierarchical classes, distinguishing direct from indirect 69 

drivers. Third, strategies to manage regime shift drivers were identified and classified 70 

according to the scale at which action needs to be taken to tackle the effect of each 71 
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driver. Fourth, to better understand what the main drivers of regime shifts are we 72 

studied their patterns of co-occurrence by constructing and simulating networks. 73 

Fifth, to discover  what factors explained patterns among regime shifts and their 74 

drivers, exponential random graph models were used to explore what types of local 75 

interactions were consistent with the observed global patterns of the network. Sixth, 76 

to identify the most common impacts on ecosystem services, or the most common 77 

interactions among driver types, we analyzed the drivers and regime shifts datasets 78 

using ordering methods. Each of these steps are described in the following sections. 79 

Data 80 

The regime shift database (RSDB) was created to synthesize, compare and share 81 

scientific knowledge about regime shifts in social-ecological systems 82 

[www.regimeshifts.org]. The RSDB currently provides a synthesis of >800 scientific 83 

papers, summarizing over 200 cases and about 25 generic types of regime shifts 19.It 84 

presents information both in plain text and 92 categorical variables about the i) main 85 

drivers of change, ii) impacts on ecosystem services, ecosystem processes and human 86 

well-being, iii) land use, ecosystem type and spatial-temporal scale at which each 87 

regime shift typically occurs, iv) possible managerial options, and v) assessment of 88 

the reversibility of the regime shift and the level of uncertainty related to the existence 89 

of the regime shift, and its underlying mechanism. The review of each regime shift is 90 

available online and wherever possible each entry has been written or peer-reviewed 91 

by an expert on the topic. 92 

 93 

The database collects the most studied types of regime shifts in social-ecological 94 

systems10. Examples of regime shifts include i) well-established cases like 95 
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eutrophication17, where lakes turn from clear water to murky water leading to reduced 96 

fishing productivity and toxic algae blooms; ii) controversial cases like dryland 97 

degradation when dry forest and savanna shift to deserts and bare soils, significantly 98 

reducing ecosystem services such as agricultural production and water cycling20; and 99 

iii) proposed shifts like the collapse of the Greenland ice sheet where the frequency 100 

and intensity of warm events will shift the ice sheet from permanent to occasional, 101 

reducing services such as coast line protection and climate regulation21. An overview 102 

of the 25 regime shifts analysed in this paper is given in S1 Table. 103 

Driver identification 104 

Drivers include natural or human induced changes that have been identified as 105 

directly or indirectly producing a regime shift6,22. We first collected a preliminary list 106 

of drivers for each regime shift taking as a starting point that it should be referenced 107 

in the academic literature that the variable has causal influence on the regime shift. 108 

For each regime shift we draw a causal loop diagram, a graphical representation of the 109 

causal structure of the system23. References and descriptions of each driver plus 110 

causal diagrams are available in the RSDB. To avoid ambiguities and conflicting 111 

definitions across different scholars, we defined drivers as variables outside the 112 

feedback mechanisms of the system, thus they are variables independent of the 113 

dynamics of the system. Direct drivers are those that influence the internal processes 114 

or feedbacks underlying a regime shift, and indirect drivers those that alter one or 115 

more direct drivers22. Based on the minimum distance to a feedback loop, we 116 

assessed the directedness of a driver as the shortest number of steps of separation to 117 

the feedbacks. This classification was done for each regime shift, therefore when 118 

comparing regime shifts a driver in one system can be part of an feedback in another. 119 
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 120 

To enable consisten comparison of drivers we systematically ensured that drivers 121 

were defined consistently across the database. After the first identification of drivers 122 

we checked for semantic cohesion, to avoid different words referring to the same 123 

driver. So for example cropping and agriculture were renamed agriculture. When the 124 

variables explicitly referred to different phenomena, different names were kept. For 125 

example rainfall variability and precipitation were kept separately as the first refers to 126 

variability and the second to total quantity. We further classified drivers as belonging 127 

to different types of global change by slightly modifying previous classifications10,22. 128 

We identified 15 detailed categories of drivers, which were further grouped into 5 129 

broad categories: habitat modification, food production, nutrients and pollutants, 130 

resource extraction and spill-over effects. Thus, we distinguish between drivers 131 

stemming directly from human activities (e.g. fertilizer use) and drivers affected by 132 

the knock-on or ‘spill-over’ effects of these activities on natural processes (e.g. 133 

sedimentation or upwelling). A worked example is presented in S1 File. 134 

Scale of management  135 

To examine management options for drivers of regime shifts we classified each driver 136 

by the scale it could be managed. Managerial options for each regime shift are 137 

synthesized in the RSDB. We exclusively classified each driver as requiring 138 

management at either local, national, or international scales. We considered a driver 139 

to be local if it could be mitigated substantially by changes made at the landscape or 140 

municipality level. If changes at the watershed or regional level could strongly 141 

counteract a driver we classified it as regional to national, and if actions to influence a 142 

driver require global or continental coordination we coded it as international. For 143 
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drivers with management options at more than one scale, we chose the broadest scale 144 

at which managerial actions are likely to be strong enough to avoid the shift. 145 

Network simulations  146 

To better understand the relative importance of regime shifts and drivers we 147 

constructed a bipartite network where a driver is connected to a regime shift if there is 148 

a reference in the academic literature that suggests causality or influence on its 149 

feedback mechanisms. The bipartite network was analysed by considering two 150 

network projections: a network of drivers connected by the regime shifts they caused, 151 

and a network of regime shifts connected by the drivers they share. Since highly 152 

connected drivers are more likely to cause regime shifts and highly connected regime 153 

shifts are more vulnerable to different sets of drivers, the mean degree, the co-154 

occurrence index and clustering coefficient24,25 were measured and compared with 155 

10000 random simulated networks. We assume that the relative importance of a 156 

driver, or the number of times that is reported, depends on our particular sample of 157 

regime shifts. Therefore we randomly reshuffled the associations between drivers and 158 

regime shifts, keeping the number of links per node unchanged. Simulations were 159 

performed in the R statistical software26, using a Sequential Importance Sampling 160 

algorithm, in R’s networksis27 and ergm28 packages. The comparison between 161 

observed interactions and random data is fundamental to understand whether the co-162 

occurrence patterns are due to sampling noise or corresponds to a real pattern. If the 163 

observed patterns deviate from random, there should be theoretical reasons why they 164 

diverge that are further explored with statistical modeling. 165 
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Model fitting 166 

Exponential random graph models29 were used to explore what local processes could 167 

better explain the emergent patterns in the networks. We tested whether certain 168 

minimal configurations are statistically more common (e.g. triangles) or if links are 169 

significantly more likely to occur if nodes share the same attribute (e.g. management 170 

scale). Nestedness30 was calculated for the bipartite network to test if the generalist or 171 

idiosyncratic character of each driver in the network was related to its scale of 172 

management. We used the number of papers reported per regime shift on the ISI Web 173 

of Science by 2013 as an approximation of how extensively a regime shift has been 174 

studied. 175 

 176 

To explore the processes underlying the network patterns, we modelled scale of 177 

management, nestedness, frequency and directedness as categorical variables or node 178 

covariates for drivers; while ecosystem type, nestedness, number of papers reported, 179 

and frequency were modelled as categorical variables or node covariates for regime 180 

shifts. The presence or absence of categorical variables in the RSDB was used to 181 

construct distance measures of how similar two regime shifts are depending on the 182 

variables shared. These distances were modelled as edge covariates for the regime 183 

shift network projection (see regime shifts clustering below). The bipartite network 184 

was modelled as binary network with geometrically weighted terms31-33, while the 185 

one-mode projections were modelled following the specifications for weighted 186 

edges34 and a Poisson distribution as reference. All models were fitted with ergm 28 187 

and ergm.count34 packages for R26. 188 
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Regime shifts and drivers clustering 189 

We used multi-dimensional scaling to investigate the patterns underlying the 190 

clustering of regime shifts. First we calculated the Sorensen-Dice distance between 191 

regime shifts given the drivers they share. This measure favours the presence of 192 

common drivers in the network rather than their absence, and we use it because we 193 

are analyzing driver co-occurrence or regime shifts rather than straightforward 194 

difference among regime shifts. The hierarchical clustering was performed using the 195 

categorical variables of the RSDB after deleting zero columns, grouped by variables 196 

as follows: ecosystem processes (5 variables), provisioning services (8), regulating 197 

services (8), cultural services (4), drivers (10), land use (11), scales (8), and 198 

reversibility (3). 199 

 200 

We analysed patterns among the drivers and the regime shifts in two ways, first by 201 

using existing classifications from global change research to classify drivers into 5 202 

broad and 15 detailed categories; and second by clustering the drivers based on 203 

patterns produced by their connections to regime shifts. Applying matrix 204 

multiplication of the bipartite data by the drivers categorization, we obtained the 205 

number of drivers per regime shift that fall into each broad and detailed global change 206 

category. Euclidean distances were used to organize the drivers into hierarchical 207 

clusters with an average method using the R package gplots35. These two approaches 208 

allowed us to compare how global change meta-drivers impact regime shifts, and to 209 

detect emergent patterns from our regime shift data based on the published literature. 210 
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Results 211 

We identified 57 drivers underlying 25 regime shifts (Fig 1). The mean number of 212 

drivers per regime shift is 11.2, ranging from a low of 3 for steppe to tundra to a high 213 

of 22 for mangrove collapse. The most frequently reported drivers of regime shifts are 214 

climate change, agriculture and fishing, which are reported as drivers of 19, 17 and 215 

15 regime shifts respectively. There are also 14 idiosyncratic drivers (~24%) that are 216 

unique to specific regime shifts. More than half of the connections between drivers 217 

and regime shifts are accounted for by 13 drivers (~22%). The most frequently co-218 

occuring drivers, understood as the number of regime shifts they jointly drive, are 219 

agriculture, climate change, nutrient inputs, deforestation, greenhouse gases, erosion 220 

and sea surface temperature, where each pair occurs together in 10 or more regime 221 

shifts. The regime shifts with the greatest number of shared drivers are marine 222 

eutrophication, sea grass collapse, fisheries collapse, and kelp transitions, which 223 

have 8 drivers in common. 224 

 225 

The regime shift-drivers network had a much higher clustering coefficient, higher co-226 

occurrence index, and lower mean degree than randomized networks (t-test for all 227 

statistics P<1015, Fig 1). This result suggests that co-occurrence patterns among 228 

drivers are related to underlying processes. Furthermore, the network exhibits a nested 229 

structure: idiosyncratic drivers co-occur only with drivers that also co-occur with 230 

generalist ones (Fig 1 and S1 Fig). Surprisingly, the exponential random graph 231 

models show (S2 Table) that the nested structure of the network is not due to global 232 

drivers being widely shared among regime shifts and local drivers being idiosyncratic. 233 

Rather, drivers that can be managed at local and regional scales are more likely to co-234 

occur with drivers that can also be managed at the same scale. Drivers are 235 
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significantly more likely to co-occur if they are indirect and generalist. Aquatic and 236 

subcontinental regime shifts tend to share the same set of drivers; while terrestrial and 237 

subcontinental regime shifts share fewer and more varied sets of drivers. Overall, 238 

regime shifts are more likely to share drivers that affect similar ecosystem processes, 239 

impact similar ecosystem services, occur in similar ecosystems and occur at similar 240 

spatio-temporal scales (S2 Table). 241 

 242 

Ecosystem type has a strong influence on the variety of regime shift drivers as well as 243 

ecosystem services impacted by regime shifts (Fig 2 & Fig 3). Multi-dimensional 244 

scaling reveals that aquatic regime shifts often affect fisheries, water purification, 245 

disease control and aesthetic values, and they occur more often at the local scale (S2 246 

Fig). Terrestrial regime shifts are strongly influenced by food production and habitat 247 

modification, and surprisingly also by oceanic spillovers. They consistently affect 248 

water cycling, the provision of food crops and fresh water, and occur on land uses 249 

related to agriculture. Subcontinental regime shifts are quite different in being almost 250 

completely driven by anthropogenic greenhouse gases, climate, ecological, and 251 

oceanic spillover effects. Interestingly, they consistently affect climate regulation and 252 

occur at time scales of centuries. Based upon our classification of regime shift drivers, 253 

we found that climate related drivers are shared across all regime shifts, while oceanic 254 

and ecological spillovers are shared across the majority of regime shifts. Aquatic 255 

regime shifts are driven by all major types of global change drivers, with no drivers 256 

related to terrestrial resource extraction or fire (Fig 2). Almost two thirds of the 257 

identified regime shift drivers (62%) have the potential to be managed at local or 258 

national scales, while a third (38%) can only be managed internationally (Fig 3). 259 

 260 
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Discussion 261 

The variety of drivers revealed by our analysis demonstrates that reducing the risk of 262 

regime shifts requires integrated action on multiple dimensions of global change 263 

across scales (Fig 2 and 3), a non-trivial challenge for governance. Even heroic 264 

actions, such as halting climate change or halting agricultural expansion, if not 265 

combined with other actions, will be insufficient to avoid most regime shifts. 266 

 267 

Food production and climate change are key drivers of regime shifts that are 268 

intertwined with one another (Fig 2) and expected to increase in the coming 269 

decades4,36,37. These drivers have the potential to synchronize the risk of regime shifts 270 

across many systems as well as to produce cascading regime shifts. Drivers related to 271 

food production consist of a broad set of drivers that tend to occur together. They 272 

combine resource extraction (e.g. fishing, cropping), nutrients and pollution and 273 

strongly co-occur with habitat modification drivers (e.g. urbanization, deforestation), 274 

all of which simplify and homogenize ecosystems. Climate related drivers are a more 275 

narrow set of connected drivers, providing few opportunities for local or regional 276 

management. However in both cases there is strong potential to reduce risk of 277 

synchrony by managing local and national scale drivers38,39. Local activities and 278 

global markets connect climate and food drivers, which increases the risk of 279 

synchronized regime shifts, but also provides an opportunity to increase resilience by 280 

diversifying local and national energy, food, and regime shift management. 281 

 282 

The number of regime shifts that share climate and food production related drivers 283 

furthermore increases the potential for cascading effects among multiple regime 284 

shifts. Cascades of regime shifts are possible when some regime shifts enhance the 285 
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drivers of other types of regime shifts14,37,40,41. Regime shifts that contribute to 286 

climate change by releasing greenhouse gases or decreasing albedo, or regime shifts 287 

that increase the demand for food by e.g. decreasing crop production, can increase the 288 

likelihood of other climate or food production driven regime shifts far away. 289 

 290 

It remains unclear whether the differences between aquatic, terrestrial and 291 

subcontinental regime shifts are explained by the extent to which they have been 292 

studied. In the early development of regime shifts theory, aquatic systems were 293 

proposed as ideal candidates to test for the existence and mechanisms underlying 294 

these non-linear dynamics15, and consequently have been better studied. Aquatic 295 

environments also have and share more drivers, often accounting for land and ocean 296 

interactions. Subcontinental regime shifts are harder to study since most evidence 297 

relies on observation of long-term processes rather than experimentation. They also 298 

share many drivers but to a lesser extent than aquatic regime shifts, and their drivers 299 

and impacts are typically climate related. This makes them ideal candidates for the 300 

study of cascading effects, when one regime shift acts as a driver of other shifts. 301 

Terrestrial regime shifts tend to have more idiosyncratic drivers. They are also prone 302 

to cross-scale interactions, when the aggregation of many instances of the same 303 

regime shift scales up to affect drivers that further exacerbate the risk of the regime 304 

shift elsewhere. Well studied examples of this effect are percolation thresholds for 305 

fire, erosion and landscape fragmentation40,42,43. 306 

 307 

Reducing local drivers can build resilience to continued global change, but unless the 308 

rates of global change are slowed or reversed, these changes will eventually 309 

overwhelm local management44. Furthermore, our results (S2 table) suggest that in 310 
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situations where regime shifts and their drivers are poorly understood, managerial 311 

options that work for well-understood regime shifts could potentially be applied to 312 

uncertain or data scarce regime shifts if they share similar ecosystem processes, 313 

impact similar ecosystem services, occur in similar ecosystems and occur at similar 314 

spatio-temporal scales. Similarly, our results suggest that while  315 

monitoring direct drivers allows change in the risk of a regime shift to be estimated, 316 

management efforts are likely more effective when targeting indirect and generalist 317 

drivers because these drivers influence many types of regime shifts, and therefore 318 

reducing them can reduce the risk of multiple regime shifts. 319 

 320 

This paper has presented a novel comparison of regime shifts and their drivers. The 321 

development of the regime shift database and the framework for comparison offers a 322 

platform for others to extend this work. The regime shifts database framework 323 

facilitated comparison of diverse types of regime shifts, broadening our understanding 324 

of regime shift similarities at the conceptual level while offering the possibility to 325 

translate the observed patterns into useful management insights. Our coding of drivers 326 

was done in a systematic, repeatable way, and although some of the categories could 327 

have been defined differently, we do not believe it would alter the overall pattern of 328 

our results. However, future work needs to take into consideration that the weighting 329 

of drivers is not homogeneous across all regime shifts, as such weights are expected 330 

to be context dependent. Furthermore, our network approach so far does not allow us 331 

to infer the role of dynamics, how changes in the intensity of drivers over time 332 

strengthens or weakens their interaction, or how the ordering of events could 333 

exacerbate or dampen the effect of such interactions. 334 

 335 
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Achieving a sustainable future will require meeting needs for ecosystem services9, 336 

while avoiding regime shifts that disrupt the resilient production of these services. 337 

Consequently, both theoretical and empirical work is needed to better assess where 338 

regime shifts are most likely to happen, which ecosystems and their services will be 339 

most affected, and which groups of society will be most impacted. Furthermore, better 340 

understanding of the dynamics of regime shifts and their drivers is needed to 341 

understand the i) extent to which increasing drivers of global change can trigger 342 

synchronous regime shifts; and ii) how regime shifts, by altering the drivers of other 343 

regime shifts, can trigger or inhibit cascades of regime shifts. 344 

 345 
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Figure Legends 453 

Figure 1. Regime shifts - Drivers Network. In the centre the bipartite network of 57 454 

drivers (left) and 25 regime shifts (right) organized by their nestedness. Highly nested 455 

nodes are idiosyncratic and are located on the lower part of the graph while nodes 456 

with low nesting are generalist and appear in the upper part. On the right is the one-457 

mode projection of regime shifts (N=25). The width of the links is scaled by the 458 

number of drivers shared, while node size corresponds to the number of drivers per 459 

regime shift. On the left is the one-mode projection of drivers (N=57), with link width 460 

scaled by the number of regime shifts for which causality is shared, and node size 461 

proportional to the number of regime shifts per driver. Below each projection is the 462 

expected distributions for the co-occurrence index and average degree for the one-463 

mode projection of the drivers and regime shifts networks. The bottom left panel 464 

shows the clustering coefficient for the bipartite network. For all structural statistics, 465 

the red lines mark the actual values for the observed data. 466 

Figure 2. Driver categories per regime shift. Shading intensity indicates the number 467 

of drivers per regime shift that falls in each driver category. The dendrogram 468 

represents the similarity of regime shifts given the drivers shared (rows) based on 469 

hierarchical clustering with an average method upon Euclidean distances. The grey 470 

area shows categories with missing drivers. The upper horizontal bar shows the 471 

ecosystem type while the left lateral bar shows the 5 broad categories into which the 472 

15 specific drivers categories shown in the rows (right) are classified. 473 

Figure 3. Managerial opportunities per regime shift. Each bar shows the 474 

proportion of drivers that can be managed at different scales. 475 
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 477 

Supplementary Information 478 

S1 File. A regime shift worked example and its causal loop diagram. 479 

S1 Figure. Drivers clustering. Shading intensity indicates the similarity between 480 

drivers given the regime shifts they cause. The row dendrogram shows a hierarchical 481 

clustering calculated on the Sorencen-Dice distance of the drivers matrix. The column 482 

side bar shows the scale of management per driver. 483 

S2 Figure. Multi-dimensional scaling. Regime shifts are organized according to 484 

their similarity given shared drivers, with a) names coloured according to ecosystem 485 

type: blue = marine regime shifts, green = terrestrial and orange = subcontinental 486 

regime shifts. Smaller plots show the environmental fitting for subsets of the regime 487 

shift categorical variables: b) ecosystem processes (5 variables), c) provisioning 488 

services (8), d) regulating services (8), e) cultural services (4), f) drivers (10), g) land 489 

use (11), h) scales (8), and i) reversibility (3). Only variables that significantly 490 

(p<0.05) influence the regime shifts ordering given their shared drivers are shown in 491 

purple as vectors, indicating the directionality of their influence. 492 

S1 Table. Summary of the 25 regime shifts examples from the regime shifts database 493 

used in this analysis. *Only the main ecosystem service impacts are shown. 494 

S2 Table. Summary of exponential random graph models fitted to the bipartite and 495 

one mode network data.   496 
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Extended Data Table 1 497 

Regime Shift Initial regime Alternative regime Ecosystem Ecosystem Services affected * 

Eutrophication Clear water Murky water Aquatic - 
Coastal 

- Fisheries 
- Water purification 
- Recreation 

Marine food web 
simplification 

Predators 
dominated 

Lower trophic groups 
dominated 

Aquatic - 
Coastal 

- Fisheries 
- Pest & disease regulation 
- Recreation 

Hypoxia Normoxia Hypoxia, anoxia Aquatic - 
Coastal 

- Fisheries 
- Pest & disease regulation 
- Recreation 

Fisheries collapse 
High 
abundance of 
commercial fish 

Low abundance of 
commercial fish 

Aquatic - 
Marine 

- Fisheries 
- Pest & disease regulation 
- Biodiversity 

Floating plants 
Submerged 
plants 
dominance 

Floating plants 
dominance Aquatic 

- Fisheries 
- Pest & disease regulation 
- Recreation 

River channel 
change 

Old channel 
course New channel regime Aquatic 

- Freshwater 
- Food production 
- Regulation soil erosion 
- Transport 

Mangroves 
transitions 

Mangrove 
forest 

-Salt marshes 
-Rocky tidal 
- Shrimp farms 

Aquatic – 
coastal 

- Fisheries 
- Timber 
- Regulation soil erosion 
- Recreation 

Sea grass 
transitions 

Sea grass 
dominated 

-Algae dominated 
-Bare sediments 

Aquatic – 
coastal 

- Fisheries 
- Water purification 
- Regulation soil erosion 

Marine 
eutrophication Clear water Nutrient rich water Marine 

- Fisheries 
- Water purification 
- Recreation 

West Antarctica 
Ice Sheet collapse 

Full glacial or 
modern 
interglacial 

Extreme interglacial Polar - Climate regulation 
- Natural hazards protection 

Bivalves collapse 
High 
abundance of 
bivalves 

Low abundance of 
bivalves Marine 

- Water purification 
- Fisheries 
- Biodiversity 

Coral transitions Coral 
dominated reefs 

- Macro-algae 
- Soft corals 
- Corallimorpharians 
- Sponges 
- Urchin barren 

Marine 

- Biodiversity 
- Fisheries 
- Recreation 
- Coastal protection 
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Regime Shift Initial regime Alternative regime Ecosystem Ecosystem Services affected * 

Kelp transitions Canopy 
forming algae 

- Turf forming algae 
- Urchin barrens 

Marine 
- Fishing 
- Biodiversity 
- Recreation 

Encroachment 
Grass 
dominated 
savanna 

Shrub dominated 
savanna Savannas 

- Livestock 
- Climate regulation 
- Biodiversity  

Soil salinization Low salinity 
soils High salinity soils Dry lands 

- Fresh water 
- Food production 
- Soil erosion regulation 
- Biodiversity 

Forest to savannas Forest Savanna Forest - 
Savanna 

- Biodiversity 
- Climate regulation 
- Water cycling 
- Food production 

Dry land 
degradation 

Dry lands: 
savannas, dry 
forest 

Deserts Dry lands 

- Freshwater 
- Food production 
- Timber and fuel 
- Climate regulation 
- Water regulation 

Tundra to forest Tundra Forest Tundra 

- Livestock 
- Wildlife food 
- Climate regulation 
- Timber 

Monsoon Strong 
monsoon Weak monsoon Marine - 

Terrestrial 

- Water cycling 
- Food production, timber 
- Climate regulation 

Peatlands 
Low 
productivity & 
high C 
accumulation 

High productivity & 
low C accumulation Peatlands - Nutrient cycling (C) 

- Climate regulation 

Greenland Ice 
Sheet melting 

Permanent ice 
sheet 

No permanent ice 
sheet Polar 

- Coastline protection 
- Climate regulation 
- Water regulation 

Thermohaline 
Circulation 
Collapse 

Strong 
thermohaline 
circulation 

Collapse of 
thermohaline 
circulation 

Polar - Marine 
- Climate regulation 
- Biodiversity 
- Food production 

Salt marshes to 
tidal flats Salt marshes Tidal or subtidal flat Marine - 

coastal 

- Pollution filtration 
- Storm protection 
- Fisheries, food production. 
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Regime Shift Initial regime Alternative regime Ecosystem Ecosystem Services affected * 

Arctic Sea Ice 
collapse 

Arctic with 
summer ice 

Arctic without summer 
ice Polar 

- Climate regulation 
- Aesthetic values 
- Natural hazards protection 

Steppe to tundra Steppe Tundra Steppe 
- Biodiversity 
- Food production 
- Climate regulation 

 498 
  499 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 28, 2015. ; https://doi.org/10.1101/018549doi: bioRxiv preprint 

https://doi.org/10.1101/018549
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 23 

 500 
Exteded Data Table 2 501 

 Mod01 Mod02 Mod03 Mod04 Mod05 Mod41 

Density -1957*** -6.50e+03*** -4.00e+03*** -467.193· -4.88e+02*** -2.80e+03· 

b1star2  2.64e-01*** 5.85e-01***    

b1star3  8.81e-03*** 1.31e-02    

b2star2  2.33e-01*** 3.94e-01***    

b2star3   -2.77e-03 -5.84e-03    

Three-paths   -5.07e-02    

Cycle-4   1.59e-01*    

GWNSP    -0.230*** 6.22e-02 -1.18e-01 

gwnsp-alpha    0.10629 1.679·  1.45*** 

gwb1deg0.5     -8.22e-01  

gwb2deg0.5     -1.84e+01***  

b1starmix.2       

Driver management:       

global      5.42e-02 

local      1.33e-01** 

regional      1.01e-01· 

b2starmix.2        

RegimeShift.Ecotype:       

aquatic      -5.40e-03 

subcontinental      2.11e-01*** 

terrestrial      2.20e-02 

Node covariates       

Nestedness.Drivers      -7.43e-01 

Nestedness.RegimeShift      -1.32 

Frequency.Drivers       3.75*** 

Frequency.RS      6.61* 

AIC 1436 13947 2261 1377 2082 1069 

MLE -717.2127 
(df=1) 

-6968.571 
(df=5) 

-1123.731 
(df=7) 

-685.3822 
(df=3) 

-1035.953 
(df=5) 

-521.6868 
(df=13) 

 502 
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Models 01 to 05 are null models following the specifications for bipartite networks of 503 

ref 42. Model 01 is a Markov random model, model 02 explores the effect of 2 and 3 504 

paths on both projections of the bipartite network, model 03 explore the effects of 505 

three-paths and cycles also known as clustering model; model 04 is a curved 506 

exponential model that show the effects of geometrically weighted node shared 507 

partners (gwnsp), complemented in model 05 by adding geometrically weighted terms 508 

for the degree on each one-mode projection. Model 41 is the model that exhibited the 509 

best fit following both Akaike Information Criterion (AIC) and Maximum Likelihood 510 

Estimation (MLE). Model 41 combines a curved exponential model and explores the 511 

effects of homophily –the likelihood of two nodes of being connected on the one-512 

mode projections given that they share attributes: scale of management for driver 513 

nodes, ecosystem type of regime shifts nodes, and nestedness and frequency as node 514 

covariates respectively. All model are dyadic dependent, only model 41 do not exhibit 515 

degeneracy. Significance levels: ***P<0.001, **P<0.01, *P<0.05 , ·P< 0.1 516 
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