
Genome wide signals of natural selection 

We identified 117, 230, and 485 candidate PS regions in CEU, CHB, and YRI, 

respectively (Fig. 2a,b and Supplementary Tables 6–8), which occupied 1.13%–2.94% 

of the genome. Functional enrichment analyses of the PS signals showed significant 

enrichment for genes expressed in the brain and sperm. In addition, in CEU and YRI 

enrichment was found for genes expressed in the pituitary gland, while enrichment for 

genes expressed in the appendix was observed in CHB and YRI. Other interesting 

categories include alcohol-metabolism in CHB and genes expressed in hair roots in 

CEU (Supplementary Tables 9–11 and Online Methods). 

 

 

Figure 2 Genome-wide signals of natural selection. (a) The candidate regions of PS in CEU (red), 

CHB (green) and YRI (blue), and the D10 likelihood ratio (LR) of BS signals in YRI. (b) Genome 

proportions of various types of natural selection estimated in CEU, CHB and YRI. (c) Genome 

average distribution of coalescent scaling coefficient α scores centered around the coding regions. 

(d) Distributions of α scores in different functional elements, including promoter regions (P), 

coding regions (CDS), untranslated regions (UTRs), enhancer regions (E), introns (I) and 

intergenic regions (IGR). (e) GO terms for biological processes significantly enriched for BS 

genes in YRI (see Supplementary Table 15 for details). The size of the rectangles reflects the P 

value. 
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Regarding the NS signals, a much higher genomic proportion of NS was observed 

in YRI (~10%) than in CEU (~2.5%) and CHB (~1.9%). One possible reason is that 

ancient signals of coalescent compression were eliminated by bottlenecks in non-

African populations. We used the tree scaling coefficient α to examine the effects of 

NS on different functional elements in YRI (Supplementary Note 4). α can be 

interpreted as the inverse coalescent rate compared to neutrality (Online Methods) and 

a clear decline of α was detected toward the centers of coding regions (CDS, Fig. 2c) 

and transcript start sites (TSS, Supplementary Fig. 21). The median α score was 

lowest in the promoter regions (0.755) and CDS (0.769), and progressively elevated 

in the untranslated regions (UTRs, 0.800), enhancers (0.875), introns (0.932), and 

intergenic regions (1.008), revealing a strong negative correlation with the expected 

functional essentiality of a genomic region (Fig. 2d). Patterns in CEU and CHB were 

similar to those observed in YRI (Supplementary Fig. 22).  

 

Abundant signals of BS were detected in YRI, whereas many fewer BS signals 

were observed in CEU and CHB (Fig. 2a,b and Supplementary Tables 3–5). Notably, 

71.3% and 62.2% of the BS signals in CEU and CHB were also annotated as BS in 

YRI. The major histocompatibility complex (MHC) regions harbored the strongest 

signals of BS in all three populations (Fig. 2a). Functional enrichment analyses 

revealed substantial involvement of multiple biological processes (Fig. 2e and 

Supplementary Table 15, Online Methods), including: MHC class II (P value = 3.67  

10
-8

,
 
Bonferroni correction); cellular defense response (P value = 3.86  10

-7
, 

Bonferroni correction); and cell-cell adhesion (P value = 2.1  10
-5

, Bonferroni 

correction).  

 

Spatiotemporal distribution of positive selection 

If the genome-wide selection time estimation were accurate enough, it should 

cross-validate with ancient DNA (aDNA) evidence. Furthermore, the integration of 

both modern and aDNA evidence would provide a spatiotemporal roadmap of past 

adaptation events. In principle, if a selective sweep occurred prior to the time of an 

ancient specimen, then the aDNA from that specimen should harbor haplotypes 

derived from the beneficial haplotype and were fixed in the sweep (as should all of 

the other descendants in the same population). This predicts a small haplotype 
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distance between the present-day sample and such aDNA sequences. It should be 

noted that an incomplete sweep or later outbreeding would disrupt such a relationship. 

On the other hand, if the ancient specimen dates to before the selective sweep, there is 

no explicit relationship between the aDNA and the present-day sequences, and 

therefore, their haplotype distance would vary across a large range. To test this, we 

used three ancient AMH genome sequences from previous studies: the ~45,000-year-

old Ust’-Ishim man found in western Siberia (42× coverage) representing an ancient 

Eurasian
17

 (hereafter referred to as aEA); a ~7,000-year-old early European farmer, 

Stuttgart (aFM; 19× coverage); and a ~8,000-year-old west European hunter-gatherer 

Loschbour
18

 (aHG; 22× coverage). For a given candidate PS region, a measurement 

of haplotype distance (DaDNA,MHG) was calculated between the consensus sequence of 

the aDNA haplotypes and that of the major haplotype group (MHG) in the present-

day sample (Online Methods). For the candidate PS regions, we observed a strong 

dependence of DaDNA,MHG on the estimated times of selection (Fig. 3). In CEU, the PS 

signals recorded a sudden decrease in the DaDNA,MHG distance to either aHG or aFM, 

along the estimated time of selection (Fig. 3a,b). The time that defines the most 

significant change in DaDNA,MHG (hereafter referred to as TmaxD) was estimated to be 

835 ga (~20.9 kya) for aFM (Chi-square test P = 1.0  10
-3

, FDRpermut = 0.029, Fig. 

3a), and 706 ga (~17.7 kya) for aHG (Chi-square test P = 2.44  10
-3

, FDRpermut = 

0.055, Fig. 3b). These estimated times are substantially older than the radiocarbon-

dated times of the aDNA specimens, potentially due to a tendency to overestimate the 

selection time in empirical CEU data. Alternatively, the early parting of the aDNA 

lineage from the direct ancestors of CEU or the strong population structure in the 

ancestral group, might also account for the observed time discrepancies. When YRI 

was compared to aEA, a similar decline of DaDNA,MHG was detected toward the more 

anciently dated signals, and TmaxD was estimated to be 1,898 ga (47.5 kya, Chi-square 

test P = 4.2  10
-5

, FDRpermut = 0.02, Fig. 3c), which was in good agreement with the 

results of radiocarbon dating for this specimen
17

.  
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Figure 3 Validation of the selection times by comparing with ancient genomes. Haplotype 

distances between aDNA and the MHG of present-day human genomes were measured for each 

selection region. The red lines are the most significant partitions to observe more selection regions 

with small distances in ancient time than in recent. The P values were conducted by Chi-square 

test. (a) Validate selection times in CEU with aFM. (b) Validate selection times in CEU with aHG. 

(c) Validate selection times in YRI with aEA.  

 

Based on the observed general concordance between the selection time estimates 

and aDNA evidences, we developed an overall chronicle of human genome 

adaptation that is based on PS signals, the three AMH aDNA genomes and the 

Neanderthal genome consensus
19

 (Fig. 4). Overall, the signals were strongly 

concentrated to between 0.5–1.8 kga (12.5–45 kya) in CEU and CHB, corresponding 

to a period of migration, population founding and agriculture. A lack of signals 

beyond 2 kga (50 kya) was observed, which may be attributable to the severe 

bottlenecks that erased the more ancient coalescent information. In YRI, the signals 

stretched over a much wider time interval of 250 ga–27 kga (about 6 kya–0.7 mya), 

possibly due to the much weaker bottlenecks during the history of African 

populations.  
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Figure 4 Timeline of PS signals in humans.  Each dot represents a candidate PS signal. Genes that 

can be assigned to functional categories of strong relevance to human evolution were labeled in 

different colors and shapes (Online Methods). (a) The PS events are plotted along a bigger time 

scale, for all three populations. A simplified approximate population history was constructed 

based on estimated demographic trajectories and known evidences, plotted as a background graph 

in light blue. Error bars are standard deviations of time estimates according to simulations for 0.5, 

2, 4, 8 and 16 kga. Ancient signals (≥ 1,900 generations) in YRI were classified into Nean-like, 

aEA-like and aYRI-rest by comparing with aEA. PARN, AUTS2, SORL1 and SNCA show 

human-specific expression pattern in brain regions (Supplementary Note 5). The skeleton images 

of the four ancient/archaic individuals were adopted from the original papers
17-19

, and placed at the 

assumed spatiotemporal coordinates. H: Human; C:  Chimpanzee; R: Rhesus macaque; PFC: 

prefrontal cortex; CBC: cerebellum cortex. (b) Signals in CEU were illustrated in finer time scale 

for 4 groups: aFM-like, aHG-like, aFM-aHG common and CEU-rest.  

 

We defined the YRI signals older than 1.9 kga (47.5 kya, approximately the TmaxD 

of aEA) as the ancient selection signals, which were further assigned to Neanderthal-

like (Nean-like), aEA-like, or aYRI-rest classes based on the DaDNA,MHG distances 

(Supplementary Table 25 and Online Methods). The Nean-like signals likely 

represent shared selection events between Neanderthal and AMH prior to their 

complete divergence. A substantial fraction of genes involved in such selection events 

are related to brain function, AUTS2 (18,027 ga, ~450 kya) and SLTM (17,355 ga, 

~434 kya) are both involved in autism spectrum disorders (ASD), affecting 

communication and social interaction abilities
20,21

. RNF180 (16,601 ga, ~415 kya) 

regulates the brain levels of monoamine oxidase A (MAO-A) and affects emotional 

and social behaviors via the serotonin pathway
22

. SHC3 (7,586 ga, ~189 kya) is 

almost brain-specific, highly expressed in the cerebral cortex and frontal and temporal 

lobes, regulates neuronal survival, and protects the CNS against environmental 

stresses
23

. Notably, these genes are all involved in the cognitive abilities of social 

interaction and communication.  

 

The aEA-like signals were more closely related to aEA, and the aYRI-rest class 

defined all the remaining ancient signals. Interestingly, both classes harbored 

numerous brain function-related signals that overlapped with the emergence of AMH 

over time (2–8 kga or 50k–200 kya). SPON1 (6,354 ga, ~159 kya) encodes a multi-

domain extracellular matrix protein that plays an important role in axon path-finding 
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and early cortical development. This protein binds to the amyloid precursor protein 

(APP) and inhibits β-secretase cleavage of APP, which plays a central role in the 

pathogenesis of Alzheimer’s disease (AD), wherein the uncontrolled cleavage of APP 

results in the accumulation of neurotoxic Aβ peptide
24

. MAPT (3,078 ga, ~77 kya) 

encodes the tau protein that assembles and stabilizes the microtubule framework of 

neurons. Non-specific aggregation of tau is the hallmark of AD
25

. SORL1 (3,285 ga, 

~82 kya) is a neuronal endocytic receptor that regulates the recycling of APP from the 

cell surface
26

. ELAVL4 (2,556 ga, ~64 kya) encodes HuD, a neuron-specific RNA-

binding protein that regulates the spatiotemporal activation of neuronal mRNAs, and 

affects neuronal development and plasticity, learning, and memory
27

. SNCA (2,234 ga, 

~56 kya) encodes the alpha-synuclein protein and plays an important role in the 

release of neurotransmitters and inter-neuronal signaling, and is also associated with 

AD
25

. Intriguingly, all these genes closely interact within a sub-network of AD 

pathogenesis (Fig. 5 and Online Methods).  

 

Figure 5 Protein-protein interaction sub-network of brain related genes. Genes labeled in red are 

candidate PS genes under ancient selection in YRI. Among the multiple routes between these 

genes, the shortest paths were presented. 

 

For the recent selection events, CEU signals were divided into four classes: aFM-

like, aFM-aHG common, aHG-like, and CEU-rest, depending on the DaDNA,MHG 

distances to aFM or aHG (Fig. 4b and Supplementary Tables 22–24, Online Methods). 

PS signals in the aFM-like class might have contributed to early agriculture transition. 

Among the aFM-like signals, GATM (1,020 ga, ~25 kya) encodes 
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glycine amidinotransferase, a key enzyme for the synthesis of creatine in the human 

body. Creatine is essential for energy buffering in vertebrate cells, especially in 

muscles, and it may also be supplied from carnivorous diets. The switch from the 

protein-rich Paleolithic diet to the Neolithic vegetarian-based diet might have exerted 

pressure on creatine self-synthesis. GALK2 is an aFM-like candidate gene (623 ga, 

~15.6 kya) that encodes galactokinase, which is an enzyme responsible for the 

conversion of galactose to glucose. SORD is another carbohydrate metabolism-related 

candidate gene (829 ga, ~20.7 kya), but was found to be selected in the aHG-like 

class. SORD encodes sorbitol dehydrogenase, which catalyzes the conversion of 

sorbitol to fructose. Interestingly, galactose is primarily found in dairy food, grains, 

and vegetables, whereas sorbitol mainly exists in fruits. These candidate PS signals 

therefore seem to be congruent with the diet specificities observed in the ancestral 

groups. Furthermore, aFM-aHG common signals revealed numerous genes that were 

related to the response to stress or metabolism (labeled in Fig. 4b). Among these, 

DGKZ, SLC44A1, PITPNB, and ACSL6 are involved in lipid metabolism, and CDH8 

is related to the response to cold
28

 and may be involved in climate adaptation.  

 

Numerous well established PS signals were re-captured such as SLC24A5, LCT, 

EDAR, ADH gene cluster, CCR5, and LARGE. Notably, their times of selection were 

all estimated to be below 800 ga (20 kya), which was consistent with the preferential 

sensitivity of the existing methods toward recent PS signals.  

 

 

DISCUSSION 

In fact, AD remains arguably a disease unique to humans, as full pathological 

evidence of AD, particularly AD-related neurodegeneration, are lacking in great 

apes
29

. Emerging evidence indicates that AD vulnerability is strongly associated with 

hyperconnectivity, augmented synaptic and metabolic activities, as well as functional 

plasticity
30

. We speculate that the gain of brain function during AMH emergence 

might have mainly affected synapse networking and activity, and this gain was not 

without a price: it might have led to an increase in structural instability and regional 

metabolic burden that turn resulted in a higher risk for neurodegeneration in the aging 

brain.   
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Online Methods 

Empirical data processing and tree construction. Only autosomal genomes from 

1000G phase 1 were used in this study. The imputed and phased variants 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/) were first merged with 

the human reference genome (build 37) to generate individual haploid genome 

sequences. To ensure high-quality data, thorough filtering was performed on the 

haploid genome sequences. Briefly, the whole genome sequence was scanned with 

overlapping sliding 100-kb windows and a 50-kb step size, and a window was 

removed when it showed > 50% sites labeled as having aberrant coverage depth or 

low mapping quality
31

 (ftp://ftp-

trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20120417_phase1_masks/Pilo

tMask/). In total, 11.1% of the autosomal genome was removed. 

 

Thirty pre-processed haploid genome sequences were randomly selected from each 

of the CEU, CHB, and YRI panels (Supplementary Table 1). To reconstruct 

coalescent trees, PSMC was applied to every pair of haploid genomes within each 

population. By default, PSMC assumes 30 fixed consecutive time intervals, where 

TMRCA events are to be assigned. To increase the resolution for more recent history, 

we allocated more time intervals in the recent and fewer in the ancient history 

(Supplementary Note 1.1). Such a time interval division was applied throughout this 

study. In total, 435 paired genomes were analyzed in each population. A unique 

pairwise-distance matrix was computed for every elementary consensus segment that 

contains no breakpoint (Supplementary Fig. 1) across all the 435 pairwise 

comparisons, and was used to estimate a raw coalescent tree using the UPGMA 

algorithm in phylip package
32

. 

 

One concern with the use of 1000G phase 1 data is its low coverage (2–6×) 

sequencing. To investigate the potential impact of such low coverage, for a few 

individuals that have been sequenced both at low coverage in 1000G and high 

coverage in Complete Genomics
33

, we compared the TMRCA estimation and 

population inferences between the two (Supplementary Note 1.2). 
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Estimation of population size trajectories from empirical data. Simulations 

showed that concatenated mega-sequences (100  30 Mb) resulted in reduced 

variance and higher accuracy in the estimation of recent population size compared to 

single sequences (Supplementary Fig. 2). To achieve optimal estimation, we 

concatenated all available diploid genomes within each 1000G phase 1 panel (85, 97, 

and 88 individuals in CEU, CHB, and YRI, respectively) into a mega-genome and 

inferred the population size trajectory using PSMC (Supplementary Fig. 3). 

 

Coalescent models and likelihood test. Assuming that coalescent trees can be 

directly observed and the exact demographic trajectories are given, we demonstrated 

that it is possible to construct a statistical model to query the evolutionary processes 

behind the coalescent trees. Here, we propose a coalescent-based model to try to 

assign each tree to the mode of neutrality, negative selection (NS), balancing selection 

(BS), or positive selection (PS). The model includes three hypotheses: H0, H1, and H2, 

corresponding to three different coalescence patterns, as follows: 

 

For a population of varying population size, with initial effective population size N0 

and effective population size Ne(t), assuming n individuals sampled at present,  

Griffiths and Tavaré
34,35

 showed that it is possible to define the rescaled coalescent 

time as follows: 

  
 0

t
ds

t
s

    ( 1)  

where 

  
 e

0N
t

N t
   ( 2)  

indicates the scale function of population size change. Using τi to represent the 

rescaled coalescent waiting time from i to i–1 ancestors, it can be shown that the 

coalescent process may be treated as for a standard constant population size model 

(Supplementary Note 2.1). Time rescaling is assumed for the rest of this section.  

 

Under neutrality, coalescent occurs at a constant rate of 
2

i 
 
 

 when there are i 

ancestors. The joint density function for (τn, τn–1,…, τ2) as follows: 
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This defines the H0 model for neutrality (Supplementary Note 2.1).  

    

When a selection event occurs, the tree pattern changes. For example, a tree that is 

substantially compressed indicates either PS or NS
36

. In contrast, a tree that strongly 

elongates indicates BS
37

. The effect of various selection processes on the coalescent 

trees is illustrated in Supplementary Figure 4. Following the coalescent model for 

neutrality, we introduce a scaling parameter α to describe the overall coalescent rate 

change. The coalescent rate therefore takes the form of 
2

k



 
 
   for k = n, n – 1,…, 2. For 

neutrality, α = 1. When α > 1 (< 1), the coalescent rate is smaller (larger) than the 

neutral rate, corresponding to accelerated (decelerated) coalescent. The joint density 

function of (τn, τn–1,…, τ2) is given by: 
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( 4) 

which defines the H1 model with α ≠ 1 (Supplementary Note 2.2). 

 

    Strong and recent PS cannot be distinguished from NS by H1 alone, as both result 

in very small value of α. However, PS differs from NS in having a time-dependent 

coalescent rate change. Based on this property, we propose a third model, H2, to 

distinguish the PS process. This model contains three consecutive time intervals, 

within which the coalescent rates remain constant (Supplementary Note 2.3). 

Therefore, a tree is divided into three segments by two discrete time parameters, τi1 

and τi2, 2 < i1 < i2 < n; the three intervals may assume different coalescent scaling 

coefficients of α1, α2, and α3.  

 

A likelihood test framework was constructed based on the following 3 models: 
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For each tree, the test statistics D10，D20, and D21 are maximized, which also give 

rise to the estimation of the associated parameters (Supplementary Note 2). 

Importantly, by maximizing the likelihood of H2, the two associated time parameters, 

τi1 and τi2, and the corresponding coalescent scaling coefficients, α1, α2, and α3, were 

also estimated. Depending on the patterns given by α1, α2, and α3, τi1, or τi2 or nearby 

time points were searched for the best pattern that matches the initiation of PS 

selection, and hence to estimate the selection starting time τs. The details of estimation 

of selection time and coefficient can be found in Supplementary Note 2.4 and 2.5, 

respectively. Finally, τs is mapped back to the absolute generation time scale as ts, by 

applying a reverse function of Equation 1. 

 

Rescaling and correction of the raw trees. The raw trees estimated from empirical 

data were first rescaled to the coalescent time scale according to Equation 1, by using 

the demographic trajectories estimated from the mega-genomes. Successful detection 

of selection relies on proper tree construction and rescaling; UPGMA and PSMC may 

both introduce estimation errors during this process. We designed a systematic 

correction to the rescaled trees to minimize such errors. It assumes that the overall 

genome coalescent profile is neutral and therefore should fit the H0 distribution. 

Under neutrality and assuming exact tree inference, the estimator of coalescent 

scaling coefficient α (α*) follows 
1

1,
1

n
n

 
  

 
, with a median approximately at 1. 

Given the estimated waiting times in a tree as τ' = (τ'n, τ'n–1,…, τ'2), we first controlled 

the overall α* by dividing all τ' against the genome-wide median of α*. Furthermore, 

within each coalescent interval, τi should follow an exponential distribution with 

median ln2/
2

i 
 
 

. We normalized τ'i by dividing it by mi
2

i 
 
 

/ln2, where mi is the 

median for τ'i. The efficacy of correction was evaluated in simulations on 10 models 
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of population size change over time (Supplementary Fig. 5 and Supplementary Note 

3.1). Statistics including α*, D10, D20 and D21 were calculated either from the trees 

reconstructed by PSMC and UPGMA with correction, or directly from the 

corresponding true coalescent trees. Results show that the types of estimates were 

highly consistent either between the reconstructed and true trees (Supplementary Fig. 

6), or for the true trees for the different demographic scenarios (Supplementary Fig. 7). 

 

Annotate signals of selection in empirical data. The genome-wide rescaled trees 

were scanned for candidate BS, NS, or PS signals. A tree is called a BS signal when 

the coalescent scaling coefficient α > 1 and D10 > D
b 
10

, where D
b 
10 is the threshold for 

BS. When a tree satisfies α < 1 and D10 > D
pn 
10

, it is called as a NS/PS signal, which 

can be NS or PS depending on the consequential evaluation of the H2-related criteria. 

D
b 
10

 is the threshold to reject neutrality for α < 1. D
b 
10

 and D
pn 
10

 were obtained by a 

reshuffling procedure across empirical genome-wide trees. In brief, it is known that a 

tree in the rescaled time is defined by the series of coalescent waiting times (τn, τn–1,…, 

τ2), and tree topology is nuisance information in this study. Under neutrality, τi and τj 

are independent, given i ≠ j. Therefore τi is exchangeable across different trees for the 

same ith interval, without affecting the global neutral distribution. Random 

reshuffling was performed as earlier described for all the intervals across all the trees. 

The reshuffled tree set was divided into 2 halves with α < 1 and α ≥ 1, and D10 was 

calculated separately in each half to give the corresponding null distribution for NS 

and BS, respectively. Afterwards, the upper 0.1% quantile in the D10 for BS was 

assigned D
b 
10

; and the upper 1% quantile of D10 for NS was used to define D
pn 
10

, 

respectively (Supplementary Table 2). A more stringent threshold was applied to BS 

due to an excessive upper tail in the empirical distribution. 

 

Based on H2, we constructed two different tests for PS signatures of either recent or 

ancient events. A recent PS is expected to affect both temporal (H2 signature) and 

global coalescent rates (H1 signature). Therefore, for the recent PS signals, we 

propose a test (RPS test) based on both D10 and D21. A tree is called a PS signal when 

α < 1, D10 > D
pn 
10

, and D21 > D
rp 
21

 (called NS when D21 > D
rp 
21

). D
rp 
21

 was obtained by 

reshuffling the trees that satisfy α < 1 and D10 > D
pn 
10

. The upper 20% quantile of the 

D21 distribution from this reshuffled tree set was designated as D
rp 
21

. On the other hand, 
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when the PS events were more ancient, the whole tree compression was not so evident, 

but the time dependence of the coalescent rate persisted; therefore, the test for ancient 

PS signals (APS) requires α < 1 and D21 > D
ap 
21

. D
ap 
21

 was derived by reshuffling the 

tree subset that satisfies α < 1 and D10 ≤ D
pn 
10

. The upper 1% quantile of D21 from this 

reshuffled tree set was designated as D
ap 
21  (Supplementary Table 2).  

 

For BS and PS, candidate tree signals (SG-tree) were combined to define candidate 

regions. For BS signals, neighboring SG-trees were concatenated to define the BS 

regions (Supplementary Tables 3–5). For each PS test, SG-trees located within 100 kb 

from each other were concatenated to define candidate regions. In view of extensive 

LD in genome regions affected by recent positive selection
1,2

, RPS candidate regions 

shorter than 100 kb were excluded from further analysis. For the APS test, very short 

candidate regions (< 20 kb) or regions defined by single SG-trees were also omitted. 

Supplementary Tables 6–8 list the candidate regions of PS in 3 continental 

populations. 

 

Since hitchhiking during a selective sweep results in progressively decreasing 

diversity toward the selection center, we used the SG-tree of maximum D10 in a 

candidate region to define the center of a PS. The distribution of distance between the 

estimated and true centers of selection is shown in Supplementary Figure 8. For each 

PS candidate region, the regional estimate of selection coefficient, sreg, takes the 

median value of all trees in that region, sreg = median(stree, i). Analogously, the 

regional selection time, treg, was estimated as median(ttree, i). Noticing an obvious 

underestimation of selection starting time for ancient PS (Supplementary Fig. 9), we 

made a simple correction to treg : if treg > 1500, t'reg = treg + 2 × (treg – 1500); if treg ≤ 

1500, t'reg = treg. sreg, and t'reg were used for estimation of empirical data. The corrected 

time estimation was thoroughly evaluated in simulations (Supplementary Fig. 1e–1g 

and Supplementary Fig. 10) and applied on empirical data. The major statistics were 

plotted for several candidate PS regions from simulations (Supplementary Fig. 11) 

and 1000G data (Supplementary Fig. 12).  

 

Power tests. For the simulated cases of BS and NS, neutral simulations were 

generated by using the same demographic models, and the neutral D10 distribution 
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was calculated to define the cutoffs at a level of 0.5%. BS and NS tests were then 

conducted in the simulated cases of selection as for the empirical data, to estimate the 

test power. Supplementary Figure 13 shows the power to detect BS and NS. 

 

For PS signals, we compared our methods to Tajima’s D
15

, Fay and Wu’s H
16

, and 

iHS
1
. Tajima’s D and Fay and Wu’s H were calculated for non-overlapping 50-SNP 

windows. PS and neutral simulations were generated for the same sets of 

demographic models. iHS was calculated for SNPs with minor allele frequency (MAF) 

 0.05. In a 50-SNP window, the number of SNPs with |iHS|  2 was used as the test 

statistic. RPS and APS tests follow the procedures as for the empirical data. 

 

In case of a hard sweep, we first examined the test power in three realistic 

demographic trajectories corresponding to those estimated for CEU (Supplementary 

Fig. 1c), CHB (Supplementary Fig. 14a), and YRI (Fig. 1a) from 1000G data. For all 

tests, 30 haplotypes were sampled and 1,500 cases of PS were randomly simulated at 

a uniform density, for a selection starting time range between present-day to 2,500 ga, 

and a selection coefficient range from 0.01 to 0.2. For the YRI-like model, we also 

simulated ancient selection events, at a grid of selection starting time of 2,000, 4,000, 

8,000, 16,000, and 24,000 ga, with fixed selection coefficient values of 0.005, 0.01, 

0.02, 0.05, 0.1, and 0.2, respectively (Fig. 1b). The neutral simulations estimated the 

false positive rates of RPS and APS to be 2% and 3.5%, respectively. The cutoffs of 

the other three statistics (D and H scores and iHS) were set to assume the same false 

positive rate of 2%. We also evaluated the test power using a constant size 

demography assuming a Ne of 10,000. In this scenario, the sample sizes for Tajima’s 

D, Fay and Wu’s H, and iHS tests were set at 120, which would render better 

performance for tests sensitive to small sample sizes such as iHS. The sample sizes 

for RPS and APS tests were kept at 30. The resulting power for hard sweeps for each 

test was plotted in Figure 1a–c and Supplementary Figure 14a,b.   

 

For selection on standing variation (a soft sweep), power comparison was 

conducted under a core model of demography (see Supplementary Fig. 15 and section 

on Simulations below), with the sample sizes all set to 30. We also performed a 

comparison in the constant population size model as for the hard sweep. All 
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procedures followed those for the hard sweep. The results are plotted in Figure 1d and 

Supplementary Figure 14c. 

 

Simulations. For all simulations in this study, a constant mutation rate of 2.5  10
-8

 

bp
-1

·generation
-1

 and a constant recombination rate of 1.3  10
-8

 bp
-1

·generation
-1

 

were assumed.  Supplementary Note 3 specifies all the details of the model 

parameters. 

 

Essential neutral data was first simulated for the three realistic demographic 

trajectories by MSMS
38

. In addition, a core model was simulated, that assumes a 

simplified demography, but consisted of common features of human populations such 

as bottlenecks and a recent expansion (Supplementary Fig. 15). A total of 100 

replicates of 100-Mb sequences were simulated for each demography model. 

 

MSMS was also used for all the PS simulations. A total of 100 replicates of 2-Mb 

sequences were simulated under each designated demography and selection parameter 

set. Selection was assumed to act on a novel mutation at the center of each sequence. 

The times of selection were set from 1 to 2,500 ga for both hard and soft sweeps. For 

hard sweep, the selection coefficient of the advantageous allele assumed a uniform 

sampling between 0.01 and 0.2. For soft sweep, a constant selection coefficient of 

0.05 was used, and the initial frequencies of advantageous alleles ranged from 0.01 to 

0.1. 

 

We used SFS_CODE
39

 to simulate NS by assigning a variable proportion of 

mutations as being under selection. We set the proportion of non-synonymous 

mutations to 10%, 50%, and 100%, and the selection coefficient to 0.001, 0.01, and 

0.1. A total of 100 replicates of 200-kb sequences were simulated for each parameter 

set.  

 

Increased genetic diversity that results in more deeply structured coalescent trees is 

the signature of BS. To test the power to detect BS, we simulated an increased density 

of polymorphic sites by elevating the mutation rate. We set a wide range of fold 
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changes of the basic mutation rate: 1.2, 1.5, 2, 3, 5, and 10. Soft sweep, NS, and BS 

were all simulated under both the constant-size model and the core model. 

 

Functional annotation and enrichment test. For PS and BS, any protein-coding 

genes (Ensembl, www.ensembl.org) that overlapped with the candidate regions were 

defined as candidate genes. The enrichment of PS  and BS candidate genes was tested 

by DAVID
40,41

 (http://david.abcc.ncifcrf.gov/) using unmasked protein-coding genes 

as the background gene list. Numerous categories were examined, including 

functional category (SP_PIR_KEYWORDS), gene ontology (GOTERM_BP_FAT, 

GOTERM_CC_FAT, GOTERM_MF_FAT, PANTHER_BP_ALL and 

PANTHER_MF_ALL), pathways (KEGG_PATHWAY and PANTHER_PATHWAY) 

and tissue expression (GNF_U133A_QUARTILE, UNIGENE_EST_QUARTILE, 

and UP_TISSUE). Terms with P value < 0.05 after Benjamini correction were 

significantly enriched. Supplementary Tables 9–11 show the enriched terms for PS 

genes in 3 populations, while Supplementary Tables 12–14 show enriched terms for 

BS genes in 3 populations. For BS, we also conducted enrichment analysis in YRI 

using the PANTHER web tool
42

, which uses a binomial test (with Bonferroni 

correction for multiple testing) to calculate the significance of enrichment 

(Supplementary Table 15). 

 

We further classified the candidate PS genes into several highly specific functional 

categories based on the relevant GO terms
43

, including brain development, food 

metabolism, bone morphology, pigmentation, hair, sensory perception, reproduction, 

response to stress, and immune process, which was further curated by knowledge and 

text mining (Supplementary Tables 16–18). In Figure 4, only the functional categories 

of the center genes were presented. If a center gene belongs to multiple categories, 

then the category of higher functional relevance (manually curated) was used 

(Supplementary Tables 19–21). 

 

Ancient DNA analyses. We used the same genotype calls for Ust’-Ishim, aFM, and 

aHG as in previous studies
17,18

. Sites included for analysis were required to have a 

minimum root-mean-square mapping quality of MQ ≥ 30. For the Neanderthal 

sequence, we removed all sites with genotype quality < 40, and mapping quality < 30, 

as done previously
44

. 
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We clustered present-day human haplotypes (PHs) into haplotype groups if the 

mutual nucleotide distance was < 1. The major haplotype group (MHG) was defined 

as the haplotype group with the highest frequency. For each candidate PS region, the 

haplotype distance measurement is conducted for a 50-kb window around the 

estimated selection center. The haplotype distance between the MHG and the ancient 

haplotypes (aDNA) was defined as the mean of the pairwise distances between aDNA 

and each PH within MHG: 

 , ,

1

mean( )
i

n

aDNA MHG aDNA PH

i

D D


   ( 8) 

where DaDNA,PH is the pairwise differences between two unphased ancient haplotypes 

and the PH
45

.  

 

For the calculation of TmaxD, we split the haplotype distance/time space into 4 

quadrants, and used a Chi-square test to search possible combinations for the most 

significant division, conditional on an enrichment of small DaDNA,MHG in the ancient 

part (e.g., right lower quadrant in Fig. 3a). As the Chi-square test is sensitive to small 

observed values, we used the constraint that no more than one quadrant has data 

points ≤ 10. A total of 1,000 permutations were then performed by randomly 

reshuffling the time of selection among PS signals to calculate the false discovery rate 

(FDR).  

 

To assign CEU signals into different classes, we used the following criteria: 

1. aFM-like, DaFM,MHG ≤ 20 & DaHG,MHG > 20; 

2. aHG-like, DaHG,MHG ≤ 20 & DaFM,MHG > 20; 

3. aFM-aHG common, DaFM,MHG ≤ 20 & DaHG,MHG ≤ 20; 

4. CEU-rest, others. 

Supplementary Tables 22–24 show the first 3 classes of PS in CEU. Similarly, to 

assign the ancient YRI signals into different classes, the following conditions were 

applied: 

1. Nean-like, DNean,MHG ≤ 50 & T ≥ 5,000 generations; 

2. aEA-like, DaEA,MHG ≤ 50; 

3. aYRI-rest, others. 

Supplementary Table 25 shows the classified PS signals in YRI. 
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Network analysis. SPON1, MAPT, SNCA, SORL1, SHC3, and ELAVL4 were mapped 

to a protein-protein interaction (PPI) network
46

 (Figure 5). Cytoscape
47

 v3.2.0 was 

used to plot the sub-network connected by shortest paths, centered on amyloid 

precursor protein (APP).  
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