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2 Departament de F́ısica Fonamental, Universitat de Barcelona, Barcelona,
Spain
3 Centro de F́ısica Computacional, Departamento de F́ısica, Universidade
de Coimbra, Coimbra, Portugal

* eugenia.corvera@gmail.com (ECP)

Abstract

We relate vascular network structure to hemodynamics after vessel obstructions. We
consider tree-like networks with a viscoelastic fluid with the rheological characteristics
of blood. We analyze the network hemodynamic response, which is a function of the
frequencies involved in the driving, and a measurement of the resistance to flow. This
response function allows the study of the hemodynamics of the system, without the
knowledge of a particular pressure gradient. We find analytical expressions for the
network response, that explicitly show the roles played by the network structure, the
degree of obstruction, and the geometrical place in which obstructions occur. Notably,
we find that the sequence of resistances of the network without occlusions, strongly
determines the tendencies that the response function has with the anatomical place
where obstructions are located. We identify anatomical sites in a network that are
critical for its overall capacity to supply blood to a tissue after obstructions. We
demonstrate that relatively small obstructions in such critical sites are able to cause a
much larger decrease on flow than larger obstructions placed in non-critical sites. Our
results indicate that, to a large extent, the response of the network is determined
locally. That is, it depends on the structure that the vasculature has around the place
where occlusions are found. This result is manifest in a network that follows Murray’s
law, which is in reasonable agreement with several mammalian vasculatures. For this
one, occlusions in early generation vessels have a radically different effect than
occlusions in late generation vessels occluding the same percentage of area available to
flow. This locality implies that whenever there is a tissue irrigated by a tree-like
in-vivo vasculature, our model is able to interpret how important obstructions are for
the irrigation of such tissue.

Introduction 1

Occlusion of tubes has always represented a problem. From engines and filters to 2

arteries and bronchia, we can find countless systems where a reduction of the fluid 3

flow in a particular site due to the presence of an obstacle, results in the partial or 4

total failure of a process. Occlusion of bio-tubes in the human body represent an 5
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important issue in many diseases, and the circulatory vascular network is particularly 6

vulnerable to obstructions. For instance, after an occlusion in the arteries, blood flow 7

decreases, and, in critical cases, is effectively suppressed downstream. Such decrease of 8

flow may have serious consequences at different levels, affecting oxygen and nutrient 9

delivery to a tissue, or implying an increase in the stress over the heart muscle [1]. 10

One dramatic example of the pathological effect of vascular obstructions is a retinal 11

artery occlusion. Such an occlusion by a blood clot withdraws the nutrient and oxygen 12

supply from the retinal cells and may render an individual blind from an eye within a 13

few hours [2,3]. In this scenario is of the utmost importance to identify specific sites in 14

a vasculature where a partial obstruction can dramatically affect blood supply. 15

Various simulations of flow around partial obstructions in vessels exist in the 16

literature [4–12]. Such analyses aim at describing in detail the flow patterns around 17

occlusions, such as the velocity at different points inside a vessel, the existence of 18

vortices, or the values of wall shear stress at different locations [5–7,9–12]. Depending 19

on the interest of each particular study, they may account for 3-dimensionality, 20

elasticity or viscoelasticity of the vessels, inclusion of non-linear convective terms, and 21

the effects on flow of bifurcations, to name a few. 22

The enormous amount of work involved in such computations is necessary when 23

one wants to describe specific zones of a vasculature, and to answer detailed questions 24

regarding flow profiles around obstacles, stenosis, bypasses, bifurcations, or flow in the 25

aortic arch. These complex computations are able to predict how the waveforms of 26

pressure and flow change in certain vessels due to obstructions, stenosis or vessel 27

suppression at particular sites [4, 8, 13]. Sophisticated models are also very interesting 28

from a theoretical and computational point of view. However, they involve too many 29

variables to allow for the derivation of analytical expressions when one is interested in 30

knowing the effect that obstructions have on the overall flow throughout an entire 31

network. Analytical expressions might be very powerful and are potentially useful 32

clinically, where a reduced number of parameters is often appreciated. 33

Knowledge about the structure of vascular networks, is key to predict the flow after 34

alterations in the vasculature, e.g. after the growth or introduction of new 35

vessels [14,15] or after the partial occlusion of vessels in the system [8,11,12,16]. The 36

correspondence between local structural network information and global flow through 37

a network after vascular alteration, was put forward in the work of Flores et al [14]; 38

the simplicity of the model allowed for analytical expressions that in turn lead to 39

conclusions not attainable otherwise. For instance, it was demonstrated that the 40

increase of flow in the network after the growth of new vessels in the form of 41

anastomosis, is determined by the morphology of the vasculature in a small 42

neighborhood around the place where the new vessels are included. Other processes 43

that regulate vessel width, such as the myogenic effect, were shown to have a very 44

small qualitative effect in how the increase in response depends on the localization of 45

the anastomoses. 46

The purpose of the present study is to relate the basic, generic characteristics of an 47

arterial vasculature with the flow that goes through it after anatomical variations 48

caused by obstructions or vessel suppression occur. We deliberately keep a 49

reductionist approach in order to obtain analytical expressions for the system response 50

in which the roles played by the network structure, the degree of obstruction, and the 51

geometrical place where obstructions occur, can be clearly identified. 52

We study flow in three types of networks: one constituted by identical vessels, a 53

second one in which radii are given by Murray’s law, and a third case in which large 54

changes in resistance exist within the network. We show how the underlying network 55

can lead to radically different behaviors of the hemodynamic response and identify 56

structural features present in tree-like vasculatures that are critical for the overall 57
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capacity of the network to supply blood after obstructions. We demonstrate that our 58

results are local in the sense that they depend on the network structure around the 59

place where obstructions occur. This implies that whenever there is a tree-like network 60

in an in-vivo vasculature, our model is able to interpret the effect that an obstruction 61

has on flow. 62

Background 63

Recently, a model has been introduced in order to study viscoelastic flow in a network 64

of tubes [17]. This model consists of a tree-like network in which rigid vessels bifurcate 65

always into identical vessels giving rise to identical branches of the network. At each 66

bifurcation step, the possibility of changes in the cross sectional area and the length of 67

the vessels is allowed. Each level (or generation) of the network is constituted by 68

vessels with the same length and cross section. Segments belonging to the same level 69

are labeled with the same index. Outer levels of the network are the ones that are 70

closer to the main branch, inner levels are the ones that are the result of several 71

successive bifurcations. 72

The model considers a linear viscoelastic fluid with the rheological characteristics 73

of blood [18] in a range of shear rates where there is no shear thinning, and analyzes 74

the network hemodynamic response to a time-dependent periodic pressure gradient. A 75

Maxwell fluid [19] is used for this study, but the formalism can be easily generalized to 76

consider any linear viscoelastic fluid [20]. By considering mass conservation, and 77

assuming that the total pressure drop is the sum of individual pressure drops, the 78

dynamic response of the network, χ(ω), is written in terms of the dynamic 79

permeability of individual vessels Ki(ω) as 80

1

χ
=

1

L

N∑
i=1

li
2i−1AiKi

(1)

The sum is over the network levels, Ai and li are respectively the cross sectional 81

area and the length of the vessels at the i-th level, L and N are the total length of the 82

network and the total number of levels, respectively. The dynamic permeability for a 83

vessel of radius ri is Ki =
iη
ωρ

[
1− 2J1(βri)

βriJ0(βri)

]
where J0 and J1 are Bessel functions of 84

order zero and one, respectively, and β2 = ρ
η

(
trω

2 + iω
)
, where ρ, tr, and η are the 85

density, relaxation time and the fluid viscosity respectively. In order to apply Eq. (1) 86

to a particular network of vessels, the network geometrical characteristics, namely, the 87

number of levels -that determine the number of vessels-, lengths and radii, are 88

required. 89

The network hemodynamic response relates viscoelastic flow and pressure drop in 90

frequency domain [14,17]. In order to have it explicitly in time domain one needs to 91

specify a time dependent pressure gradient. As the equations are linear, we can obtain 92

the fluid response to any time-dependent pressure gradient as a linear superposition of 93

sinusoidal modes. For a single-mode time-dependent pressure drop ∆p = ∆p0 cos(ω0t), 94

the volumetric flow as a function of time is given by 95

Q(t) = −1

η
[Re[χ(ω0)] cos(ω0t) + Im[χ(ω0)] sin(ω0t)]

∆p0
L

(2)

where the real and the imaginary parts of the response function χ (Eq. (1)) give the 96

flow in-phase and out-of-phase with the pressure gradient, respectively [21]. Eq. (2) 97

puts forward the importance of the dynamic response as a measurement of the 98

resistance to flow. For systems driven at biologically relevant frequencies like the ones 99
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imposed by the heart, the imaginary part of the response is often negligible compared 100

to its real part and the real part of the response gives one the proportionality factor 101

between pressure gradient and flow in time domain. The response function allows one 102

to study the hemodynamics of the system, without the requirement of considering a 103

particular pressure gradient. Our results are presented at 1.5 Hz, which is the resting 104

heart rate of the dog [22,23]. At such low frequencies the network response (and total 105

flow) is almost indistinguishable from the steady-state regime where the response is 106

real. However, we keep the formalism as general as possible to make it applicable 107

when external frequencies are imposed [21]. We use parameters for normal dog 108

blood [24], ρ = 1050 kg/m3, η = 1.5× 10−2 kg/(m s) and assume that the relaxation 109

time is similar to the one reported for human blood: tr = 1× 10−3 s [18,25]. 110

Model for obstructions in a tree-like network 111

The vascular system of mammals has a complex topology. However, there are several 112

places in the body in which tree-like networks at different scales irrigate certain 113

regions or tissues, from the tree-like networks resulting from successive bifurcations of 114

large arteries that irrigate the limbs, to the tree-like networks characteristic of the 115

microvasculature that irrigates the eyes. 116

We use an electrical analogy in which the resistance of each vessel is given by 117

Ri =
li

AiKi
. Medical and biological literature frequently report the fraction, f , of the 118

total cross sectional area that has been obstructed. Accordingly, we consider the area 119

of an obstructed vessel, Aobs
i = (1− f)Ai. The radius of the obstructed vessel, 120

robsi =
√
(1− f)ri, modifies its permeability and its corresponding resistance. We 121

consider that obstructions occur in half of the branches of the same tree level as 122

illustrated in Fig. 1A. Although such an obstruction pattern does not correspond 123

generically to physiological conditions, it helps to highlight the impact of vessel 124

geometry for equivalent obstructions, that is, those which block the same percentage 125

of cross sectional area regardless of the level in which they occur. 126

The total resistance for an N -level network obstructed at level n is given by 127

L

χ
=

n−1∑
i=1

Ri

2i−1
+

1

2n−2

R2
int +Rint(R

obs
n +Rn) +Robs

n Rn

2Rint +Robs
n +Rn

(3)

where Rint =
∑N

i=n+1
Ri

2i−n and Robs
n = ln

(1−f)An Kobs
n

, where Kobs
n is the permeability of 128

an obstructed vessel; Fig. 1B shows the electric analogy for a segment of a network 129

with obstructions at level n. 130

Although we will focus on the overall behavior of the network, the analytical 131

approach can predict the local flow at each of the network vessels. We will 132

characterize the impact of vessel obstruction on tree-like networks by focusing on two 133

different types of paths. We will consider unobstructed paths, those which cross the 134

network without moving along any obstructed vessel, and obstructed paths, when an 135

obstructed vessel is crossed at some point in the network. 136

Obstructions in a network with equal vessels 137

We first treat the case of a network in which all vessels have approximately the same 138

radius, which is the case of several networks at the arteriole level, and approximate it 139

with a bifurcating network of equal vessels with resistance R1. We find that in this 140

case, the effect caused by occlusions is relatively small when it happens in the inner 141

vessels, and it is relatively large when it happens in the outer vessels. The network 142
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response increases monotonically with the level number n in which occlusions occur 143

(see Fig. 2). 144

Physically, this implies that for a healthy tissue irrigated by a tree-like network, 145

occlusions are more dangerous when they occur in vessels of early generations since 146

blood supply is dramatically decreased, as illustrated in Fig. 3. 147

A mathematical analysis similar to the one presented in [14] for anastomosis, 148

allows us to have an analytical approximated expression for the dynamic response of a 149

network of equal vessels, χ, obstructed by a fraction of area f at level n, 150

ln(χun − χ) ≈ ln

(
4
R1χ

2
un

L

)
+ ln

(
2f − f2

4− 6f + 3f2

)
+ n ln

(
1

2

)
(4)

In this expression χun is the response of the unobstructed network. The last term in 151

Eq. (4) is related to the anatomical place, n, where the obstructions occur and ln(12 ) is 152

due to the bifurcation nature of the tree. The constant terms on the right hand side of 153

Eq. (4), are independent of n and depend only on the unobstructed network features 154

and on the fraction of the occluded area f . Fig. 4 displays the remarkable good 155

agreement between the numerical exact results and the analytical approximation for 156

the dynamic response of a 20-level network, regardless of the level where the 157

obstruction takes place. 158

The theoretical prediction provides insight in the impact that the degree of 159

obstruction and its location inside the network has in its global response; in particular 160

the expression derived clearly shows that the change in the network’s response due to 161

the presence of obstructions is highly determined by the structure of the unobstructed 162

network. 163

It is very important to keep in mind that a global decrease of the total flow in a 164

network, does not imply that all vessels have a smaller flow than in the absence of 165

obstructions. For instance, Fig. 5 shows the local flow through the unobstructed and 166

obstructed paths when obstructions that occlude 60% of the vessel section are placed 167

in half of the vessels at level n = 3 of an 11-level network. The figure quantifies the 168

relative increase (decrease) of the local flow through the unobstructed (obstructed) 169

path. Because of flow conservation, the slopes in the log-linear plot in Fig. 5 for the 170

flow through obstructed and unobstructed paths are identical [26]. Flow in the outer 171

levels of the obstructed network is smaller than the reference curve, because the total 172

flow (equal to flow at level 1) is smaller for an obstructed network than for an 173

unobstructed one. 174

Obstructions in a network with vessel radii that 175

follow Murray’s law 176

Real vascular networks are composed of vessels of different radii and lengths; 177

accordingly, they are characterized by changes in resistance from one level to the next 178

one. For animal tree-like vasculatures, this normally implies an increase in resistance 179

from one bifurcation level to the next one, because inner levels have smaller radii. 180

Assuming that the vascular system evolved to minimize the power required to 181

maintain and circulate blood [27], Murray derived, in 1926, the relationship known as 182

Murray’s law. This one relates the parent radius, rp, and the two daughters vessels 183

radii, rd1, rd2, before and after a bifurcation, as 184

r3p = r3d1 + r3d2 (5)

According to an extensive study on the validity of Murray’s law [28] and a review on 185

vascular flow of reference [29], physiological studies showed that, barring some 186
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anomalies, a large part of the mammalian vasculatures have reasonable agreement 187

with Eq. (5). According to [29], there is also a considerable mass of literature 188

comparing physiological studies in animals other than mammals, and even in 189

plants [30–33], that show good agreement with Murray’s law. 190

We therefore consider Murray’s law as an example of physiological relevance, in 191

which our analytical results illustrate how to explain the different tendencies in the 192

dynamic response in different sections of the network. 193

For our studies, we consider symmetrical branching, so in this case, radii of 194

subsequent levels are given by 195

ri =

(
1

2

) 1
3

ri−1 (6)

For lengths, we consider a power law decay with parameters that match the actual 196

length of the aorta and the length of the capillaries of the dog circulatory system. 197

Figs. 6B left and 6B right, show the real and imaginary parts of the ratio of two 198

sequential resistances of the underlying network, ai =
Ri

Ri−1
, where Ri =

li
AiKi

. The 199

complex character of ai is due to the fact that we are not working in a steady state, 200

but at the frequency of the heart rate of the dog at rest. As for any realistic 201

vasculature, the value of a changes along the network according to the lengths and 202

radii of the vessels that compose it. A decrease in radii between subsequent levels 203

produces an increase in resistance, on the other hand a decrease in length between 204

subsequent levels, produces a decrease in resistance. It is therefore the interplay 205

between this two quantities which will determine the value of a. It turns out that for a 206

bifurcating network, the response will be qualitatively different whenever a is smaller 207

or larger than 2, as we will see below. 208

Figs. 6A left and 6A right, show the real and imaginary parts of the response as a 209

function of the level n in which obstructions occur. As we can see from Fig. 6A left for 210

large arteries, the real part of the response as a function of the level n in which 211

obstructions occur, increases with increasing n. On the other hand, for the section of 212

smaller vessels, the real part of the response as a function of the level n in which 213

obstructions occur decreases with increasing n. 214

In order to gain insight into these results, we present analytical approximations for 215

networks in which the ratio of subsequent resistances is less than two or larger than 216

two. These ones agree well with numerical results whenever the real part of a is 217

considerably larger than its imaginary part. They are given by: 218

ln(χun − χ) ≈ ln

(
4
R1χ

2
un

L

)
+ ln

(
2f − f2

a[4 + (2 + a)(f2 − 2f)]

)
+ n ln

(a
2

)
(7)

for a < 2, which reduces to Eq. (4) when a = 1, and 219

ln(χun − χ) ≈ ln

(
4
R1χ

2
un

L

)
+ ln

(
2f − f2

4a(1− f)2

)
+ n ln

(a
2

)
(8)

for a > 2. 220

The strongest influence of the underlying network without obstructions, on the 221

network response when obstructions are present, comes from the term n ln
(
a
2

)
which 222

gives a qualitatively different trend for a < 2 and for a > 2. In the first case a < 2, the 223

response increases with increasing n. On the other hand, when a > 2, the response 224

decreases with increasing n. 225

As we can see from Fig. 6A left for the outer levels, the response increases with 226

increasing n, and as Fig. 6B left shows a < 2 on the same range. Likewise, for the 227

inner vessels, the response decreases with increasing n and a > 2 on the same range. 228
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For values of a < 2, just as in the case of equal vessels (that has a = 1) presented in 229

the previous section, occlusions are more dangerous when they occur in vessels of early 230

generations since blood supply is dramatically decreased. On the other hand, when 231

a > 2, occlusions are more dangerous when they occur in vessels of late generations 232

since blood supply is smaller than for instance at vessels around the middle of the 233

network. 234

For the network presented here, that follows Murray’s law for radii and a power law 235

for vessel lengths, two radically different behaviors are observed, one for external 236

levels, and one for inner vessels. Our analytical results help us to build an intuition for 237

the interpretation of the different behaviors of the response function in occluded 238

vascular networks. Such behaviors are strongly dependent on the structure of the 239

underlying network. 240

Obstructions in a network with a jump in resistance 241

Finally, we consider a network for which vessels have a sudden jump in resistance. 242

This corresponds to physiological conditions in cases where vessels of small radii 243

branch from vessels of large radii. In particular, we consider a network for which we 244

have a resistance R1 for i ≤ k and a resistance R2 for i > k, where k is a level close to 245

the middle of the network. Therefore, the network has a jump in resistance a ≡ R2

R1
246

between levels k and k + 1. We obtain analytical approximations for real a that could 247

be useful when one analyzes jumps in resistance in the arterial tree of mammals. The 248

first case holds in the limit when (a− 1)
(
1
2

)k−n
<< 1 for n ≤ k, and for a given a it is 249

better the farther away from the jump obstructions are. In this case, we find that the 250

network response is given by 251

ln(χun − χ) ≈ ln

(
4
R1χ

2
un

L

)
+ ln

(
2f − f2

4− 6f + 3f2

)
+ n ln

(
1

2

)
for n ≤ k (9)

and 252

ln(χun − χ) ≈ ln

(
4
R2χ

2
un

L

)
+ ln

(
2f − f2

4− 6f + 3f2

)
+ n ln

(
1

2

)
for n > k (10)

The right hand side of these expressions clearly highlights that the geometry of the 253

underlying network, the fraction of obstructed vessels, and the geometrical place, n, 254

where the obstruction is located contribute additively to the change in the network 255

response. As examples of physiological relevance for which these analytical expressions 256

could be useful, we find typical resistance jumps of the dog circulatory system [14] 257

between main arterial branches and terminal branches, and between arterioles and 258

capillaries. For the former example, the analytical approximation is good for degrees 259

of obstruction up to 90%. For the later example, the analytical approximation is 260

reasonably good for obstruction degrees up to 40%, Fig. 7A shows the exact and 261

approximated values for the difference of the response for an obstruction degree of 262

40%. 263

We have generalized these results for the case when a vasculature has several 264

jumps, the approximated analytical expression is given by 265

ln(χun − χ) ≈ ln

(
4
R1χ

2
un

L

)
+ ln

(
2f − f2

4− 6f + 3f2

)
+ n ln

(
1

2

)
+

n∑
i=2

ln(ai) ∀ n (11)

Here, n represents the level in which obstructions occur, and ai is the ratio of two 266

sequential resistances, ai =
Ri

Ri−1
. It is clear that whenever ai = 1 there is no 267
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contribution to the sum in the last term of Eq. (11), and that for a network in which 268

there are no jumps in resistance, Eq. (11) reduces to Eq. (4) with a = 1. This 269

expression holds for jumps with small values of ai. The non-locality in this expression, 270

given by the sum in the last term, does not prevent us from the possibility of 271

interpreting locally the effect of obstructions. That is, in a local network, we may not 272

know which is the precise value of the response -determined by jumps in resistances 273

more external to the place where obstructions are present-, but relative to this value, 274

we can quantify (through the term n ln 1
2 ) how, when there are no jumps in resistance, 275

the response changes with the level n in which obstructions are. Also, we can identify 276

(through the terms ln ai) the change in the response when obstructions are found in 277

regions where the resistance has jumps. 278

We have worked out analytical expressions in the limit of larger resistance jumps, 279

to be precise in the limit where, (a− 1)
(
1
2

)k−n
>> 4−6f+3f2

(1−f)2 . The network response 280

can then be expressed as 281

ln(χun − χ) ≈ ln

(
R1χ

2
un

L

)
+ ln

(
2f − f2

(1− f)2

)
+ n ln

(
1

2

)
for n ≤ k (12)

and 282

ln(χun − χ) ≈ ln

(
4
R2χ

2
un

L

)
+ ln

(
2f − f2

4− 6f + 3f2

)
+ n ln

(
1

2

)
for n > k (13)

These expressions again show that the geometry of the unobstructed network, the 283

fraction of vessel occluded area and the geometrical location of the obstruction in the 284

network contribute additively to the change in the network response. As an example 285

of physiological relevance, we show that these analytical expressions are useful for 286

typical resistance jumps of the dog circulatory system [14] between terminal branches 287

and arterioles for obstructions up to 60% as can be appreciated in Fig. 7B. The 288

comparison between the numerical results and the theoretical approximation show 289

again a very good agreement; for a given ratio in the jump in resistance, a, the 290

analytic approximation is better the closer to the jump the obstructions are. Although 291

it is possible to generalize the analytic expression for the network response for a series 292

of jumps for which a is large, we have found no example in which this might be 293

physiologically relevant. 294

The theoretical predictions for the jump between terminal branches and arterioles 295

of Fig. 7B, are shown in a linear scale in Fig. 8, normalized by the response of the 296

corresponding unobstructed network, for different degrees of obstruction, in order to 297

better appreciate differences in response. The results show that obstructions occurring 298

just after the jump in resistance diminish dramatically the network flow. At both sides 299

of the geometrical place of the jump, we observe that the outer the level in which the 300

obstruction takes place, the smaller the network response. We have checked that these 301

features are generically true for any degree of obstruction. In order to illustrate how 302

such variations in response, have a direct impact on flow we compare the network flow 303

for obstructions that block 90% of the area at level 3 and obstructions that block only 304

45% of the area at level 11, as displayed in Fig. 9 where we also plot the flow for an 305

unobstructed network as a reference. The figure clearly illustrates that relatively small 306

obstructions in critical topological sites cause a much larger decrease on flow than 307

larger obstructions in non-critical sites. 308

Despite the tendency shown in Fig. 8A that seems to imply that the larger the 309

obstruction, the larger the jump ∆χ, this does not hold for very large degrees of 310

obstruction, i.e. when f ≈ 1, ∆χ ≈ 0, a regime that may be physiologically relevant 311

only for vessel suppression. As illustrated in Fig. 8B, in this regime the network 312

response changes dramatically with respect to its unobstructed network counterpart, 313
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independently of the position of the obstruction relative to the resistance jump. It is 314

worth noticing that, as depicted in Fig. 8A, a minimum in the response can be 315

observed when occlusions take place at the same position that the resistance jump. 316

Conclusions 317

In this work we relate network structure to hemodynamics after occlusions. We study 318

tree-like networks and find that when vessels are equal, the drop in the dynamic 319

response, after obstructions on half of its vessels at a given bifurcation level, increases 320

monotonically with the bifurcation level in which they occur. The outer the level 321

where the obstructions are included, the larger the drop in the dynamical response of 322

the network. 323

For vessels that follow Murray’s law for the sequence of radii, and a power law for 324

the sequence of lengths, two radically different behaviors are observed for the response 325

function: one for large arteries, in which the response increases as a function of the 326

level n in which obstructions are located, and one for smaller vessels, in which the 327

response decreases as a function of the level n in which obstructions are placed. This 328

example shows the non-trivial effect of vascular obstructions and puts forward the 329

importance of analytic equations in the interpretation of the numerical results. 330

For networks in which jumps in resistance between subsequent levels exist, we have 331

identified the sites of the jumps as critical for the overall capacity of the network to 332

supply blood to a tissue. We have also demonstrated that relatively small obstructions 333

in these critical topological sites, cause a much larger decrease on flow than larger 334

obstructions in non-critical sites. By simple observation of the structure of a vascular 335

network, these key sites could be readily identified and monitored in vivo. 336

We have derived analytical expressions for the dynamic response of the network 337

that provide insight into the relevant mechanisms that control flow across a tree-like 338

network in the presence of vessel occlusions. Moreover, we are able to find 339

approximations for cases that might be physiologically relevant in which the roles 340

played by the network structure, the degree of obstruction and the geometrical place 341

in which obstructions take place can be clearly identified. We demonstrate that our 342

results are local in the sense that they depend on the network structure around the 343

place where obstructions are. This implies that whenever there is a tree-like network 344

in an in-vivo vasculature, our model is able to interpret the effect that an obstruction 345

has on flow. 346

Our results demonstrate that the effect of occlusions on flow is somehow opposite 347

to the effect of the addition of anastomotic vessels [14]. When in the former case 348

occlusions cause a decrease on flow, in the latter, anastomosis causes an increase on 349

flow. However they are similar in the sense that whenever vascular alterations to a 350

network occur (either in the form of occlusions or in the form of addition of vessels), 351

the impact on flow has similar tendencies. Namely, for vascular networks with a < 2 352

(a > 2), the outer (inner) the vascular alterations are placed, the larger the impact on 353

flow. Also, sites presenting a large jump in resistance are critical for the overall 354

capacity of the network to supply blood. In the case of obstructions situated on those 355

critical sites, a large decrease in network response (and flow) might compromise the 356

survival of the tissue. While new vessels in the form of anastomosis added (naturally 357

or artificially) at those critical sites, result in an extremely large increase in the 358

network response and flow. 359

For our model, we have considered that vessels are rigid. However, real vessels are 360

elastic tubes. Important insight could be gained from the inclusion of elastic effects in 361

the model, especially for large arteries, where elastic effects are very important. 362

Regional tissue metabolism, such as the myogenic effect in arteries, can be considered, 363
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as was done in reference [14], where it was shown that the impact that is has on flow is 364

large, but tendencies with the geometrical place where anatomical variations occur, 365

are qualitatively unaltered. 366

A validation of our model with an in-vivo biological system is currently not possible, 367

since it would require data of flow measurements after a systematic variation of the 368

anatomical place where obstructions are located. Such information does not exist in 369

literature. One possibility to validate the model, at least at certain length scales, in an 370

experimental situation, would be to use artificial vessel networks, such as networks 371

etched in microfluidic devices, where local variations could be systematically done. 372

Vascular alterations might affect or help a patient depending on the medical 373

condition, in the case of ischemic conditions affecting the irrigation of vital tissues, the 374

presence of occlusions is negative and the presence of anastomosis is positive for tissue 375

irrigation. On the contrary, for a vasculature irrigating a tumor, anastomosis might be 376

good for the tumor and bad for the patient and occlusions would have the opposite 377

effect. Our results can help to decide the anatomical sites where selective suppression 378

of vessels, might help to decrease blood flow towards the tumor, decreasing its oxygen 379

supply. The study of the effect on flow of other vasculature alterations, such as the 380

presence of aneurisms, is desirable. 381

Our results put forward the importance of relating vasculature structure with 382

hemodynamics. Recent progresses on high resolution microscopy allows the 383

visualization of the characteristics of an individual vasculature [34]. Hence, the 384

concurrence of sophisticated image-tracking systems and mathematical models such as 385

the one presented here, provides a new perspective and relevant tools in the 386

determination of blood supply to a tissue. 387
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explanation for heart rates in mammals. J Theor Biol. 2010;265: 599-603.

18. Thurston GB, Henderson NM. Effects of flow geometry on blood viscoelasticity.
Biorheology. 2006;43: 729-746.

19. Morrison FA. Understanding Rheology. New York: Oxford University Press;
2001.

20. Bravo-Gutiérrez ME, Castro M, Hernández-Machado A, Corvera Poiré E.
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Figure 1. Model for obstructions in a tree-like network. A: Illustration of a
network with obstructions at level n, indicated by crosses. B: Electrical analogy for a
N -level network with occlusions at level n.
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Figure 2. Dynamic response for obstructed networks with equal vessels.
Dynamic response for an 11-level network as a function of the level n in which
obstructions occur. It is important to note that each point in this figure corresponds
to a different network since we obstruct only one level at a time. The normalization is
done with the network response without occlusions. The effect of the obstruction is
more dramatic in the outer levels of the network. In this calculation, the vessels have
the typical dimension of the dog arterioles (r = 1× 10−5 m and l = 2× 10−3 m).

Figure 3. Time-dependent flow for obstructed networks with equal vessels.
Blood flow for an 11-level network with obstructions of 90% at levels 3, 8 and with no
obstruction (reference). The sharp decrease in flow after obstructions at the outer
level is clear. The network used was the same as in Fig. 2. The total pressure drop
was set to 110 Pa.
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Figure 4. Analytical approximation and numerical solution of the response
for obstructed networks with equal vessels. Analytical approximation and
numerical solution of the quantity ln(Re[χun − χ]) for 20-level networks obstructed at
level n as described in the text. The vessels have the typical dimension of the dog
arterioles (r = 1× 10−5 m and l = 2× 10−3 m).

Figure 5. Flow in single vessels of an obstructed network with equal
vessels. Flow in single vessels in logarithmic scale as a function of the level they
belong to for a network constituted by 11 levels and with obstructions of 60% in area
at level 3. The curves shown are: the flow in the unobstructed path, the flow in the
obstructed path and a reference curve for the flow in a path of an unobstructed
network. For language clarification see Fig. 1. Even though the total flow decreases
with the obstructions, the flow in the non-obstructed vessels increases. The network
used was the same as in Fig.2. The pressure drop was set to 110 Pa.
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A

B

Figure 6. Dynamic response for a network with vessel radii that follow
Murray’s law. A: Real and imaginary parts of the response of the network (in m4)
as a function of the level n at which obstructions occur. B: Real and imaginary parts
of the ratio of two sequential resistances ai =

Ri

Ri−1
as a function of the level i of the

underlying network. Note that we use the subindex i, whenever we refer to a property
of the underlying network, we use the subindex n whenever we refer to the response of
the whole network when obstructions occur at level n.
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BA

Figure 7. Analytical approximation and numerical solution of the response
for obstructed networks with a resistance’s jump. Analytical approximation
and numerical solution of the quantity ln(Re[χun − χ]) for 20-level networks with a
jump in resistance between levels 10− 11 obstructed at level n as described in the text.
A: The vessels have the typical dimensions of the dog arterioles for n ≤ k and of
capillaries for n > k. B: The vessels have the typical dimensions of the dog terminal
branches for n ≤ k and of arterioles for n > k.

A B

Figure 8. Dynamic response for the obstructed networks with a jump in
resistance. Network response as a function of the level n in which occlusions occur.
In this calculation we used a network with 20 levels, with an alteration in vessel radii
and length between level 10 and level 11. We observe that obstructions at specific sites
of network may result in a dramatic reduction of the response. The vessels of levels 1
to 10 have the typical dimension of the dog terminal branches (r = 3× 10−4 m and
l = 1× 10−2 m) and the vessels of levels 11 to 20 have the typical dimension of the
dog arterioles (r = 1× 10−5 m and l = 2× 10−3 m). A: Behavior dominated by the
levels after the jump in resistance. B: Behavior for very large obstructions, dominated
by the levels before the jump in resistance.
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Figure 9. Time-dependent flow for obstructed networks with a jump in
resistance. Time-dependent flow for a network obstructed by 90% in area at level 3,
for a network obstructed by 45% in area at level 11 and for a network without
obstructions as reference. The network used was the same as in Fig. 8. The total
pressure drop was set to 600 Pa.
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