bioRxiv preprint doi: https://doi.org/10.1101/019133; this version posted May 8, 2015. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 1

Two-Dimensional Mapping of 3D Data from
Confocal Microscopy

Anthony Fan', Justin Cassidy?, Richard W. Carthew?, Sascha Hilgenfeldt!

Abstract—Confocal microscopy has been experimentally
proven for decades to provide high-quality images for
biological research. Its unique property of blocking out-of-
focus light enables 3D rendering from planar stacks and
visualization of internal features. However, visualizing 3D
data on a flat display is not intuitive, and would lead
to occasional distortion. In this study, a novel, easy-to-
implement, and computationally fast solution is provided
to reconstruct a confocal stack to true 3D data and
subsequently map the information correctly with size and
shape consistency to a 2D space for visualization and image
analysis purposes.

Index Terms—Confocal Microscopy, Image Reconstruc-
tion, Geodesics, 2D Mapping.

I. INTRODUCTION

ONFOCAL microscopy provides high resolution

images with almost no out-of-focus blur [1]. The
specimen is usually tagged with fluorescing molecules
or is itself autofluorescing. Together with a scanning
laser source of small spot size, it can easily provide
sub-micron spatial resolution. Because of the advantage
to see only in focus features, confocal imaging is
particularly useful in obtaining 3D information and has
been widely used for such.

Bio-imaging in the recent decades has attracted a
lot of attentions, and confocal imaging has proven
to be the prime tool for such applications [2], [3]. It
has been shown successful in in vitro, in situ, and in
vivo imaging ranging from the sub-cellular level [4]
to the tissue and small animal level [5]. Confocal is
particularly beneficial in bioimaging because minimal
treatment is required on delicate biomaterials which also
implies the possibility for live imaging. Blocking of
out-of-foucs light also enables visualizations of internal
features within the focal plane that will be blurred by
scattering contamination in traditional light microscopy.
Combining with a motorized lens or stage, in which the
z-axis actuation is accurately controlled, the confocal
microscope can provide z-stack images spanning across

1 Department of Mechanical Science and Engineering, University
of Illinois, Urbana, IL, 61801 USA

2 Department of Molecular Biosciences, Northwestern University,
Evanston, IL, 60208 USA

the entire specimen, if the working distance allows,
allowing 3D visualization.

3D reconstruction is mature and most confocal acqui-
sition softwares have such tools built-in. In the simplest
form, it is the projection of maximum intensity along
the viewing axis. As the viewing angle is altered, the
projection is done in different direction thus enabling
3D rendering to the user. However, it is not true 3D in-
formation, and limit interpretation to largely qualitative.
Many efforts have been demonstrated in presenting the
3D information in a variety of systems [6], [7], [8], [9].
Here, I will use the compound eye of drosophila as an
example to present a method to accurately reconstruct
a confocal stacks into a point cloud form, with each
point tagged with an intensity (4D) value. However,
visualization of such data on any form of display (which
is 2D) is still non-intuitive, therefore I present a method
based on geodesics estimation to reconstruct such 3D
data back to a 2D plane without size and morphology
distortion from uniaxial projection.

II. ANIMAL MODEL, IMAGING, AND ENABLING
SOFTWARE

Room temperature red-eye wild-type drosophila were
used. All flies imaged were sacrificed using an ethanol
step-dry process to preserve eye geometry and to enable
SEM imaging for confirmation. Confocal imagings were
done in the Materials Research Laboratory (MRL) at
the University of Illinois using the Zeiss LSM 7 Live.
SEM imagings were done using Hitachi 6060LV also in
MRL. All image post-processing algorithms were written
in MATLAB. Some minor visualizations and boundary
trimming were done in ImageJ.

III. CONFOCAL STACKS TO 3D POINT CLOUD

A confocal stack can be described by the function
I[x,y, 2], in which every spatial coordinate will have an
intensity value. Each z-, y—coordinate gives rise to a
unique I, ,[z] function (Fig. 1A). This is expected to
be approximately Gaussian because of remaining out-
of-focus blur. Therefore, a two-term Gaussian fit is
performed on all I, ,[z] from which the fitted maximum
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Fig. 1. (A) Intensity vs. z-position profile at a randomly chosen x-,
y-coordinate. (B) The constructed 3D point cloud matched to a surface.

intensity, Ipnqz[2,y], and the corresponding z-position,
21, [z,y], could be obtained. This leads to a 3D
point cloud surface that could be subsequently described
mathematically (Fig. 1B).

IV. FITTING OF 3D POINT CLOUD
The 3D data is then fitted to an ellipsoid:

x—c'Clx—c]=1, (M
or in polynomial form:

Az® + By? + C2% + 2Dxy + 2FEx2+
2Fyz +2Gx +2Hy +2I2—1=0, (2)

one can characterize the surface exactly with 9 degrees
of freedom: 3 translations, 3 rotations, and 3 semi-
principal axes. It is important to note that other, or
a combination of, mathematical structures might be
more suitable depending on the application. Here,
for demonstration purposes, I find a general ellipsoid
adequate.
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Fig. 2. (A) Raw data points on best-fit ellipsoid. Error magnitudes are
shown in color with blue as close to + 0 pum and red as £+ 10um or
above. (B) Error distribution with z-axis in unit of gm and y-axis as
bin frequency. Most points have error less than 5 pm. Subplot shows
the magnitude of semi-principal axes in best-fit ellipsoid. Error is small
compared to the overall geometry. Error bars in SD. N=2.

By evaluating the error spatially, one can confirm that
the ellipsoid is in close agreement with the 3D data.
Therefore, the distance between each point with the
surface of the ellipsoid is calculated and plotted over
the best-fit ellipsoid in Fig. 2A. The error distribution is
shown in Fig. 2B. As apparent, the fitting error is small
comparing to the magnitude of the semi-principal axes
(subplot of Fig. 2B), which gives confidence in proceed-
ing to the next section in performing 2D mapping.



https://doi.org/10.1101/019133

bioRxiv preprint doi: https://doi.org/10.1101/019133; this version posted May 8, 2015. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 3

Fig. 3. Visualization of the point maxz (black circle): intersection of
z dz

the plane 3—1 = 0 (red), the plane = 0 (blue), and the ellipsoid.

V. MAPPING 3D POINT CLOUD TO 2D IMAGE USING
AN ELLIPSOID FIT

A. Center as Reference and Point Closest to the Camera
as Point of Projection

The undistorted point of projection is the maximum
point along the eg direction as depicted in Fig. 3.
Differential geometry enables explicitly obtaining the
coordinate of maximum z(mazz) by locating the zero
tangent plane:

0z —(Az+Dy+Ez+G)

dr  Ex+Fy+Cz+1
Az +Dy+Ez+G=0 3)
0z _ —(Dz+By+Fz+H) _o
dy  Ex+Fy+Cz+1
Dx+By+ Fz+H =0, 4)

solving equation (2), (3), and (4) will lead to a close
form solution for marz = [Tmazz, Ymazsz, Zmazz)-

A dissection plane (Fig. 4) can then be constructed
from 1) the vector, s, connecting maxz and the
center of the ellipsoid (center) and 2) the vector, t,
connecting maxz and any point on the surface of the
ellipsoid (point). This plane cuts through the center, the
projection reference i.e. maxz, and the point of interest.

Fig. 4. Construction of the dissection plane for a randomly selected
point. z is the plane normal. t is the vector connecting maxz and
point. s points to center from mazz.

The plane normal, z, is defined as:
z=1txs. (5)

Using the plane normal in Eq. 5, one can construct the
complete rotational matrix describing the orientation of
the plane by obtaining the vector, y, mutually orthogonal
to s and z, where

y=2XS. (6)
And thus, the rotational matrix is in the form of
R={8 y 1z}, (7)

where 8, ¥, and Z are unit column vectors of s, y, and z.

R is used to align the dissection plane with the z = 0
plane. Such alignment enables path integration from
maxz to point to compute the arc length between the
2 points, providing a quick and accurate estimate of the
geodesics.

The alignment process is as follows. The center of the
ellipsoid could be translated to the origin and its formula
is then: R

x]"C[x] = 1. 8)
If no rotation is imposed, C=Din Eq. 8 is a diagonal
matrix containing the semi-principal axes information.

If a rotation Ry is imposed, C' in Eq. 8 is a symmetric
matrix in which:

C = RyDRY. )
Now, with the previously calculated R from Eq. 7, we

can formulate a new C, C)cp:

Crew = RTRyDRIR (10)


https://doi.org/10.1101/019133

bioRxiv preprint doi: https://doi.org/10.1101/019133; this version posted May 8, 2015. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 4

Fig. 5. The estimated geodesics is the arc length of the arc connecting
point and maxz along the surface of the ellipsoid now aligned to the
plane z = 0.

and the form of the ellipsoid is then

X Crewlx] =1, (1)

in which substituting z = 0 into Eq. 11 will
give the ellipse connecting mazz and point with
center = origin as the center of the ellipse. Note
that maxz, point, and center will not have the
same coordinates as before because of translation and
rotation. Their distances and relative angles, however, are
conserved, given by the properties of rotational matrices.

The estimated geodesics (Fig. 5), Geo, can then be
obtained by doing a path integral from mazxz to point:

point point
Geo = / ds = / (@2 +g'(t)2dt (12)

marz maxrz
where f(t) is the x-parametrization and g(¢) is the y-
parametrization of the ellipse. Parametrization guaran-
tees the uniqueness of solution. F(t) and g(t) takes the
form:

f(t) = 2o + a cos(t)cos(0) — b sin(t)sin(f)
g(t) = yo + b sin(t)cos(0) + a cos(t)sin(6)

(13a)
(13b)

where 6 is the angle of rotation of the semi-principle
axes a and b.

The intersection of the dissection plane and the plane
2 = Zmaz. Will give the direction of reconstruction. Geo
will give the distance (Fig. 6). Explicitly,

Sz® + SyY + SzZmazz + So = 0 (14)

Fig. 6. The estimated geodesics is used as the projection distance
along the line describe by the intersection of z = zmqq- and the
dissection plane. Every point will get a new reconstructed coordinate
this way.

\/({E - xmamz)Q + (y - ymamz)Q = G607 (15)

where sg is the plane constant. Solving Eq. (14) and
(15) will yield the reconstructed z-, y-coordinates.

Reformatting the x-, y-coordinates and respective
maximum intensity value, I(x,y), back to an image is
achieved by weighted interpolation of each pixel (x;,y;)
with the nearest N points:

N I(%n,yn)
D R e

o : )

= (i) 2+ (Yi—yn)?

(16)

I(@i,yi) = (

This search of the nearest N-points in Eq. 16 is based on
a previously developed algorithm [10]. The author finds
that a 4-point interpolation yields the best result.

B. Plane Normal as Reference and any Point on Surface
as Point of Projection

In the previous subsection, we used the center of the
ellipsoid as a reference for the dissection plane. But
some structure do not have a natural center and it is
easier to use the normal of the plane tangent to the
point of projection (maxz in the previous case) as the
reference instead.

In some occasions, the user might want to perform
the projection at a point other than the one closest to
the camera. The tangent plane normal in these instances
will have components other than eg. The projection
therefore will have to be done by also considering the
z-dimension. This plane can be subsequently rotated
back to align with the x-y plane for image formulation
as desribed.
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Using the plane normal as reference, the dissection
plane does not cut through the center (unless the plane
normal passes through the center, which is rare), and,
therefore, the arc length is not part of an ellipse that
can be simply described by 2 semi-principle axes with
a rotation as in Eq. 13. In our reconstruction we will
assume that it is such an ellipse regardless, by matching
the magnitude and rotation of the semi-principal axes to
the curve:

Az? + 2Bay + Cy?> + 2Dz +2Ey+ F =0 (17)

Eq. 17 is the most general form of an ellipse when
B? < AC, as in what would appear when a plane
intersects a triaxial ellipsoid arbitrarily. But the system
is over-determined with 6 variables—the most general
regular ellipse would have 5 variables: 2 semi-principal
axes, 2 variables for the center location, and 1 in-plane
rotation. The authors are not aware of the paramet-
ric form of Eq. 17, and for computation speed and
uniqueness considerations proceed with the approximate
parametrization, by assuming a regular ellipse.

VI. MAPPING 3D POINT CLOUD TO 2D IMAGE
WITHOUT OBJECT FITTING

To extend the generality of the method. We explore
reconstruction without assuming the eye as a triaxial
ellipsoid.

First a convex hull is constructed to the 3D point
cloud data after section III. This is achieved first by
smoothing the data and then by employing the Qhull
algorithm [ref] to triangulate the surface.

Once the convex hull is constructed. The geodesics
distances and initial angle of the geodesic paths from
the reference point to all the vertices are numerically
calculated (Fig. 7) [ref]. With the distances and the
initial angles, we can map the 3D vertices from
(0, Yo, 20) onto the same plane P as (zp, yp).

The triangulation creates piecewise planar surfaces
that tile the curved surface. Intensity projection creates
projection points (x4,y,) on the x-y plane (). Each
planar surface uniquely contains a set of projection
points from ), which could be described by 2 bases.
These 2 bases are formulated by the 2 vectors, v, and
V24, connecting any one vertice of the triangle to the
other 2 vertices on (). This is chosen specifically this
way because we know the vertices, as well as the vectors,
are mapped () — P and the remaining points in ¢) could
be linearly transformed onto P by:

2] = oy o) e ][],

18
Yo (18)

Fig. 7. Geodesics path from point of projection to all vertices of
convex hull.

To determine if a projection point from Q is contained
in the planar triangle, 3 criteria has to be simultaneously
satisfied: 1) m > 0, 2) n > 0, and 3) m+n < 1, where:

ol = e )

The rest of the process is the same as in section V(A).

19)

VII. RECONSTRUCTED IMAGES

The original maximum intensity projection image is
shown in Fig. 8A and the reconstructed image using the
ellipsoid center as reference is shown in Fig. 8B. These
pictures come from the compound eye of a drosophila.
Each individual eye is called an ommatidium. As can
be identified, the correction to size and morphology
is significant. Especially at the lower right boundary,
where previous ommatidia are distorted and cannot be
nicely identified. After correction, all ommatidia is of
consistent shape and size throughout the entire image,
expect where the fit deviates at the left boundary (Fig.
2A). SEM images (Fig. 8C) are taken to show that
boundary ommatidia should have size and morphology
consistent with bulk ommatidia. It is even more obvious
upon closer investigations revealing changes before and
after reconstruction (Fig. 8D).

We also show the results from reconstruction using
the projection plane normal as reference (Fig. 8E). It is
important to note that the distortion from reconstruction
itself is more prominent with increase distance away
from the point of projection as evident in Fig. 8F.
However, because of the availability to project from
any point on the surface, this enables a way to better
resolve local features otherwise unavailable.

Last and the most general, we demonstrate also the
reconstruction (Fig. 8F) without relying on a mathemat-
ical shape to describe the curved surface. Notice that the
left boundary has better correction compared to Fig. 8B
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Fig. 8.

(A) Original image from a maximum intensity projection. (B) Reconstructed image using the image in Fig. 8A with the algorithm

described in section V(A). Notice that the ommatidia at the boundary now have corrected size and morphology. Distortion from uniaxial
projection is minimized. (C) SEM image taken from a tilted angle to confirm that boundary ommatidia have similar size and shape compared to
bulk ommatidia. (D) Close-up view of 2 occasions of boundary ommatidia. Images shown here are before 4-point interpolation to demonstrate
the survey of the reconstruction. (E) & (F) Reconstructed image using the image in Fig. 8A with the algorithm described in section V(B). (G)
Reconstructed image using the image in Fig. 8A with the algorithm described in section VI. Images B, E, and G are projected form the point
marked with the white star. Image F is projected from the point marked with the black star.

& E because this method makes no assumption on the
shape. The size of the ommatidia is, however, of less
consistency because of the piecewise reconstruction.

VIII. DISCUSSION

Ellipsoidal geodesics problems have long been
solved by Carl Jacobi [11]. His solution provides
explicit formula for the computation of geodesics in
elliptical coordinates. Although this solution minimizes
the distance between 2 points on the surface of the
ellipsoid, the contour of the geodesics is not necessary
describable by a plane giving no easy way of planar
projection, contrary to the demonstration here. Elliptical
coordinates are also difficult to visualize thus the
implementation is both error prone and non-intuitive.
Employing the Jacobian solution will also limit the
application to only elliptical structure, which is not
the case here. The geometrical projection requires

only 2 points, one being the point of projection, one
being the center or any point along the projection
plane normal. In a combinatorial manifold, if the user
so choose to better describe the surface of interest,
the center does not have to be defined as in section V(B).

The 2D mapping in section V relies on the fact
that all 3D points are within close proximity to the
mathematical surface. Therefore, a good fit is necessary
to guarantee successful reconstruction. The quality of
mapping is expected to be improved when employing
a higher order description, but the choice of such
depends on the particular situation and if small areas
of misfit will significantly affect the final results. This
is solved by not assuming any mathematical structure
to describe the manifold as in section VI. However,
as noted previously, the projection is not as smooth,
because of the piecewise projection.
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Most image analysis tools and platforms are designed
to perform with 2D images. Although customized al-
gorithm could be design to perform analysis 3D, it is
both time consuming and computationally expensive.
Reconstructing the 3D data to a 2D image without loss of
information is ideal in optimizing efficiency and quality.
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