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The effects of time-varying temperature on delays in genetic networks

Marcella M. Gomez∗, Richard M. Murray†, and Matthew R. Bennett∗‡

Abstract. Delays in gene networks result from the sequential nature of protein assembly. However, it is unclear
how models of gene networks that use delays should be modified when considering time-dependent
changes in temperature. This is important, as delay is often used in models of genetic oscillators
that can be entrained by periodic fluctuations in temperature. Here, we analytically derive the time
dependence of delay distributions in response to time-varying temperature changes. We find that the
resulting time-varying delay is nonlinearly dependent on parameters of the time-varying temperature
such as amplitude and frequency, therefore, applying an Arrhenius scaling may result in erroneous
conclusions. We use these results to examine a model of a synthetic gene oscillator with temperature
compensation. We show that temperature entrainment follows from the same mechanism that
results in temperature compensation. Under a common Arrhenius scaling alone, the frequency of
the oscillator is sensitive to changes in the mean temperature but robust to changes in the frequency
of a periodically time-varying temperature. When a mechanism for temperature compensation is
included in the model, however, we show that the oscillator is entrained by periodically varying
temperature even when maintaining insensitivity to the mean temperature.
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1. Introduction. Biochemical reaction rates, as with all chemical reaction rates, are sen-
sitive to changes in temperature and this effect is captured mathematically by the Arrhenius
equation [1, 23]. Temperature dependent rates can also alter the dynamics of gene regulatory
networks. Previous studies have examined how gene networks behave at various temperatures,
and, in general, their dynamics speed up with increasing temperature [30]. For example, the
cell doubling time in root meristems of Zea mays decreases 21-fold from 3 − 25◦C increase
in temperature [9]. In addition, time varying temperatures have been shown to impact gene
networks. For instance, circadian oscillators can be entrained by time-varying temperatures
that cycle with a period close to 24 hours [4, 21, 29, 40].

In models of gene networks, dynamical delay has been used to model the sequential as-
sembly of messenger RNA and then protein. Nucleic acids must be added one by one to the
growing mRNA chain, while amino acids are joined end to end with peptide bonds to create
a protein. In each case, the large chain of linear reactions can be compactly modeled either
with a discrete delay term, or as a distributed delay term [3, 13]. The incorporation of delay
greatly simplifies models of genetic oscillators while simultaneously maintaining qualitative
similarities to experimental data [6, 16, 34, 35]. Delay-based models play a central role in
understanding the origin of oscillations in genetic networks [25, 26] and other nonlinear sys-
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tems [13, 17]. For constant temperatures, the delay time or distribution can be scaled with the
Arrhenius equation, just as the reaction rates. However, less is known about how time-varying
temperatures influence delays in such analyses.

Here, we investigate how time-varying temperatures affect delays in genetic networks. We
first derive how time-dependent temperature affects the delay term. To do this, we assume that
delays arise from a sequence of first-order reactions that can be modeled as an aggregate delay.
Although delay in gene networks is the result of the sequential assembly of first mRNA [5]
and then protein [27] (see Fig. 2.1), we lump these delays into one term and represent protein
production delay as a reduction of a linear chain of reactions. Each reaction in the sequence
is then scaled by a common time-dependent Arrhenius factor. Since changes in temperature
influence each biochemical step in the sequence that constitute the delay, the value of the delay
time will change. From these assumptions, we derive an expression for the time-dependent
distribution of delay times. We analyze changes in phase shift and amplitude of the resulting
time-varying delay as a function of parameters of a sinusoidally time-varying rate-coefficient
induced by temperature changes. We find a nonlinear relationship and, furthermore, find
specific cases for which a delay can remain approximately time-invariant under time-varying
conditions.

The effects of temperature on oscillators becomes important in the study of circadian
clocks and is typically inferred through analysis of system response to single step changes in
temperature or a single cycle [21]. We incorporate our findings into a model of a synthetic gene
oscillator with temperature compensation presented by Hussain et al. [16]. We find that, when
the temperature varies sinusoidally in time, the oscillator can be entrained by temperature,
but that this entrainment does not occur in the absence of the temperature compensation
mechanism. In other words we find that the temperature compensated oscillator is insensitive
to changes in the mean temperature but also entrained by periodically varying temperatures,
a property explained and observed in circadian oscillators.

2. Characterization of time-varying delays. We begin by approximating protein produc-
tion with a linear sequence of reactions (see Fig. 2.1), the dynamics of which can be modeled
by

ẋj = −a(t)(xj(t)− xj−1(t)) for j = 1, ..., N, (2.1)

where xi(t) is the concentration of the ith species at time t, x0(t) is the time varying concentra-
tion of the initial complex, a(t) is the time-varying rate coefficient, and the overdot represents
differentiation with respect to time. The effects of time-varying temperatures can be reflected
in the time-varying rate coefficients. From this we deduce the effects of time-varying temper-
atures on the delay distribution, i.e. the time it takes to go from the initial complex, x0, to
mature protein, xN .

To find the distribution function, we first rewrite system (2.1) as

ẋ(t) = A(t)x(t) + u(t), (2.2)

where x(t) = [xN , xN−1, . . . , x1]
T , u(t) = [0, . . . , 0, a(t)x0(t)] and A(t) = a(t)J−1,N . Here
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Figure 2.1. Modeling of delays in protein production. Transcriptional delays (top) are modeled by
a sequence of chemical reactions (bottom) with common reaction rate a(t) for each reaction R1, . . . ,RN .

J−1,N is the N -dimensional Jordan matrix with eigenvalues −1,
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. (2.3)

Because A(t1) commutes with A(t2) for all (t1, t2), we can write the general solution to
equation (2.2) as

x(t) = φφφ(t, t0)x(t0) +

∫ t

t0

φφφ(t, σ)u(σ) dσ, (2.4)

where

φφφ(t, t′) = exp

(
∫ t

t′
A(s) ds

)

. (2.5)

Without loss of generality we set t0 = 0 and substitute σ = t− τ . If we assume xj(t0) = 0 for
j = 1, . . . , N , the solution reduces to

x(t) =

∫ t

0
eα(t,τ)J−1,Nu(t− τ)dτ, (2.6)

where α(t, τ)
.
=

∫ t
t−τ a(s)ds. We can now extract the expression relating the input, x0(t), to

the measured output, xN (t), with the result

xN (t) =

∫ t

0
h(t, τ)x0(t− τ)dτ, (2.7)

where the function

h(t, τ) = a(t− τ)
α(t, τ)N−1

(N − 1)!
e−α(t,τ) (2.8)
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is the impulse response function relating the output to the input of the system, which rep-
resents the delay distribution given the constraint

∫∞
0 h(t, τ)dτ = 1, for any time t. This

constraint is always satisfied by the physics of the problem. The integral can be shown to
equal one when a(t− τ) > ǫ for some ǫ > 0, that is, the reaction rate at all times is positive
definite. To show this we express the integral as a line integral:

∫ ∞

0
h(t, τ)dτ =

∫ ∞

0
a(t− τ)

α(t, τ)N

(N)!
e−α(t,τ)dτ

=

∫ ∞

0

α(t, τ)N

(N)!
e−α(t,τ)

∣

∣

∣

∣

∂

∂τ

(

α(t, τ)
)

∣

∣

∣

∣

dτ

=

∫

C

sN

N !
e−sds, (2.9)

where the curve C is the domain of integration that is defined by α(t, τ) for t held fixed.
Note that the expression in the last line is an integral over the Erlang distribution, which is
equal to one when integrated along the curve C ≡ aτ . For the line integral in equation (2.9)
to equal one, α(t, τ) must be an injective function in τ meaning dα(t, τ)/dτ = a(t − τ) > 0
(which implies a(t) > 0 for all t) with α(t, 0) = 0 and limτ→∞ α(t, τ) = ∞. By the definition
of α(t, τ) (α(t, τ)

.
=

∫ t
t−τ a(s)ds), we see that a positive definite a(t) in turn satisfies the latter

conditions.
For the purpose of demonstration we consider a sinusoidally time-varying rate coefficient

a(t) = δp a0 sin(ω t) + a0 with 0 < δp < 1, assuming the dynamics are induced from an
appropriate time-varying temperature. Next, we show conditions under which this is a good
approximation for a sinusoidally time-varying temperature. When a(t) ≡ const. (i.e. a(t) =
a0), equation (2.8) is the Erlang distribution [24]. If a(t) is not constant, the delay distribution
will be a function of time. Figure 2.2(a)-(b) shows the delay distribution h(t, τ) for different
values of N (holding N/a0 constant), comparing the time-invariant case to the time-varying
case. Note that, unlike the time-invariant case (Fig. 2.2(a)), the distribution in the time-
varying case (Fig. 2.2(b)) need not be unimodal, especially for small N . Figure 2.2(c) shows
how the time-varying distribution changes with time for fixed N and a time-varying rate
coefficient a(t). Note that the distribution becomes unimodal as N increases.

Next, consider the limit as the number of reactions within the sequence tends to infinity. In
the time-invariant case, one would consider the limit as N → ∞ such that N/a = E remains
constant. Taking this limit reduces the distribution function to the Dirac delta function
δ(τ − E), which agrees with results shown by Bel et al. [3]. To investigate the time-varying
case, we assume that a(t) = a0f(t), where a0 > 0 and f(t) is a positive definite, bounded
function of time, which agrees with the sinusoidally varying function a(t) above. In this case,
if we take the limit N → ∞ with the constraint N/a0 = E, the ratio N/α(t, τ) remains finite
for finite τ .

In summary, we find that there exists a unique delay τeff such that

lim
N→∞

h(t, τ) =

{

0 τ 6= τeff
∞ τ = τeff .

(2.10)

The derivation of these results can be found in Appendix A. Therefore, with the integral over
the function equal to one, in the limit as N → ∞ such that N/a0 = E0 the distribution is
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Figure 2.2. Delay distribution for different values of N with E = 15 for a constant and time-
varying rate a. (a) Delay distribution for different values of N with E = 15 for a constant rate coefficient
a. (b) Delay distribution for different values of N with E = 15 for a time-varying rate coefficient a(t) =
.5 a0 sin(ω t)+ a0 at time t = 0. (c) Distribution as a function of time with a(t) = a0 δp sin(ω t)+ a0, N = 100,
(N + 1)/a0 = 15, δp = .5, and ω = 2π/20. The dashed line indicates the nominal time-invariant distribution
with a(t) = a0.

approximated by a delta function centered at τeff (i.e. limN→∞ h(t, τ) ≈ δ(t− τeff(t))), which
is necessarily a function of a(t), and therefore time-varying. From the derivation we find that
this unique delay τeff(t) can be found by solving

∫ t

t−τeff

f(s)ds = E (2.11)

for τeff . Note that τeff(t) can be computed with only the expected delay E = N/a0 and
the time-varying function f(t). Also, since f(s) is positive definite, we can guarantee a single
solution τeff for every time t. The effective delay τeff is computed such that the integral remains
constant at E. Note that the area under the curve is zero for τeff = 0 and monotonically
increases with increasing τeff .

We now apply the method to investigate delays under periodically time-varying tempera-
tures. For a time-varying temperature

T = ∆T sin(ωt) + T0 (2.12)

we can rewrite the Arrhenius equation A(T ) = A0 e
−θ/T in the form

A(ǫ) = A0 exp

(

K

1 + ǫ sin(ω t)

)

, (2.13)
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where ǫ = ∆T
T0

is non-negative and K = −θ/T0. We assume ǫ ≪ 1 (i.e. ∆T ≪ T0) and in the
Taylor expansion we have

A(ǫ) ∼= A(0) +
A′(0)

1!
ǫ+ . . .

= A(0) −K sin(ω t) ǫ+ . . . (2.14)

= 1 +
θ

T0
ǫ sin(ωt) + . . . (2.15)

Here, A0 is chosen such that A(0) = 1, i.e. A0 = exp(θ/T0). Therefore for small ǫ we can
approximate the time-varying Arrhenius equation by

A(ǫ) ≈ 1 + δp sin(ωt), (2.16)

where δp = θ
T0

ǫ. The time-varying rate coefficient for the reaction rates implicit in the delay
are given by a(t) = a0 · A(t).

For a sinusoidally varying rate coefficient a(t) = a0 δp sin(ω t) + a0, using equation (2.11),
the effective delay reduces to solving

∫ t

t−τeff

[δp sin(ωs+ φ) + 1]ds = E, (2.17)

where E is the expected delay. In the limit analyzed, changes in the delay are determined
only from the expected delay without perturbation and the perturbation on the reaction rates.
Also note that in the extreme limits of the frequency, we have

τeff ≈
{

E for ω → ∞
E

δp sinφ+1 for ω → 0.
(2.18)

Taking the integral in equation (2.17), the solution can be shown to solve a function of the
form

τ = g(τ) (2.19)

where

g(τ) = E +
δp
ω

cos(ω t+ φ)− δp
ω

cos(ω t+ φ− ω τ). (2.20)

In this case the effective delay at each time t must be solved numerically. Figure 2.3 shows
the delay as a function of time for a periodically varying temperature. The solution is found
numerically for a discretized range of time. In Fig. 2.3 we consider the expected delay E = 13.5
min., which is what is chosen for τx.

We now consider the effects of changing parameters δp and ω on the time-varying delay.
Figure 2.4 shows analysis of the calculated time-varying delay as a function of various parame-
ters. Figure 2.4(a) shows an example of the time-varying function τeff(t). In Figure 2.4(b)-(d),
we look at how the mean and amplitude of the time-varying function τeff changes as we change
the expected delay E, the relative perturbation δp, and the frequency ω of the time-varying
rate function a(t). Most of the results are in line with intuition. For example the amplitude
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Figure 2.3. Amplitude of the delay changes with the period of the time-varying temperature.
Time-varying delays (green solid lines) corresponding to various time-varying temperature T (t) = ∆T sin(ωt)+
T0 (red dashed lines). Parameter values here are θ = 4500K, E = 13.5 min., ∆T = 6◦C, T0 = 36◦C, and
δp = .28. (a) ω = 2π
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of τeff(t) increases with an increase in the relative perturbation δp and decreases as the fre-
quency ω of a(t) increases. If the environmental conditions change too quickly, the system
does not effectively respond. An unexpected result is the non-monotonic behavior of the func-
tion τeff(t) as the mean delay changes. Figure 2.4(b), implies that τeff remains constant when
the mean delay is exactly equal to the period of a(t). With this observation we note that if
ω = 2πn/T for any positive integer n in equation (2.19),(2.20), then we always have the solu-
tion τeff(t) = T . This suggests that delays are minimally affected by sinusoidally time-varying
reaction rates when the mean delay is an integer multiple of the period. We see the the result
of this in Figure 2.4(c) as well.

It is apparent from Figure 2.4, that the dependence of τeff on the sinusoidally time-varying
temperature can be nonlinear. In this respect, we analyze the phase shift between the si-
nusoidally time-varying reaction rate a(t) and the resulting time-varying delay τeff(t). In
Figure 2.5(a)-(c), we look at how the phase shift changes as we change the mean delay E,
the relative perturbation δp, and the period of the time-varying rate function a(t). Before
calculating phase shift we account for the fact that the reaction rate and delay functions are
initially 180◦ out of phase because the delay decreases when the reaction rate a(t) increases.
Also, since τeff(t) is not a perfect sinusoid, we calculate phase shift based on the distance
between peaks. In general we find an increase in phase shift with an increase in mean delay
E, the relative perturbation δp, and the period of the time-varying rate function a(t). How-
ever, Figure 2.5(b)-(c) show an existence of discontinuities in the phase shift. There is a 180◦

phase jump when the mean delay equals the period. Recall, that the amplitude of τeff(t) be-
comes zero when delay is an integer multiple of the period. As the response τeff(t) crosses this
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Figure 2.4. Mean and peak-to-peak amplitude of τeff as a function of δp, E, and ω. (a) τeff as
a function of time with ω = π/15, φ = 0, E = 15, and δp = .5. (b) τeff as a function of the mean delay with
ω = π/15, φ = 0, and δp = .5. (c) τeff as a function of the frequency of a(t) with φ = 0, E = 15, and δp = .5.
(d) τeff as a function of the relative perturbation δp with ω = π/E, φ = 0, and E = 15.

critical point there is a 180◦ phase shift as the amplitude of the response becomes non-zero
again. Furthermore, the frequency of discontinuities increase on the log scale as a function of
frequency and mean delay. We show trends in a limited range of frequencies and mean delay
in Figure 2.5(b)-(c) to help highlight where the nonlinearities come from and demonstrate the
non-trivial behavior.
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3. Temperature Entrainment of a Dual-Feedback Oscillator. We now consider the en-
trainment properties of a temperature compensated dual-feedback oscillator presented by
Hussain et al. [16]. The oscillator, as depicted in Fig. 3.1, can be modeled as [16]:

1

A(T )
· dx
dt

=
αx

(

η +
y(t−τy)

Cy

)

(

1 +
y(t−τy)

Cy

)(

1 + x(t−τx)
Cx(T )

) − β x(t)− γx x(t)

R0 + x(t) + y(t)
(3.1)

1

A(T )
· dy
dt

=
αy

(

η +
y(t−τy)

Cy

)

(

1 +
y(t−τy)

Cy

)(

1 + x(t−τx)
Cx(T )

) − β y(t)− γy y(t)

R0 + x(t) + y(t)
, (3.2)

where x and y are the concentrations of the repressor (LacI) the activator (AraC); αx and αy

are the maximal transcription initiation rates for x and y, respectively; Cx and Cy are the
binding affinities of LacI and AraC to the promoter, respectively; β is the dilution rate due to
cellular growth; η is a measure of the strength of the positive feedback loop; R0, γx, and γy
are Michaelis-Menten constants for enzymatic decay of the proteins; τx an τy are temperature
dependent delay times for the production of LacI and AraC, respectively; and A(T ) is the
common Arrhenius scaling of all reaction rates. Additionally, the Arrhenius scaling term has
the form A(T ) = A0 e

−θ/T , where θ is the temperature scale. Note that increasing temperature
increases the scaling coefficient A(T ) and hence speeds up the dynamics of the system. In
Hussain et al. [16], the authors scale the delay by the Arrhenius constant when predicting
dynamics at varying temperatures (the temperatures are held constant for each assay). In
this case, we consider predictions under time-varying temperatures defined by equation (2.12).
We use the method derived in Section 2 to determine the resulting time-varying delay. The
binding affinity of LacI, Cx(T ) is a also a function of the temperature

Cx(T ) = (Cx,max −Cx,min)
(T/Tlac)

b

1 + (T/Tlac)b
+ Cx,min, (3.3)

and provides the mechanism for temperature compensation in the oscillator [16]. Cx,min and
Cx,max are the minimum and maximum biding affinities of LacI to its promoter. Tlac is the
temperature at which Cx(T ) is half-maximal and b is a Hill coefficient.

P
ara/LacI

araC

lacI

P
ara/LacI

Heat
Delayed 

Feedback

τx

τy

Figure 3.1. Schematic of the temperature compensating oscillator [16].

In Hussain et al. [16], the period of the oscillator is shown to remain largely unaffected
by changes in constant temperature due to a temperature sensitive LacI mutant, which is
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modeled by a temperature dependent binding affinity Cx(T ). In order to compare entrainment
properties to a system without such a temperature dependent mechanism, we consider a similar
model where the binding affinity Cx(T ) = Cx(T0) remains constant. In this case temperature
affects are introduced solely through an Arrhenius scaling and implicitly through the time-
varying delay. Given equation (2.16), we drive the system with a time-varying temperature
described by equation (2.12) with θ = 4500K and ∆T = 2◦C. Details of the simulations are
found in Appendix B. In Fig. 3.2(a) we fix the frequency at ω = 2π

50 rad/min and vary the mean
temperature T0 in order to verify the temperature compensating property achieved through
the temperature dependent LacI mutant. Without the temperature compensating mechanism
the frequency of oscillations changes linearly with the mean temperature but remains constant
with the LacI mutant. In Fig. 3.2(b) we fix the mean temperature at T0 = 36◦C and vary
the frequency ω to study frequency entrainment for the same system with and without the
temperature compensating mechanism. It is clear that the system entrains only under the
influence of the temperature sensitive promoter. A common Arrhenius scaling alone does not
allow for frequency or phase entrainment. The same mechanism that provides temperature
compensation (insensitivity to changes in mean temperature) also makes the system sensitive
to temperature dynamics, achieving entrainment. This is in agreement with circadian clocks
as well [4].
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Figure 3.2. Entrainment of the synthetic gene oscillator with and without a temperature sen-
sitive promoter. (a) Period of the circuit with and without temperature compensation for ω = 2π/50min−1,
∆T = 2◦C, and different mean temperatures T0 in Eq. (2.12). (b) Frequency entrainment of the circuit with
and without temperature compensation for ∆T = 2◦C and T0 = 36◦C.

4. Conclusion. It was found that periodic temperature fluctuations induce periodically
time-varying delays. The effects of a time-varying temperature on delays within a genetic
network can be highly nonlinear and so the delay cannot be simply scaled by an Arrhenius
coefficient in this case. With this, we investigated properties of a delay-based model of a
temperature sensitive oscillator. This oscillator has been shown to exhibit temperature com-
pensation, that is, the frequency of oscillation is insensitive to temperature variations. This
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was shown by analyzing the dynamics at different constant temperatures. Using the method
derived, we were able to simulate the system under a periodically time-varying temperature.
Simulations showed improved temperature compensating properties under the dynamically
varying temperatures, over constant temperatures. Simulations also predicted reliable tem-
perature entrainment. The frequency of protein expression coincided with that of the time-
varying temperature.

We focused on properties important in circadian oscillators, namely, temperature com-
pensation and temperature entrainment. Ideally, a circadian oscillator should demonstrate
properties of entrainment with insensitivity to changes in mean temperatures [8]. Here we
highlight a case where the entrainment is a byproduct of the same mechanism which makes
the system insensitive to changes in mean temperature. This is in agreement with Boden-
stein et al. [4], where temperature entrainment was shown to naturally follow from circadian
clock models tuned for temperature compensation through the Arrhenius coefficients. In the
oscillator of Hussain et al. [16], there is an inherent tradeoff between robustness to unwanted
temperature fluctuations about a mean and robustness to changes in mean temperatures,
with the latter admitting temperature entrainment. Here, an understanding of the effects of
temperature on delays eased the analysis of a delay-based model of a circuit with circadian
clock-like properties.

Future work includes investigation of circadian oscillators, which have an intricate relation-
ship with temperature. For instance, circadian oscillators exhibit temperature compensation
[2, 31], i.e. their periods do not vary with changes in the average temperature. Theorists
have investigated methods of temperature compensation in models of circadian oscillators,
often minimizing the effects of Arrhenius-scaled rate constants [8, 12, 14, 15, 33, 36]. Periodic
changes in temperature have also been implicated in the entrainment of circadian oscillators
to the day/night cycle [21, 29, 32, 37, 40]. However, entrainment of circadian oscillators is
most commonly associated with periodic changes in light, and mathematical models have been
developed explaining this phenomenon [7, 10, 11, 18, 19, 20, 22, 28, 38, 39]. Less is understood
about the role of temperature.
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Appendix A. Time-varying distribution limit. Here, we provide details on taking the limit
N → ∞ with the constraint N/a0 = E on the time-varying distribution

h(t, τ) = a(t− τ)
α(t, τ)N−1

(N − 1)!
e−α(t,τ). (A.1)

We will show that in the limit the distribution, while maintaining an integral equal to one (as
shown in the main text), becomes zero everywhere and infinity at a single point. In summary,
we find that there exists a unique delay τeff such that

lim
N→∞

h(t, τ) =

{

0 τ 6= τeff
∞ τ = τeff .

(A.2)

Applying Stirling’s formula for large N , namely

N ! ≈
√
2πN

(

N

e

)N

, (A.3)

to the distribution (A.1) gives

h(t, τ) = a(t− τ)
α(t, τ)N

N !
e−α(t,τ) (A.4)

≈ a(t− τ)√
2πN

(

eα(t, τ)

N

)N

e−α(t,τ), (A.5)

which asymptotically converges to equation (A.1) in the limit as N → ∞. Rearranging terms
in equation (A.5) and making use of the substitution a(t) = a0 f(t) gives

h(t, τ) ≈ a(t− τ)√
2πN

(

α(t, τ)

N
e1−α(t,τ)/N

)N

=
a0 f(t− τ)√

2πN

(

α(t, τ)

N
e1−α(t,τ)/N

)N

=

(

N

E0

)

f(t− τ)√
2πN

(

α(t, τ)

N
e1−α(t,τ)/N

)N

=
f(t− τ)

E0

√
2π

(

α(t, τ)

N
e1−α(t,τ)/N

)N

N
1
2 . (A.6)

We define

K(τ)
.
=

α(τ)

N
e1−α(τ)/N (A.7)

and investigate the limit of equation (A.6) for different ranges of K by looking at the term

(

α(t, τ)

N
e1−α(t,τ)/N

)N

N
1
2 = KNN

1
2 . (A.8)

Note that K remains constant with changing N under the constraint N/a0 = E. For ease of

analysis we ignore the coefficient f(t−τ)

E0

√
2π

in equation (A.6), which also does not change in the
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limit. We will show that in the limit N → ∞, equation (A.8) is zero everywhere and infinity
at a singular point for any time t.

Applying l’Hôptial’s rule for K < 1

lim
N→∞

N
1
2

1/KN
= lim

N→∞

1
2N

− 1
2

ln(1/K)/KN
= lim

N→∞

KN

2N1/2 ln(1/K)
= 0, (A.9)

and for K ≥ 1

lim
N→∞

N
1
2

1/KN
= ∞. (A.10)

It remains to show that K ≤ 1 for all τ . We would like to determine when K reaches its
maximum value. As a necessary condition for an extremum we must have

d

dτ
(K) =

d

dτ

(

α(t, τ)

N

)

e1−
α(t,τ)

N

(

1− α(t, τ)

N

)

= 0. (A.11)

Since the first two terms are always strictly positive, we find that an extremum occurs at τeff ,
where

1− α(t, τeff )

N
= 0. (A.12)

Plugging equation (A.12) back into equation (A.7),

K(τ) = 1 · e0 = 1 (A.13)

we find K = 1 at the extremum. It can be easily shown that

d2

d2τ
(K) > 0, (A.14)

therefore, the extremum is a maximum, hence, K ≤ 1 for all τ . We see that in the limit as
N → ∞, h(t, τ) is zero everywhere for all τ except for at τeff , where K(τ) = 1 and h(t, τ) = ∞.
Furthermore, since α(t, τ) is an injective function in τ , equation (A.12) has a single solution,
hence, τeff provides a global maximum at a given time t, which is the single non-zero solution.

Appendix B. Simulations of the dual-feedback oscillator. The oscillator modeled by

1

A(T )
· dx
dt

=
αx

(

η +
y(t−τy)

Cy

)

(

1 +
y(t−τy)

Cy

)(

1 + x(t−τx)
Cx(T )

)N
− β x(t)− γx x(t)

R0 + x(t) + y(t)
(B.1)

1

A(T )
· dy
dt

=
αy

(

η +
y(t−τy)

Cy

)

(

1 +
y(t−τy)

Cy

)(

1 + x(t−τx)
Cx(T )

)N
− β y(t)− γy y(t)

R0 + x(t) + y(t)
(B.2)

Cr(T ) = (Cr,max − Cr,min)
(T/Tlac)

b

1 + (T/Tlac)b
+ Cr,min. (B.3)
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Parameter Value

τx 13.5 min.
τy 15 min.
β .0275 min−1

γx 76 (mol./cell)min−1

γy 76 (mol./cell)min−1

R0 1.8 mol./cell
η .5 (unitless)
Cy 5 mol./cell
αx 265 (mol./cell)min−1

αy 92.75 (mol./cell)min−1

θ 4500 K
Cx,max 830 mol./cell
Cx,min 50 mol./cell
Tlac 36◦C
b 20 (unitless)
N 4

Table B.1

System parameter values.

This system is modeled using dde23 in Matlab with discretized delays. Using dde23, one
can specify the delayed states to be used in the delay differential equation. Using the method
derived in Section 2, we can determine the range of delays for which we need state information.
The range of delays is discretized into bins of width .05min so that state information is saved
for N ∈ Z different delays, where N = (τmax − τmin)/.05. The delay used in the simulation is
the mid-point of each bin. At each iteration, we calculate what the time-varying delay is at
that time using again the method in Section 2 and find the appropriate bin. The corresponding
delayed state is then fed into the delay differential equation, simulating the time-evolution of
the model above with a time-varying delay.
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