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ABSTRACT

Genome-wide association studies (GWAS) have identified thousands of variants
robustly associated with complex traits. However, the biological mechanisms underlying
these associations are, in general, not well understood. We propose a gene-based
association method called PrediXcan that directly tests the molecular mechanisms
through which genetic variation affects phenotype. The approach estimates the
component of gene expression determined by an individual's genetic profile and
correlates the “imputed” gene expression with the phenotype under investigation to
identify genes involved in the etiology of the phenotype. The genetically regulated gene
expression is estimated using whole-genome tissue-dependent prediction models
trained with reference transcriptome datasets. PrediXcan enjoys the benefits of gene-
based approaches such as reduced multiple testing burden, more comprehensive
annotation of gene function compared to that derived from single variants, and a
principled approach to the design of follow-up experiments while also integrating
knowledge of regulatory function. Since no actual expression data are used in the
analysis of GWAS data - only in silico expression - reverse causality problems are
largely avoided. PrediXcan harnesses reference transcriptome data for disease
mapping studies. Our results demonstrate that PrediXcan can detect known and novel
genes associated with disease traits and provide insights into the mechanism of these

associations.

INTRODUCTION
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Genome-wide association studies (GWAS) have been remarkably successful in
identifying susceptibility loci for complex diseases. These studies typically conduct
single-variant tests of association to interrogate the genome in an agnostic fashion and,
due to modest effect sizes, have come to rely on ever-greater sample sizes'? to make
meaningful inferences. We have been less successful in developing methods that
improve on existing simple approaches. In general, the genetic associations identified
as genome-wide significant thus far account for only a modest proportion of variance in
disease risk®. Indeed, there is now widespread recognition, if not consensus, that
GWAS of disease susceptibility (for which, the relevant genetic effects may be very
small) and pharmacologic traits (for which large effect sizes are not unusual)*° have
resulted in limited conclusive findings on the genetic factors contributing to complex
traits. Importantly, the functional significance of most discovered loci, including even
those that have been the most reproducibly associated, remains unclear. Assigning a
causal link to the nearest gene falls short of elucidating a functional connection, as
recently demonstrated by the obesity-associated variants within FTO that form long-
range functional connections with /RX3°. And while GWAS will no doubt continue to
identify many more susceptibility loci, the question of how to advance biological
knowledge of the underlying mechanisms of disease risk remains a paramount

challenge.

A large portion of phenotypic variability in disease risk for a broad spectrum of
disease phenotypes can be explained by regulatory variants, i.e. genetic variants that
regulate the expression levels of genes’'°. For example, almost 80% of the chip-based

heritability of disease risk for 11 diseases from the WTCCC can be explained by
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genome variation in DNase | hypersensitivity sites, which are likely to regulate

chromatin accessibility and thus transcription™".

Large genomic consortia (e.g., ENCODE'?) are generating an unprecedented
volume of data on the function of genetic variation. The Genotype-Tissue Expression
(GTEx") project is an NIH Common Fund project that aims to collect a comprehensive
set of tissues from 900 deceased donors (for a total of about 20,000 samples) and to
provide the scientific community a database of genetic associations with molecular traits
such as mRNA levels. (See GTEx main paper'* on Phase 1 data.) Other large-scale
transcriptome datasets include Genetic European Variation in Health and Disease'®
(GEUVADIS, 460 lymphoblastoid cell lines), Depression Genes and Networks (DGN,
922 whole blood samples)'®, and Braineac (130 individuals with multiple brain region
samples)'’. Yet, effective methods that harness these reference transcriptome datasets

for disease mapping are lacking.

Methodologically, gene-based approaches and multi-marker association tests
have been developed as alternatives to traditional single-variant tests. By conducting
tests of association on biologically informed aggregates of SNPs, such tests seek to
evaluate a priori functionally relevant units of the genome and, in many cases, reduce
the multiple-testing penalty that plague single-variant approaches, by 10 to 100 fold.
The incorporation of -omics data, such as those being generated by high-resolution
transcriptome studies, provides a means to extend genome-wide association studies by
addressing the functional gap. Technological advances in high-throughput methods
have reinforced the important finding that intermediate molecular phenotypes are under

significant genetic regulation, with expression quantitative trait loci (eQTLs) as the
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predominant example. However, approaches that fully leverage the comprehensive
regulatory knowledge generated by transcriptome studies are relatively lacking despite
the fact that these studies have the potential to dramatically improve our understanding

of the genetic basis of complex traits .

We hypothesized that a SNP aggregation approach that integrates information
on whether a SNP regulates the expression of a gene can greatly increase the power to
identify trait-associated loci either from a strong functional SNP signal or from a
combination of modest signals, the so-called grey area of GWAS. The present study
suggests that PrediXcan, a novel method that incorporates information on gene
regulation from a set of markers, increases the power to detect associations relative to
traditional SNP-based GWAS and known gene-based tests under a broad range of
genetic architectures and provides mechanistic insights and more easily interpreted

direction of effect into the observed associations.

RESULTS
PrediXcan method

PrediXcan, by design, exploits genetic control of phenotype through the
mechanism of gene regulation as a way to identify trait-associated genes. Figure 1 is a
schematic diagram of the regulatory mechanism that is tested with PrediXcan. An
individual's gene expression level (typically unobserved in a GWAS) is decomposed into
a genetically regulated expression (GReX) component, a component altered by the trait

itself (i.e., a reverse causal effect that may occur if disease status or other conditions
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alter expression levels), and the remaining component attributable to environmental and
other factors. PrediXcan tests the mediating effect of gene expression by quantifying the

association between GReX and the phenotype of interest.

We use reference transcriptome datasets from studies such as GTEx"?,
GEUVADIS™, and DGN'® among others, to train additive models of gene expression
levels. These models allow us to estimate the genetically regulated expression, GReX.
We denote the estimated value with a hat, GReX. These estimates constitute multiple-
SNP prediction of expression levels. The weights for the estimation are stored in our

publicly available database.

The analogy with genotype imputation is relevant here. Genotype imputation
uses information from a reference sample to learn how to impute genotypes at the
unmeasured SNPs in the test set. Similarly, PrediXcan uses a reference dataset in
which both genome variation and gene expression levels have been measured to
develop prediction models for gene expression. We use these prediction models to
“impute” gene expression (which is unobserved in a typical GWAS), and we do so by

estimating the genetically determined component, GReX.

PrediXcan application to a GWAS dataset consists of “imputing” the
transcriptome using the weights derived from reference transcriptome datasets and
correlating the GReX with the phenotype of interest using regression methods (e.g.,
linear, logistic, Cox) or non-parametric approaches (e.g., Spearman). (For the specific
results on disease phenotypes analyzed here, we used logistic regression with disease
status.) We are aware of the attenuation bias that arises because of the error in the

estimation of GReX. This is a subject to be investigated in the future, but this bias does
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not invalidate our analysis since we only use the estimate of GReX as a discovery tool.

Figure 2 summarizes the flow of the method development described above.
Features of PrediXcan

PrediXcan is, as we have emphasized, particularly focused on a mechanism — gene
expression regulation — that has already been established as being contributory to
common diseases, including psychiatric and neurodevelopmental disorders’. The test
has the potential to identify gene targets for therapeutic applications because it is

inherently mechanism-based and provides directionality.

Additional advantages include:

. Like other gene-based tests, it has much smaller multiple-testing burden (~20K
tests maximum, ~10K genes with high quality prediction in most tissues) compared
to single variant tests (~5-10M tests). Moving beyond the stringent Bonferroni

correction, priors on genes can be less restrictive than for SNPs.

. Informative priors and groupings of functional units (based on known pathways, for

example) are much more straightforward to construct for genes than SNPs.

. No actual transcriptome data are required since the predicted expression levels
are a function of genetic variation alone. Thus, the method can be applied to any
existing dataset with large-scale genome interrogation such as those in dbGaP or
other repositories. Re-analyses of existing datasets, with a focus on mechanism

using PrediXcan, address a gap that has largely characterized GWAS to date.

. Reverse causality is not a major concern since disease status or drug treatment

does not alter germline genomic variation.
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. Meta-analysis of gene-based results is simplified since less stringent

harmonization between studies is required.

. Multiple tissues can be evaluated using a reference transcriptome dataset (such as
GTEXx). In general, the only limitation is the availability of gene expression data in
the given tissue for model building, which need not be, from the same study as that
used for phenotype investigation. In cases where transcriptome data are available,

separate analyses should be performed to simplify interpretation.

. The approach can be applied to common or rare variants. In general, larger
sample sizes for the training set will be needed to achieve good prediction models
with rare variants.

Publicly available database of prediction models and software

We make the prediction models (derived from LASSO™® and elastic net'®) and the
software to predict the transcriptome (in a variety of tissues) (see Materials and

Methods) publicly available (see https://github.com/hakyimlab/PrediXcan).

Predicting the transcriptome

Prediction model selection

We built prediction models in the DGN whole blood cohort using LASSO, the
elastic net (a=0.5), and polygenic score at several p-value thresholds (single top SNP,
1e-04, 0.001, 0.01, 0.05, 0.5, 1). We assessed predictive performance using 10-fold
cross-validation (R? of estimated GReX vs. observed expression) as well as in an
independent set. We found that LASSO performed similarly to the elastic net and that

LASSO outperformed the polygenic score at all thresholds, although all methods are
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highly correlated (see Supplemental Figure 1). For subsequent analyses, we focused on
the prediction models using the elastic net because we found it to perform well and to
be more robust to slight changes in input SNPs (potentially due to variations in

imputation quality between cohorts).

Heritability estimation and comparison with prediction R®

We estimated the heritability of gene expression in DGN attributable to SNPs in
the vicinity of each gene using a mixed-effects model (see Materials and Methods) and
calculated variances using restricted maximum likelihood as implemented in GCTAZ.
We use only local SNPs since we found that heritability estimates using all genotyped

SNPs were too noisy to make meaningful inferences.

We use heritability estimates as our benchmark for the prediction R since this
constitutes the upper limit of our prediction performance. For genes for which an elastic
net model was available (n=10,427), the average heritability in DGN was 0.153. In
comparison, the average 10-fold cross-validated prediction R? for elastic net was quite
close at 0.137; for the polygenic score (P<1x10*) and top-SNP models, average
prediction R? values were sizably lower at 0.099 and 0.114, respectively. We show the
performance R? for each model in Figure 3, with the corresponding heritability estimate
and confidence interval in the background for comparison. We also note that elastic net
predictive performance reached or exceeded the lower bound of the heritability estimate
for 94% of genes, while polygenic score (P<1x10™) did so for just 76% of the genes and
the top SNP for 80% of the genes (Figure 3), consistent with the performance ranking

given by the average (across genes) R°.

Comparing imputed vs. directly genotyped SNPs as reference set for prediction model
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Predictive performance of elastic net was similar whether all SNPs from the 1000
Genomes imputation or the HapMap Phase Il subset were included in the model
building (Supplemental Figure 2). Models based on imputed data (both the 1000
Genomes and the HapMap subset) substantially outperformed models based on
genotyped SNPs in WTCCC (Supplemental Figure 2). Thus, we chose the elastic net
models built in the smaller HapMap SNP subset, relative to 1000 Genomes, in our
applications of PrediXcan to reduce computation time without sacrificing performance.
As reference transcriptome studies increase in sample size, we may need to switch to a
more dense imputation to take advantage of increased prediction performance from rare
variants.

Prediction performance in an independent test set

We also tested the prediction models trained in the DGN whole blood
cohort on several independent test cohorts with available whole-genome genotype and
transcriptome data. We used weights derived from the DGN whole blood data (“training
set”) to predict gene expression levels (treated as quantitative traits) in GEUVADIS
LCLs (lymphoblastoid cell lines) and nine GTEX pilot tissues (“test sets”). Figure 4
provides a Q-Q plot showing the expected (under the null, correlation between two
independent vectors with the same sample size) and observed R (between observed
and predicted) from the elastic net prediction in GEUVADIS LCLs. We find a substantial
departure from the null distribution indicating that the elastic net model trained in DGN
(equation 2 of Materials and Methods, with effect size estimates ;) captures a
significant proportion of the transcriptome variability. The average prediction R?is

0.0197 for GEUVADIS LCLs. For GTEXx tissues, the prediction R? values are 0.0367
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(adipose), 0.0358 (tibial artery), 0.0356 (left ventricular heart), 0.0359 (lung), 0.0269
(muscle), 0.0422 (tibial nerve), 0.0374 (sun exposed skin), 0.0398 (thyroid), and 0.0458
(whole blood). Interestingly, we also find a substantial departure from the null
distribution of expected R? values for predicted expression using DGN weights in each
of the nine GTEX tissues suggesting that models developed in whole blood are still
useful for understanding diseases that affect other primary tissues (Supplemental
Figure 3). Consistent with this, average prediction R is highest for whole blood as

expected but the loss in power for other tissues is modest.

Examples of well-performing genes

Figure 5 illustrates the genes with some of the highest correlations from this
analysis, providing a comparison of the predicted expression and the observed
expression. Among these genes, both ERAP2 and its paralog ERAP1 play fundamental

roles in MHC antigen presentation?!, immune activation and inflammation.

Marginal gain in performance when adding distant SNPs

We also generated prediction models trained in the DGN whole blood cohort that
included trans-eQTLs (>1Mb from gene start or end or on a different chromosome)
generated from linear regression (p<10~°). We tested the predictive performance of
these models in the GTEx whole blood cohort. While a few genes had higher
correlations between predicted and observed expression than expected by chance, the
departure from the null distribution was much smaller than that for the prediction models
based on local SNPs (Supplemental Figure 4), perhaps due to the low power to map
trans SNPs. Based on this result, in this paper we focus primarily on results based on

local SNPs.
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Application of PrediXcan to WTCCC

We applied PrediXcan to seven complex disease phenotypes from the WTCCC
study?®. For this purpose, we utilized the DGN whole blood elastic net prediction
models. We correlated the estimated genetically regulated gene expression for close to
8700 genes with disease status for each WTCCC dataset and identified 41 significant
associations (Bonferroni corrected p < 0.05) with five diseases (Table 1). Notably, we
identified 29 genes associated with type 1 diabetes (T1D) risk (Table 1 and Fig. 6), 8 of
which were outside of the extended MHC. Complete results for the remaining 6
diseases are shown in Supplemental Figures 5 and 6. Consistent with the original
GWAS of WTCCC diseases, our most significant results were for autoimmune

diseases®.

DCLRE1B and PTPN22

As has been previously reported for complex autoimmune diseases?®, we
observed genes that were associated with multiple autoimmune diseases, namely T1D,
Crohn’s disease (CD), and rheumatoid arthritis (RA). Interestingly, the top (genome-
wide significant) PrediXcan gene for both T1D and RA, DCLRE1B, has not been
previously implicated in either disease, but has been linked to CD, ulcerative colitis and
inflammatory bowel disease®. Lower predicted expression of DCLRE1B was associated
with increased disease risk for both RA and T1D. Interestingly, higher predicted
expression of DCLRE1B was nominally associated with increased Crohn’s disease risk
in our PrediXcan analysis (p = 0.001). Similarly, PTPN22 was significantly (positively)
associated with RA and T1D (table 1), and nominally (negatively) associated with CD

(p-value = 0.017). Previous single variant analyses implicated PTPN22 with multiple
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autoimmune diseases including RA, T1D, CD, myasthenia gravis, and vitiligo according
to the NHGRI catalog®. These results highlight the known overlap in genetic risk factors

for autoimmune diseases.

Prior evidence of significant genes

All genes in table 1, excluding PTPRE and KCNN4 (discussed below), have been
either previously reported with GWAS studies, or are located in the vicinity of reported
genes (within 1MB). For T1D, 5 out of the 29 genome-wide significant genes have been

reported via conventional single variant analyses (as curated by the NHGRI®®

repository
of GWAS results). Furthermore, 21 of the genes associated with T1D in our analysis lie
within the extended MHC (Table 1), a region that is known to be associated with
disease risk®®. Additionally, ERBB3, which contains SNPs previously associated with
T1D in GWAS?, showed a negative correlation with disease risk in PrediXcan (p < 10°
™), which is consistent with a prior study that showed risk genotypes associated with
lower expression of ERBB3in PBMCs?. Furthermore, it has been reported that
subjects with protective genotypes had higher percentages of ERBB3* monocytes and

dendritic cells leading to greater T cell proliferation®®. These results highlight one of the

key advantages of PrediXcan, which is to provide the direction of effect.

Enrichment of previously reported disease genes

The results described above highlight gene associations that attain genome-wide
significance. Additionally, we tested for enrichment of reported disease genes among
our PrediXcan results using less stringent significance thresholds. Reported genes were
derived from the comprehensive NHGRI catalog of disease-associated variants

identified using GWAS?. Five of the seven diseases (bipolar disorder (BD), coronary
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artery disease (CAD), CD, RA, T1D) had a significant enrichment of reported genes in
the PrediXcan results (Figure 6C, Supplemental Figure 7). Results for other p-value
thresholds were similar (results not shown). These enrichment analyses on the
PrediXcan findings suggest that among the genes that fail to meet strict genome-wide

significance, there are likely to be true disease associations.

Potentially novel findings

In addition to the results described above for autoimmune diseases, we identified
two potentially novel disease-associated genes. Lower predicted expression of KCNN4
was associated with an increased risk of hypertension (p-value = 2.62 x 10, Table 1)
and high predicted PTPRE expression was associated with increased risk of bipolar
disorder (p-value = 7.71 x 107, Table 1). Interestingly, an intronic SNP in PTPRE was
previously found to associate with response to the stimulant amphetamine®+=°. In
contrast to the original WTCCC single-variant analyses?, the PrediXcan analysis for

bipolar disorder and hypertension produced genome-wide significant results. Additional

studies of these genes are warranted.

Comparison to large single variant meta-analyses

Using publically available meta-analysis results, we summarized the single-
variant association results for SNPs that are included in the prediction models for the
top disease-associated PrediXcan genes. As expected, the genes associated with
autoimmune diseases (RA and CD) each contained multiple SNPs that are individually
associated with disease risk (Supplemental Table 1). Thus, the identified disease gene
associations are consistent with the single-variant meta-analysis results. Interestingly, in

many cases, we detect these associations with much smaller sample sizes.
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Furthermore, our gene-based results allow for more direct biological interpretation

compared to individual SNPs.

The PrediXcan associations for BD and HT have not been observed before using
traditional single-variant GWAS. The association between predicted expression of
PTPRE and BD is further supported by single variant meta-analysis results from the
Psychiatric Genetics Consortium (PGC)*'. Table 2 shows the meta-analysis p-values for
each SNP included in the predictor of PTPRE. While none of the SNPs is individually
genome-wide significant, 10 out of 23 are nominally associated with BD disease risk in
the PGC meta-analysis (p<0.05). Follow-up studies of this disease association are
necessary, but our analysis in combination with existing results suggests PTPRE may
be an excellent BD candidate gene. Furthermore, this result highlights the advantage of
our gene-based approach that combines information across SNPs, each of which many
only contribute nominally to disease risk and therefore remain below the detection limits

of single-variant analyses.

Comparison of gene-based tests

We applied PrediXcan and two widely-used gene-based tests (VEGAS and
SKAT) to WTCCC. In a Q-Q plot showing all three distributions of p-values, for genes
outside of the HLA region, from these gene-based tests (Figure 7), SKAT had improved
performance relative to VEGAS, and PrediXcan showed the most extreme departure

from the null at the tail end of the distribution.

Replication of PrediXcan findings
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To replicate our findings, we applied the DGN elastic net whole blood prediction
models to an independent rheumatoid arthritis GWAS from Vanderbilt University’s
BioVU repository (see Materials and Methods). Both genes (DCLRE1B and PTPN22)
that were found to be genome-wide significant in the WTCCC rheumatoid arthritis data
were also significant, with concordant direction of effect, in the replication samples (p =

0.012 and p = 0.036, respectively).

DISCUSSION

Gene expression, as an intermediate phenotype between genetic variation and
higher-level phenotypes, is an important mechanism underlying disease susceptibility
and drug response. Studies of the transcriptome in several tissues' have shown that

variation in gene expression is heritable®?>

and can be mapped to the genome.
Particularly, eQTL mapping provides an immediate view of the effects of genetic
variants on the phenotype closest to genetic variation, namely transcript abundance,
and thus promises to enable the discovery of the molecular mechanisms underlying
human phenotypic variation®*. Furthermore, transcriptome regulation studies facilitate
the consideration of thousands of gene expression phenotypes in parallel, thereby
enabling a comprehensive approach to understanding the genetic basis of complex
traits>. In this study, we developed a method that explicitly utilizes the wealth of

regulatory information derived from transcriptome regulation studies to map trait-

associated loci.

Traditional GWAS test single markers for association with phenotype. This

approach ignores a considerable amount of information contained in the genome,
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including functional information for the markers as well as the structure implied, for
example, by the physical contiguity of the loci. The SNPs that are considered in our
analyses are likely to regulate the expression of a gene as expression quantitative trait
loci, and PrediXcan uses their effect on gene expression to infer the genetically
regulated expression level in GWAS samples for which expression data are generally
not available. Moreover, the gene-based test we describe here takes into account the

potential tissue specificity of the regulatory SNPs.

Our PrediXcan method tests the mediating effects of gene expression levels by
quantifying the association between the genetically regulated levels of expression and
the phenotype of interest. To implement this, we developed prediction models of gene
expression using large-scale transcriptome study datasets (DGN, GEUVADIS, GTEX).
After extensive testing, we chose to use the elastic net model, which performed similarly
to LASSO, but substantially outperformed simple polygenic approaches. Manor and

Segal®

have published results on robust prediction of expression levels using K nearest
neighbor (KNN) and elastic net approaches. Based on their conclusion that a
combination of elastic net and KNN along with the use of genomic annotation such as
GC content can improve prediction performance, it is reasonable to hypothesize that the

incorporation of a more comprehensive functional annotation approach into the

PrediXcan framework can yield additional performance gain.

Application of the method to WTCCC data recapitulated many known loci but
also identified novel genome-wide significant genes. We believe that a systematic re-

analyses of GWAS datasets in comprehensive repositories such as dbGAP and the
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European Genome-phenome Archive (EGA) could provide a cost-effective approach to

uncovering novel disease mechanisms using only existing genomic resources.

In contrast to other gene-based tests, PrediXcan provides the direction of effect,
which may yield opportunities for therapeutic development. The development of
therapeutics that down-regulate a gene is generally easier to achieve than therapeutics
that up-regulate a gene; thus, genes with expression levels that are positively correlated
with disease risk may be more favorable drug targets for novel therapies. The direction
of effect may also provide information to elucidate pathways and the opportunity to
explore systems-based approaches to the development of disease. The prediction
models can be applied to genotype data of subjects in large biobanks to investigate
potential side-effects of drugs with specific gene targets. Finally, direction of effect can
be used to improve the interpretation of sequence analyses of genes showing
significant correlation of predicted expression with phenotype, since phenotypes
associated with reduced expression of genes are more likely to show a relative excess
of rare variants. Indeed, we believe that PrediXcan offers intriguing opportunities to
combine results of rare and common variant association tests within whole genome
sequencing studies, and more generally, to combine results of rare variant gene-based
tests from sequencing studies with results of PrediXcan gene-based tests from the large
body of existing GWAS for the same phenotypes. Thus, PrediXcan is a method
developed to integrate —omics data that can facilitate integration of results from

common and rare variant studies.
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Regarding the multiple testing correction approach, here we have used
Bonferroni correction using the total number of genes tested. In general, both single-
variant and PrediXcan analyses will be performed; thus the question that arises is how
to address the issue of multiple testing adjustment. The prior probability for a SNP to be
causal is much smaller than the prior probability of causality for a gene so it would not
be fair to subject SNP tests and gene-based tests to the same level of adjustment.
Since we are presenting only gene-based results in our application and given the highly
conservative nature of Bonferroni correction, there is no need to further adjust our
results. A more conservative approach would be to divide the significance threshold
used by a factor of two for the multiple testing using gene-based and SNP-based

approaches.

Given the large contribution of regulatory variants on complex traits®'%%

our
method is likely to identify causal genes. However, we do not claim causality since
SNPs that contribute to the expression of a gene can also act through other
mechanisms to determine the phenotype of interest. Replication and experimental

validations are needed to determine causality.

In conclusion, we presented a novel gene-based test, PrediXcan that
incorporates functional information with regard to gene regulation to identify genes
associated with disease traits in large GWAS or whole genome sequence datasets. Our
method has the advantage of providing biological insights into the mechanism, namely

regulation of gene expression, and direction of effect. This approach can be readily
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applied to existing GWAS datasets through the use of our publically available PredictDB
resource. We further show the utility of our approach by identifying and replicating a

number of novel candidate associations within the previously analyzed WTCCC dataset.
MATERIALS AND METHODS

Genomic and Transcriptomic Data

DGN RNA-Seq Dataset

We obtained whole blood RNA-Seq®® and genome-wide genotype data for 922
individuals from the Depression Genes and Networks cohort'®, all of European ancestry.
For our analyses, we used the HCP (hidden covariates with prior) normalized gene-level
expression data used for the trans-eQTL analysis in Battle et al."® and downloaded from
the NIMH repository. Approximately 650K SNPs (minor allele frequency [MAF] > 0.05,
Hardy-Weinberg Equilibrium [P > 0.05], non-ambiguous strand [no A/T or C/G SNPs])
comprised the input set of SNPs for imputation, which was performed on the University

of Michigan Imputation-Server (https://imputationserver.sph.umich.edu/start.html)>*4°

with the following parameters: 1000G Phase 1 v3 Shapelt2 (no singletons) reference
panel, SHAPEIT phasing, and EUR population. Non-ambiguous strand SNPs with MAF
> 0.05, imputation R°> 0.8 were retained for subsequent analysis. To reduce
computational burden in the application to WTCCC, we used models developed on the

HapMap Phase |l subset of SNPs.
GEUVADIS RNA-Seq Dataset

We obtained freely available RNA-Seq data from 421 lymphoblastoid cell lines

(LCLs) generated by the GEUVADIS consortium' and genotype data generated by the
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1000 Genomes project (http://www.geuvadis.org/web/geuvadis/RNAseqg-project). We

used GEUVADIS as a validation dataset to test the gene prediction models generated in

the DGN cohort.
GTEx RNA-Seq Datasets

We used the nine tissues with the largest sample size in the Genotype-Tissue
Expression (GTEx) Pilot Project' to test the gene prediction models generated in the
DGN cohort. Tissue samples included subcutaneous adipose (n=115), tibial artery
(n=122), left ventricle heart (n=88), lung (n=126), skeletal muscle (n=143), tibial nerve
(n=98), skin from the sun-exposed portion of the lower leg (n=114), thyroid (n=112), and
whole blood (n=162). In each tissue, normalized gene expression was adjusted for
gender, the top 3 principal components (derived from genotype data), and the top 15
PEER factors (to quantify batch effects and experimental confounders)*'. We used
GTEX to test the portability of predictors developed in whole blood (from the DGN

cohort) across a wide variety of tissues.
Additive model for gene expression traits
We use an additive genetic model to characterize gene expression traits:
Yy = ZpWeg Xk +e (1)
where Y, is the expression trait of gene g, wig is the effect size of marker k for gene g,
X is the number of reference alleles of marker k, and e is the contribution of other
factors that determine the expression trait assumed to be independent of the genetic

component. We note that the summation in model (1) is the genetically determined

component of gene expression (i.e., GReX).
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Effect sizes (wig) in model (1) can be estimated using multiple approaches. In
this paper we compare penalized approaches such as LASSO (Least Absolute

t19

Shrinkage and Selection Operator)'® and the elastic net'” as well as the more naive

simple polygenic score estimates. However, other statistical machine learning

t43

approaches*?, such as Random Forest*> or OmicKriging**, can be used within the

PrediXcan framework to develop prediction models.

The heritability of gene expression defines an upper bound to how well we can
predict the trait. We estimated the narrow-sense heritability for each gene using a
variance component model with a genetic relationship matrix (GRM) estimated from
genotype data, as implemented in GCTA?. No pair of subjects from the 922 individuals
in DGN shared genetic relatedness (77) in excess of 5% and thus all were included in the
narrow-sense heritability estimation. SNPs in the vicinity of each gene (within 1Mb of
gene start or end, as defined by the GENCODE®* version 12 gene annotation), with
MAF > 0.05, and in Hardy-Weinberg Equilibrium (P > 0.05) were used to construct the
GRM for each gene. We calculated the proportion of the variance of gene expression

explained by these local SNPs using the following mixed-effects model®’:
Y=Xb+ Glocal +e
var(Y) = Alocalalzocal + 10'3

where Y is a gene expression trait and b a vector of fixed effects. Here 4,,.,,; is the GRM
calculated from the local SNPs, and (the random effect) G,,.,; denotes the genetic effect
attributable to the set of local SNPs with var (G,oca1) = Aiocai0heqr- IN this paper we focus

on the component of heritability driven by SNPs in the vicinity of each gene since the
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component based on distal SNPs could not be estimated with enough accuracy to make

meaningful inferences.
Estimation of the genetic component of gene expression levels (GReX)

In the simple polygenic score approach, we estimate wy as the single-variant
coefficient derived from regressing the gene expression trait Y on variant Xx (as
implemented in the eQTL analysis software Matrix eQTL*®) using the reference
transcriptome data. This yields an estimate, GReX, for a GWAS study sample, of the

(unobserved) genetically determined expression of each gene g:
GReX; = Y Wy g X (2)

In this implementation of polygenic score, we include all SNPs (regardless of
linkage disequilibrium [LD]) that are associated with the expression level of the gene at

a chosen p-value threshold in the prediction model.

In contrast, LASSO uses an L1 penalty as a variable selection method to select a
sparse set of (uncorrelated) predictors'® while the elastic net linearly combines the L1

and L2 penalties of LASSO and ridge regression respectively to perform variable

selection'®. We used the R package gimnet to implement LASSO and elastic net with

a=0.5 (http://www.jstatsoft.org/v33/i01).

For each gene, LASSO, the elastic net and the simple polygenic score were used

to provide an estimate of GReX (using equation 2, with the effect size estimates w4,

Wiy and w3, respectively). We included only local SNPs (within 1Mb of the gene start

or end). In order to determine the optimal modeling method, we compared the 10-fold
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cross-validated prediction R? (the square of the correlation between predicted and
observed expression) for the simple polygenic score (GReXp) at several p-value
thresholds (single top SNP, 1x10™, 0.001, 0.01, 0.05, 0.5, 1) with that from LASSO

(GReX 4550) and elastic net (GReXgy).

We also compared the 10-fold cross-validated prediction R from elastic net
models with different starting SNP sets from the DGN genotype imputation (4.6M 1000
Genomes Project SNPs (MAF>0.05, R*>0.8, non-ambiguous strand), the 1.9M of these
SNPs that are also in HapMap Phase Il, and the 300K of these SNPs that were

genotyped in the WTCCC).

Performance of transcriptome prediction in independent cohorts

We tested the feasibility of predicting the transcriptome (i.e., estimating the
genetic component of each gene expression trait, GReX, in an independent test
transcriptome dataset) using the elastic net effect sizes trained in the DGN whole blood
data (n=922). For the test sets, we used independent RNA-Seq datasets from 421 LCL
cell lines from the 1000 Genomes project generated by the GEUVADIS consortium'
and the nine tissues from the GTEx pilot project'® (see Supplemental Figure 3). To
assess performance, we used the square of the Pearson correlation, R?, between

predicted and observed expression levels.
PrediXcan in the WTCCC GWAS Datasets

To illustrate the method, we applied gene prediction models (derived from whole

blood) consisting of DGN elastic net predictors to the seven WTCCC disease studies --
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bipolar disorder (BD), coronary artery disease (CAD), hypertension (HT), type 1
diabetes (T1D), type 2 diabetes (T2D), Crohn’s disease (CD), and rheumatoid arthritis
(RA)Y*2. Genotypes imputed to the 1000G reference sets were used. Imputation was
done using the University of Michigan Imputation-Server and the same parameters as
described for the imputation of DGN data. For each disease, cases and controls (1958
Birth Cohort and the UK Blood Service Cohort) were jointly imputed to avoid subtle
differences between cases and controls not attributable to disease risk. We excluded all
SNPs with an imputation R° < 0.8 and for computational speed we kept only the

HapMap Phase |l subset of SNPs.

For each WTCCC disease, we estimated GReX.y, and tested it for association
with disease risk using logistic regression in R (R-project.org). We restricted our
PrediXcan analysis to include genes with a cross-validated prediction /2> 0.01 (10%
correlation) in the DGN sample. Because the WTCCC studies use shared controls,
pleiotropy analyses using these datasets would not be straightforward, and comparison

of results across diseases was avoided.
GWAS Enrichment analysis

Relative to recent association studies, the WTCCC has a small sample size
(~2,000 cases and ~3,000 controls per disease). Thus, even with our novel method and
a reduced multiple testing burden, our ability to detect numerous novel gene
associations may be limited. Alternatively, we tested each disease for an enrichment of
known disease genes identified from the NHGRI GWAS Catalog®. For each disease,
we used the reported genes from the GWAS catalog as the set of known disease

genes. We excluded studies listed in the NHGRI GWAS catalog that included the
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WTCCC samples in order to make sure our known gene lists were independent from
the current analysis. We then counted the number of known disease genes that had a
PrediXcan p-value below a given threshold. We compared this to the null expectation
based on 10,000 randomly drawn gene sets of similar size to the known disease gene
set to derive an enrichment p-value. We tested enrichment using PrediXcan p-value

thresholds of 0.05 and 0.01.
Comparison to large single variant meta-analyses

For the top PrediXcan results in the WTCCC, we cross-referenced the SNPs in
the prediction models for these genes with the publically available single-SNP meta-
analysis summary results. We excluded T1D from this analysis because, to our
knowledge, there are no publically available meta-analysis studies of this disease. We
used meta-analyses results for systolic and diastolic blood pressure as a proxy for
hypertension. For CD, RA, and BD we were able to use meta-analyses for the same
diseases (CD*': http://www.ibdgenetics.org/downloads.html, RA*, and BD*":

http://www.med.unc.edu/pgc/downloads).
Comparison of gene-based tests (PrediXcan, SKAT, VEGAS)

We compared the results derived from PrediXcan with those from two widely-
used gene-based tests, namely VEGAS*® and SKAT*®®*'. VEGAS aggregates
information from the full set of SNPs within a gene and accounts for LD using
simulations from the multivariate normal distribution. SKAT is a kernel-based
association test that evaluates the regression coefficients of the SNPs within a gene by
a variance component score test in a mixed model framework. We generated BED-

formatted files for SNPs and genes (as defined by GENCODE v12) and mapped SNPs
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that met post-imputation QC parameters to gene regions using bedtools. The use of an
offline Perl implementation for VEGAS allowed us to examine the dependence of the
results from this approach on LD information through the use of the actual genotype
data (versus the default HapMap CEU reference panel data). We developed an R-
based pipeline that invokes the SKAT package (version 1.0.1) that is publicly available
from CRAN. We generated a Q-Q plot showing the distribution of gene-level p-values
for association with RA (for genes outside the HLA region) derived from each gene-
based test to test for systematic departure from the null expectation (of uniform p-

values).
Replication of PrediXcan findings

We selected individuals from Vanderbilt University’s BioVU repository with a
diagnosis of rheumatoid arthritis*® using a previously validated algorithm for
identification of RA cases with a reported positive predictive value of 0.94 and sensitivity
of 0.87, as previously described®?. This trained machine learning classifier was applied
to records with at least one International Classification of Diseases, 9th edition code for
rheumatoid arthritis to identify true RA cases. RA positive individuals identified by this
algorithm were genotyped on two platforms: 833 using the lllumina OmniExpress +
Exome chip and 1408 using the lllumina Omni 2.5 BeadChip. A total of 2650 samples
from the lllumina Genotype Control set genotyped on lllumina HumanMap550v1/v3
were used for controls. We used the following QC thresholds: sample call rate > 0.98,
SNP call rate > 0.99, MAF > 0.05, HWE p-value > 107. Imputation was performed using
IMPUTEZ2 with the 1000 Genomes phase 1 v3 European samples as the reference

panel, phasing was done with SHAPEIT, and SNPs with imputation quality score
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(“INFO”) > 0.50 were retained. To replicate the PrediXcan RA findings that meet
genome-wide significance, we utilized the DGN whole blood elastic net prediction
models (as we had done in the discovery WTCCC data). We estimated the genetically
regulated gene expression level GReX;y in the replication samples and performed

logistic regression with disease status.
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FIGURE LEGENDS

Figure 1. Mechanism tested by the PrediXcan method. This figure shows the
conceptual decomposition of the expression level of a gene into three components:
genetically determined component, a component altered by the trait itself, and the
remaining factors (including environment). PrediXcan estimates the genetically
regulated component of expression (GReX) and correlates it with the trait to identify trait-
associated genes.

Figure 2. PrediXcan framework. The workflow illustrates the steps used in developing
the PrediXcan method. The top panel shows the data used from the reference
transcriptome studies: genotype and expression levels (GTEx, GEUVADIS, DGN, etc).
The sample size of the study is denoted by n, mis the number of genes considered, M
is the total number of SNPs, and p is the number of available tissues. The second panel
shows the additive model used to build a database of prediction models, PredictDB. T
represents the expression trait, and Xx is the number of reference alleles for SNP k. The
coefficients of the models for each tissue are fitted using the reference transcriptome
datasets and optimal statistical learning methods chosen among LASSO, Elastic Net,
OmicKriging, etc. The bottom panel shows the application of PrediXcan to a GWAS
dataset. Using genetic variation data from the GWAS and weights in PredictDB, we
“impute” expression levels for the whole transcriptome. These imputed levels are
correlated with the trait using regression (e.g., linear, logistic, Cox) or non-parametric
(Spearman) approaches. (For the disease phenotypes in the WTCCC datasets and the
replication dataset reported here, we used logistic regression with disease status.)

Figure 3. Cross-validated prediction performance vs heritability. This figure shows
the prediction performance (R2 of GReX vs. observed expression in red) compared to
gene expression heritability estimates (black with 95% confidence interval in gray).
Performance was assessed using 10-fold cross-validation in the DGN whole blood
cohort (n=922) with the elastic net, polygenic score (p < 1e-04), and using the top SNP
for prediction.

Figure 4. Prediction performance of elastic net tested on a separate cohort. Using
whole blood prediction models trained in DGN, we compared predicted levels of
expression with observed levels on lymphoblastoid cell lines from the 1000 Genomes
project. RNA-sequenced data (n=421) on these cell lines have been made publicly
available by the GEUVADIS consortium. Left panel shows the squared correlation, R?,
between predicted and observed levels plotted against the null distribution of R?. Right
panel shows prediction performance (R? of GReX vs. observed expression in green)
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compared to GEUVADIS gene expression heritability (h?) estimates (black with 95%
confidence interval in gray).

Figure 5. Examples of well-predicted genes. These plots show observed vs.
predicted levels of 4 genes. Predicted levels were computed using whole blood elastic
net prediction models trained in DGN data. Observed levels were RNA-seq data in
lymphoblastoid cell lines generated by the GEUVADIS consortium.

Figure 6. PrediXcan results for type 1 diabetes. Complete results for our analysis of
type 1 diabetes from the WTCCC using gene expression predicted with the DGN whole
blood predictors. Panel (a) shows association p-values based on gene position across
the genome. Panel (b) shows the same results plotted against the null expectation in a
g-q plot. The red line in panel (b) shows the null expected distribution of p-values. In
panels (a) and (b), the blue line represents the bonferroni corrected genome-wide
significance threshold. The top 3 genes are labeled. Panel ( c) shows the results of our
GWAS enrichment analysis. The histogram shows the expected number of genes with a
p-value < 0.01 based on 10,000 random permutations. The large point shows the
observed number of previously known T1D genes that fall below this threshold.

Figure 7. Comparison of gene-based methods. Q-Q plot showing distribution of p-
values derived from each method (VEGAS, SKAT, and PrediXcan) for genes outside of
the HLA region for Rheumatoid Arthritis.

TABLE LEGENDS

Table 1. Top PrediXcan results for WTCCC using DGN whole blood prediction
models. PrediXcan results for bonferroni significant gene associations. To account for
multiple testing, we used a significance threshold of 5.76x10° for all diseases.
Chromosome and gene start position are based on GENCODE version 12. The cross
validated prediction R? between predicted and observed gene expression is based on
10-fold cross validation within the DGN whole blood sample.

Table 2. Association between PTPRE predictor SNPs and bipolar disorder. The 24
SNPs listed below are included in the DGN whole blood prediction model for PTPRE.
The association p-values for these SNPs in the WTCCC data and the PGC Bipolar
disorder meta-analysis are shown.
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Supplemental Figure 1. Comparison of 10-fold cross-validated predictive performance

between all tested methods (LASSO, elastic net with a=0.5, top SNP, polygenic score at
several p-value thresholds) in the DGN whole blood cohort. Predictive performance was
measured by the R? between predicted (GReX) and observed expression.

Supplemental Figure 2. Comparison of 10-fold cross-validated predictive performance
of elastic net in different starting SNP sets (4.6M 1000 Genomes Project (TGP) SNPs,
1.9 M HapMap Phase Il SNPs, 300K WTCCC genotyped SNPs) in the DGN whole
blood cohort. Predictive performance was measured by the R? between predicted
(GReX) and observed expression.

Supplemental Figure 3. Prediction performance of elastic net in GTEX tissues.
Using whole blood prediction models trained in DGN, we compared predicted levels of
expression with observed levels from nine tissues of the GTEX pilot project. The
observed squared correlation between predicted and observed gene expression levels,
R?, is plotted against the null distribution of RZ.

Supplemental Figure 4. Comparison of prediction performance between local-
and distal- based prediction models. Using whole blood prediction models trained in
DGN, we compared predicted levels of expression with observed levels in GTEx whole
blood. Local predictors were generated using elastic net on SNPs within 1Mb of each
gene and distal predictors include any trans-eQTLs outside this region with a linear
regression p<10™°. The observed (y-axis) squared correlation between predicted and
observed gene expression levels, R?, is plotted against the null distribution of R?(x-axis).

Supplemental Figure 5. PrediXcan results in WTCCC. Q-Q plot of the association p-
values from the PrediXcan analysis of 6 remaining WTCCC diseases using expression
levels imputed from the DGN whole blood. The red line in each panel shows the null
expected distribution of p-values and the blue line represents the bonferroni corrected
genome-wide significance threshold. For each disease, the top 3 genes that exceed the
bonferroni significance threshold are labeled. The diseases shown are (a) rheumatoid
arthritis, (b) Crohn’s disease, (c) bipolar disorder, (d) coronary artery disease, (e)
hypertension, and (f) type 2 diabetes.

Supplemental Figure 6. PrediXcan results in WTCCC. Plot of the association p-
values based on genomic position from the PrediXcan analysis of 6 remaining WTCCC
diseases using expression levels imputed from the DGN whole blood. The blue line in
each panel represents the bonferroni corrected genome-wide significance threshold.
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For each disease, the top 3 genes that exceed the bonferroni significance threshold are
labeled. The diseases shown are (a) rheumatoid arthritis, (b) Crohn’s disease, (c)
bipolar disorder, (d) coronary artery disease, (e) hypertension, and (f) type 2 diabetes.

Supplemental Figure 7. Enrichment of known disease genes. Each plot shows the
null expected distribution for the number of genes expected to fall below a p-value
threshold of 0.01. The null distribution was derived via 10,000 random permutations.
The large point on the horizontal axis of each plot shows the observed number of
previously known disease genes that fall below the p-value threshold. The diseases
shown are (a) rheumatoid arthritis, (b) Crohn’s disease, (c) bipolar disorder, (d)
coronary artery disease, (e) hypertension, and (f) type 2 diabetes.

Supplemental Table 1. Meta-Analysis p-values for SNPs in predictors of top
PrediXcan results. For each of the genes that reached genome-wide significance in
our analysis, we looked up the meta-analysis p-values for the SNPs that are included in
each of the DNG whole blood predictors. For comparison, we also include the p-value
from the single variant analysis of the WTCCC only data.
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T1D ERBB3 G 12 56,473,641 -6.81 1.01E-11 9 0.2206
T1D EGFL8 H 6 32,132,360 6.33 2.52E-10 36 0.0558
T1D Céorfl36 H 6 30,614,816 -6.33 2.52E-10 15 0.0137
T1D HCG27 H 6 31,165,537 -6.33 2.52E-10 81 0.3721
T1D GTF2H4 H 6 30,875,961 6.33 2.52E-10 69 0.0982
T1D DDR1 H 6 30,844,198 6.33 2.52E-10 48 0.1427
T1D AGER H 6 32,148,745 -6.33 2.52E-10 39 0.0502
T1D POUS5F1 H 6 31,130,253 6.33 2.52E-10 45 0.2874
T1D ATP6V1G2 H 6 31,512,239 6.33 2.52E-10 95 0.2543
T1D TUBB H 6 30,687,978 6.33 2.52E-10 56 0.0295
T1D AIF1 H 6 31,582,961 6.33 2.52E-10 34 0.0390
T1D CYP21A2 H 6 32,006,042 -6.33 2.52E-10 80 0.2290
T1D LSM2 H 6 31,765,173 6.33 2.52E-10 31 0.0317
T1D VARS?2 H 6 30,876,019 6.33 2.52E-10 87 0.3628
T1D APOM H 6 31,620,193 -6.33 2.52E-10 58 0.0699
T1D DDAH2 H 6 31,694,815 -6.33 2.52E-10 32 0.1943
T1D NCR3 H 6 31,556,672 -6.33 2.52E-10 79 0.2548
T1D ZSCAN16 M 6 28,092,338 6.16 7.37E-10 34 0.0291
T1D ZKSCAN4 M 6 28,212,401 6.15 7.73E-10 17 0.0991
T1D PTPN22 G 1 114,356,433 5.83 5.41E-09 32 0.0795
T1D RPS26 G* 12 56,435,637 5.82 6.00E-09 23 0.0719
T1D GDF11 \% 12 56,137,064 -5.75 9.11E-09 39 0.0341
T1D SUOX G* 12 56,390,964 -5.47 4.49E-08 50 0.1339
T1D BTN3A2 M 6 26,365,387 -5.11 3.30E-07 49 0.7662
T1D PRSS16 M 6 27,215,480 4.83 1.34E-06 31 0.1639
T1D FAM109A \% 12 111,798,339 -4.76 1.94E-06 17 0.0665
T1D SH2B3 G 12 111,843,752 4.67 3.05E-06 26 0.0368

Evidence: H= HLA-region genes on chromosome 6p21; M=extended Major Histocompatibility Complex;
G=Genes previously reported to be associated with disease risk in the NHGRI GWAS catalog excluding studies
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with WTCCC samples; G#= reported in studies including WTCCC samples; V= in vicinity of genes of reported
gene (1MB).
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SNP Gene Meta Analysis P-value®* WTCCC GWAS P-value

rs10764743 PTPRE 9.89E-05 6.947E-08
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rs4353188 PTPRE 0.003062 0.00006297
rs4568912 PTPRE 0.01409 0.009569
rs6911 PTPRE 0.01929 0.01019
rs3186827 PTPRE 0.02187 0.009356
rs4237449 PTPRE 0.02238 0.009648
rs4548544 PTPRE 0.02276 0.009541
rs1127299 PTPRE 0.02422 0.009205
rs10764815 PTPRE 0.0998 0.5328
rs11018116 PTPRE 0.1343 0.1607
rs1273180 PTPRE 0.1941 0.08975
rs2799399 PTPRE 0.2097 0.07739
rs1255136 PTPRE 0.4116 0.09816
rs10764806 PTPRE 0.5628 0.4339
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rs7916444 PTPRE 0.7856 0.5639
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rs2766034 PTPRE 0.9328 0.8095
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