Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Post-transcriptional regulation across human tissues

Alexander Franks, Edoardo Airoldi, View ORCID ProfileNikolai Slavov
doi: https://doi.org/10.1101/020206
Alexander Franks
1Department of Statistics, University of Washington, Seattle, WA 98195, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Edoardo Airoldi
2Department of Statistics, Harvard University, Cambridge, MA 02138, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nikolai Slavov
3Departments of Bioengineering and Biology, Northeastern University, Boston, MA 02115, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Nikolai Slavov
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Transcriptional and post-transcriptional regulation shape tissue-type-specific proteomes, but their relative contributions remain contested. Estimates of the factors determining protein levels in human tissues do not distinguish between (i) the factors determining the variability between the abundances of different proteins, i.e., mean-level-variability and, (ii) the factors determining the physiological variability of the same protein across different tissue types, i.e., across-tissues variability. We sought to estimate the contribution of transcript levels to these two orthogonal sources of variability, and found that scaled mRNA levels can account for most of the mean-level-variability but not necessarily for across-tissues variability. The reliable quantification of the latter estimate is limited by substantial measurement noise. However, protein-to-mRNA ratios exhibit substantial across-tissues variability that is functionally concerted and reproducible across different datasets, suggesting extensive post-transcriptional regulation. These results caution against estimating protein fold-changes from mRNA fold-changes between different cell-types, and highlight the contribution of post-transcriptional regulation to shaping tissue-type-specific proteomes.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted March 27, 2017.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Post-transcriptional regulation across human tissues
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Post-transcriptional regulation across human tissues
Alexander Franks, Edoardo Airoldi, Nikolai Slavov
bioRxiv 020206; doi: https://doi.org/10.1101/020206
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Post-transcriptional regulation across human tissues
Alexander Franks, Edoardo Airoldi, Nikolai Slavov
bioRxiv 020206; doi: https://doi.org/10.1101/020206

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Systems Biology
  • Genomics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4235)
  • Biochemistry (9136)
  • Bioengineering (6784)
  • Bioinformatics (24001)
  • Biophysics (12129)
  • Cancer Biology (9534)
  • Cell Biology (13778)
  • Clinical Trials (138)
  • Developmental Biology (7636)
  • Ecology (11702)
  • Epidemiology (2066)
  • Evolutionary Biology (15513)
  • Genetics (10644)
  • Genomics (14326)
  • Immunology (9483)
  • Microbiology (22840)
  • Molecular Biology (9090)
  • Neuroscience (48995)
  • Paleontology (355)
  • Pathology (1482)
  • Pharmacology and Toxicology (2570)
  • Physiology (3846)
  • Plant Biology (8331)
  • Scientific Communication and Education (1471)
  • Synthetic Biology (2296)
  • Systems Biology (6192)
  • Zoology (1301)