Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

MERS-CoV recombination: implications about the reservoir and potential for adaptation

Gytis Dudas, Andrew Rambaut
doi: https://doi.org/10.1101/020834
Gytis Dudas
1Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrew Rambaut
1Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
2Centre for Immunology, Infection and Evolution at the University of Edinburgh, Edinburgh, UK
3Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Recombination is a process that unlinks neighbouring loci allowing for independent evolutionary trajectories within genomes of many organisms. If not properly accounted for, recombination can compromise many evolutionary analyses. In addition, when dealing with organisms that are not obligately sexually reproducing, recombination gives insight into the rate at which distinct genetic lineages come into contact. Since June, 2012, Middle East respiratory syndrome coronavirus (MERS-CoV) has caused 1106 laboratory-confirmed infections, with 421 MERS-CoV associated deaths as of April 16, 2015. Although bats are considered as the likely ultimate source of zoonotic betacoronaviruses, dromedary camels have been consistently implicated as the source of current human infections in the Middle East. In this paper we use phylogenetic methods and simulations to show that MERS-CoV genome has likely undergone numerous recombinations recently. Recombination in MERS-CoV implies frequent co-infection with distinct lineages of MERS-CoV, probably in camels given the current understanding of MERS-CoV epidemiology.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted June 12, 2015.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
MERS-CoV recombination: implications about the reservoir and potential for adaptation
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
MERS-CoV recombination: implications about the reservoir and potential for adaptation
Gytis Dudas, Andrew Rambaut
bioRxiv 020834; doi: https://doi.org/10.1101/020834
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
MERS-CoV recombination: implications about the reservoir and potential for adaptation
Gytis Dudas, Andrew Rambaut
bioRxiv 020834; doi: https://doi.org/10.1101/020834

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (3686)
  • Biochemistry (7766)
  • Bioengineering (5666)
  • Bioinformatics (21234)
  • Biophysics (10552)
  • Cancer Biology (8157)
  • Cell Biology (11902)
  • Clinical Trials (138)
  • Developmental Biology (6736)
  • Ecology (10387)
  • Epidemiology (2065)
  • Evolutionary Biology (13838)
  • Genetics (9693)
  • Genomics (13054)
  • Immunology (8120)
  • Microbiology (19932)
  • Molecular Biology (7824)
  • Neuroscience (42955)
  • Paleontology (318)
  • Pathology (1276)
  • Pharmacology and Toxicology (2256)
  • Physiology (3350)
  • Plant Biology (7207)
  • Scientific Communication and Education (1309)
  • Synthetic Biology (1998)
  • Systems Biology (5528)
  • Zoology (1126)