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ABSTRACT Some diseases are caused by genetic loci with a high rate of change, and heritability in complex traits is
likely to be partially caused by variation at these loci. These hypermutable elements, such as tandem repeats, change
at rates that are orders of magnitude higher than the rates at which most single nucleotides mutate. However, single
nucleotide polymorphisms, or SNPs, are currently the primary focus of genetic studies of human disease. Here we
quantify the degree to which SNPs are correlated with hypermutable loci, examining a range of mutation rates that
correspond to mutation rates at tandem repeat loci. We use established population genetics theory to relate mutation
rates to recombination rates and compare the theoretical predictions to simulations. Both simulations and theory agree
that, at the highest mutation rates, almost all correlation is lost between a hypermutable locus and surrounding SNPs.
The theoretical predictions break down for middle to low mutation rates, differing widely from the simulated results. The
simulation results suggest that some correlation remains between SNPs and hypermutable loci when mutation rates are
on the lower end of the mutation spectrum. Consequently, in some cases SNPs can tag variation caused by tandem repeat
loci. We also examine the linkage between SNPs and other SNPs and uncover ways in which the linkage disequilibrium
of rare SNPs differs from that of hypermutable loci.
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phic, but their alleles can often be identical-by-state and not
identical-by-descent. Furthermore, tandem repeats are the most

Introduction common hypermutable loci in the human genome (Ellegren

Missing heritability and hypermutable loci

Mutation can take many forms, and can occur at vastly different
rates across the human genome (Rando and Verstrepen 2007).
Hypermutable regions composed of tandem repeats are of
particular interest because of the way in which they mutate.
Tandem repeats expand and contract in repeat number at a
rate that is orders of magnitude higher than the rate of single
nucleotide point mutations (Ellegren 2004; Kelkar et al. 2008;
Sun et al. 2012; Whittaker et al. 2003). These regions are able
to mutate new alleles and then revert to their original form,
all while maintaining their ability to expand and contract.
Therefore, not only are many of these loci highly polymor-
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2004; Rando and Verstrepen 2007), and are often found in
regions of functional significance (Sawaya et al. 2013).

The rates of expansion and contraction at tandem repeats
are known to depend on the length of the tandem repeats, the
size of the repeated subunit and the sequence composition. The
most mutable are tandem repeats composed of short subunits,
called microsatellites (also known as short tandem repeats, or
simple sequence repeats). These repeats can have mutation
rates up to 102 (Ellegren 2004), but most have rates between
1073 and 10~ (Whittaker et al. 2003; Kelkar et al. 2008; Sun et al.
2012). The most hypermutable microsatellites tend to have a
high A/T content and have a large number of repeated subunits.
Because long microsatellites have a tendency to contract more
often than they expand (Xu et al. 2000), microsatellites undergo a
lifecycle in which they are “born” and “die” in the genome over
evolutionary time (Kelkar et al. 2008; Buschiazzo and Gemmell

Genetics, Vol. XXX, XXXX-XXXX  June 2015 1


https://doi.org/10.1101/020909
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/020909; this version posted June 15, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

2010).

Tandem repeats composed of subunits greater than nine
base pairs are called minisatellites. Unlike microsatellites, these
tandem repeats are not known for their extreme mutability.
Their mutation rates are not as well documented (Gemayel
et al. 2010), but a method to estimate their relative mutation
rates is available (Legendre et al. 2007). Minisatellites are
thought to expand and contract in repeat number through
recombination (Jeffreys et al. 1998), in contrast to microsatellites
which mutate primarily through polymerase slippage and
subsequent mismatch repair (Ellegren 2004; Baptiste et al. 2013).

Tandem repeat alleles are associated with a range of
human diseases (Hannan 2010; Gemayel et al. 2010). Of these
diseases, perhaps the most well known are caused by expanded
microsatellites: Fragile-X disease caused by an expanded CGG
repeat (Verkerk et al. 1991), and Huntingon’s disease caused
by an expanded CAG repeat (MacDonald et al. 1993). Both of
these repeats are found in promoters, functional regions near
the start of a gene. Promoters have a relatively high density of
tandem repeats, suggesting that these hypermutable sequences
may play a role in regulating gene expression (Vinces et al. 2009;
Sawaya et al. 2013).

Although tandem repeats are potential sources of heritable
disease, recent attention has focused on SNPs for genetic
association studies due to technology that allows them to be
inexpensively and rapidly genotyped genome-wide. Common
SNP variants can be used to measure genome-wide relatedness,
and this relatedness can explain a moderate portion of the
heritability for complex traits (Yang ef al. 2011). However, many
SNP studies have failed to uncover variants with significant
associations (Maher 2008). Furthermore, even SNPs with the
strongest associations can only explain a small fraction of
heritable genetic variation (Manolio ef al. 2009).

This lack of significant GWAS hits has been referred to as
“missing heritability” (Maher 2008; Manolio ef al. 2009), and the
heritability still not explained by modeling all genome-wide
SNPs simultaneously has been termed the “still-missing
heritability” (Witte et al. 2014; Wray et al. 2014). Tandem
repeats have been hypothesized to be partially responsible
for missing heritability (Hannan 2010; Press et al. 2014), and
may also be partially responsible for some of the still-missing
heritability. Due to their high mutability, tandem repeats
can mutate away from linkage with surrounding SNPs, and
therefore SNP association studies are not expected to pick up
all of the heritability caused by hypermutable variants. Studies
using large numbers of tandem repeat loci have shown that
tandem repeat variants are usually very weakly linked with
surrounding SNPs (Willems et al. 2014; Payseur et al. 2008;
Brahmachary et al. 2014). These studies highlight how SNP data
can be uninformative about tandem repeat variation, providing
further support for the hypothesis that missing heritability
might be caused by these hypermutable loci (Willems et al. 2014).

However, not all tandem repeat variants are weakly
tagged by SNPs. A recent genome wide association study of
amyotrophic lateral sclerosis (ALS) in the Finnish population
(Laaksovirta et al. 2010) uncovered a microsatellite tandem
repeat as the most prevalent cause of familial ALS found to
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date (DeJesus-Hernandez ef al. 2011). In the C9ORF72 gene,
expansion of a CCGGGG repeat in the first intron results
in a dominant allele that causes ALS and can also cause
frontal-temporal dementia (DeJesus-Hernandez et al. 2011).
The expanded repeat allele is in strong linkage disequilibrium
with surrounding SNPs (Laaksovirta et al. 2010; Mok et al. 2012;
Majounie ef al. 2012). Studies of the associated haplotype reveal
that the expanded repeat likely arose only once (Mok et al. 2012;
Majounie et al. 2012) and then spread around the globe, possibly
along with Viking conquests (Pliner et al. 2014). This discovery
demonstrates that tandem repeat diseases can be uncovered
from SNP association studies.

The 5SHTTLPR gene provides another example of how SNPs
can be associated with functional tandem repeat variants.
Variation in a minisatellite within the SHTTLPR promoter
may be associated with a range of personality phenotypes and
neurological diseases (Lesch et al. 1996; Wray et al. 2009). Two
SNPs adjacent to the promoter repeat are in strong linkage
disequilibrium with the repeat alleles that have been associated
with disease (r2=0.72; Wray et al. (2009)).

Together, these studies raise the possibility that more tandem
repeat alleles can be uncovered as sources of disease using
SNP data. But how quickly do tandem repeats need to mutate
to lose their linkage with SNPS and therefore be hidden in
SNP association studies? Due to the size of their repeated
subunit and their C/G content, the C9ORF72 repeat and the
S5HTTLPR repeat are both predicted to have a mutation rate
that is lower than most tandem repeats. This suggests that
low-mutating tandem repeats have the potential to be tagged
by SNPs. To explore this possibility we utilize established
population genetics theory and simulations to investigate how
mutation rate is related to linkage disequilibrium between a
hypermutable locus and surrounding SNPs.

Materials and Methods

Theory relating linkage disequilibrium with mutation rates

We examine the linkage disequilibrium between a hypermutable
locus, A/a, and an adjacent SNP marker, B/b, defined by the
following mutation dynamics:

Ha
— a

Ha

B,

Ho

We model the hypermutable locus (A/a) as having only two
alleles, with equal forward and backward mutation rates (so
that u4 = ), although it does not perfectly correspond to
hypermutable tandem repeat loci. This allows for a simple mea-
sure of correlation between the two lodi, fitting the population
genetics theory outlined below.

We assume the SNP locus (B/b) has a standard low mutation
rate and the hypermutable locus has a high mutation rate, such
that yg + pa >> up + p. The allele frequencies at locus B will
be primarily influenced by drift, while the allele frequencies
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at A will be influenced by both drift and mutation (we ignore
the possibility of selection). Denote the allele frequency of A
(B) as pa (pp)- The allele frequency at locus A is influenced by
mutational equilibrium, in which:

~_ Ha
PAN @
In a large population with limited drift, the frequency
of allele A primarily depends on its forward and backward
mutation rates. As population sizes get smaller, and/or the
mutation rate gets lower, the allele frequencies are increasingly
influenced by population dynamics (as shown in the results).

The allele frequencies at each locus are important because
there is an important relationship between the standardized
measure of linkage disequilibrium (LD), #2, and relative allele
frequencies (VanLiere and Rosenberg 2008; Wray 2005; Eberle
et al. 2007; Hedrick 1987; Hill and Robertson 1968). The
maximum possible value of r> between two loci is inversely
related to the difference between the minor allele frequencies,
so if there is a large difference in frequency between the two
loci, 72 cannot be large (Hedrick 1987; Wray 2005; VanLiere and
Rosenberg 2008).

Our primary interest is the expected correlation between two
loci when one locus has a high mutation rate. For this, the
frequency of haplotype AB will be defined as p4p. Linkage
disequilibrium, D, is defined as:

D =pap — papB- (@)

The square of the correlation between allele frequencies, r2,
provides the proportion of variance at one locus that can be
explained by another locus, and acts as a standardized measure
of LD (Hill and Robertson 1968):

= D .
pa(l—pa)ps(1—ps)
How much correlation is expected between loci? To examine
this, Ohta and Kimura (1969) define a new variable, pz, as an
approximation for E(r2). They use the approximation E(x/y) ~
E(x)/E(y) to find an approximation for E(r?),

®)

E(D?)
Elpa(1 = pa)ps(1—pp)l’

Ohta and Kimura (1969) then solve for the expected values of
the numerator and denominator for a diffusion model, obtain-
ing:

E(VZ) ~ p2 =

)

1
2 _
P = 37 4AN(c+ k) —4/(5+ 2N(c + k) + 2Nk’

®)

where N is effective population size, and c is the recombi-
nation rate between these two loci (here measured in Morgans,
M). The variable k is the sum of the mutation rates across
both loci, k = pua + pa + i + pp, which is dominated by the
mutation rates at the hypermutable locus (k ~ pg + pg). To
simplify notation, the forward /backward mutation rates at the
hypermutable loci will be referred to as simply y, such that
k~2u.

Somewhat counterintuitively, allele frequency is not present
in the approximation for p2 (5). Although allele frequen-
cies are present in the numerator, E (Dz), and denominator,
E[pa(1 — pa)pp(1l — pp)], their terms cancel resulting in an
expression that only involves population size, N, recombi-
nation rate, ¢ and the sum of mutation rates, k (Ohta and
Kimura 1969). As discussed above, the maximum 7% value
is determined by relative allele frequencies, but these results
suggest that, on average at equilibrium, % is a function of
only N, c and k. This prediction is examined here using
simulated data (see next section). The simulations also
use the diffusion model, so the equivalence of (4) and (5),
as well as all of our results, rely on the assumptions of the model.

Furthermore, Ohta and Kimura (1969) showed that p? is only
an accurate approximation of E(r?) when N (c + k) is sufficiently
larger than one. In this case p? is approximated as:

2 1

RN ©

This approximation suggests that mutation and recombina-
tion act similarly to reduce linkage disequilibrium. Mutation
is slightly different than recombination, however, because
it changes allele frequencies, but this effect is reduced if the
locus is in mutational equilibrium. More importantly, (6) also
suggests that the expected correlation between allele frequencies
is very small when N(c + k) is large. Therefore, if the mutation
rate is large one would expect a weak correlation between a
hypermutable locus and an adjacent SNP marker, unless the
effective population size is small.

A. Simulations

Using the coalescent simulation program FastSimCoal (Excoffier
and Foll 2011), we simulated a population of 10,000 individuals
for a region of 100,000 base pairs (100kb). At the center of the
100kb region we placed hypermutable locus (referred to as
a “microsatellite” in FastSimCoal documentation) limited to
only two alleles (A and a), with equal forward and backward
mutation rates () set to 1073, 1074, and 107° for different
simulations. Two-thousand simulation results were obtained
for each mutation rate. The recombination rate between
adjacent base pairs was set to 1078, and the mutation rates
at surrounding DNA loci were set to 5-1078. The positions
of the polymorphic locus, i.e. loci with a non-zero minor
allele frequency, their variants, and the variants at the central
hypermutable locus were retrieved from FastSimCoal. These
results were converted to necessary file types using custom
python scripts, and analyzed in python and R. There were
46 simulations for y = 107 that were excluded because
hypermutable loci were not polymorphic.

For each simulation, four statistics were calculated. First,
the 12 values between the central hypermutable locus and
surrounding SNPs were calculated. The mean of this value
across simulations is referred to as “mean r2”. We expect this
simulated measure of LD to be the most accurate estimate of
the true degree of association because it does not rely on as
many assumptions as the analytical approximation. Second,
the average empirical values for D2 and p(1 — pa)ps(1 — pp)
were calculated from the simulations. We refer to the ratio of
these two measures as “empirical p?”. Next, the values of p?
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from (5) were calculated using the three parameters, N, ¢, and
k, that were used in the simulation. We expect the analytical
approximation p? from (5) and empirical p? to closely match
because both the simulations and the statistical approach of
Ohta and Kimura (1969) rely on the diffusion approximation.
Finally, the position and 72 for the individual SNP with the
highest 72 value were recorded from each individual simulation.

The simulation results were binned into regions of 100
base-pairs, corresponding to regions along the simulated
chromosome relative to the position of the hypermutable locus.
The values for r> and empirical p> were calculated and then
averaged across SNPs for each 100 base pair bin. The resulting
plots were smoothed with LOESS smoothing.

To compare the hypermutable results with SNP-SNP corre-
lations, we simulated a 150-kb region 50 times, with the same
parameters as above (10,000 population size, recombination rates
of 1078, and mutation rate of 5 - 10~8). For each simulation, we
used SNPs that were at least 50-kb from the end of the region.
Each SNP in this central region was examined separately for its
correlations with surrounding SNPs at most 50kb away. This is
equivalent to a central SNP in a 100kb region, thus making the
LD between two SNPs comparable to the LD between SNPs and
hypermutable loci.

1. Results

A. Allele frequencies from simulations

Figures 1 (a)-(c) display the minor allele frequencies (MAFs) for
the hypermutable loci, for each mutation rate. At mutation rates
of 1073 or 10~* most of the hypermutable alleles have a high
MAF. These high mutation rates drive the allele frequencies
toward their mutational equilibria of 0.5. In contrast, the allele
frequencies for loci with the mutation rate of 1075 are strongly
right skewed, with mostly rare alleles. At this lower mutation
rate, the allele frequencies appear to be strongly influenced by
population dynamics.

The simulated SNP allele frequencies are also strongly
influenced by population dynamics, and the MAFs for most of
these loci are very low (Figure 1 (d)). As discussed previously,
the difference in allele frequencies between two loci influences
their maximum possible 2. Hypermutable loci with a mutation
rate of 1073 have, on average, a high MAF, whereas the average
SNP MAF is very low. Therefore, a large difference in allele
frequencies exists between rare SNPs and most hypermutable

loci, limiting their maximum 2.

B. Comparing r* estimates with simulated results

For each mutation rate we plot the mean r? between a central
hypermutable locus and SNPs with any MAF across the entire
simulated region (Figure 2, green line). These mean r? values
are primarily influenced by associations between hypermutable
loci and rare SNPs. The mean 2 values for simulations with
a mutation rate of 1073 are very low (Figure 2 (c)), increasing
slightly for 10~4 (Figure 2 (b)), and more so for 10~5 (Figure 2
(a)). We also plot the estimate of p? made by Ohta and Kimura
(1969), equation (5), in red. This approximation is greater than
the mean 72 value for each scenario examined here, and much
greater when the mutation rate is low or the inter-locus distance
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is short. Importantly, when mutation rates are low or loci are
in close proximity, the value of N(c + k) is much less than 1.
Consequently, as predicted by Ohta and Kimura (1969), this

causes the estimate of p? to differ from the mean 7.

Because the simulations use the same diffusion approxima-
tion assumptions as the analytical approach of Ohta and Kimura
(1969), we expect the empirical 0% to match the approximation
p? from (5). Empirical p? and the approximation (5) are nearly
identical for the simulations using a hypermutable mutation
rate of 1075 or 104, but not for 1073 (Figure 2, blue and
red lines). We cannot explain this discrepancy. Nevertheless,
for a mutation rate of 102 all three measures of r2 are very small.
Importantly, the mean 12 measured here uses hypermutable
loci and SNPs with any allele frequencies above 0 (following the
assumptions of Ohta and Kimura (1969)). This corresponds to
a study in which all, or most, SNPs are genotyped, such as a
sequencing study. If a study only uses common alleles, such
as on a SNP chip with only common SNPs (MAF > 0.05), then
the mean 2 values found between these common SNPs and a
hypermutable site should be different.

To address how SNP minor allele frequencies influence the
2 between the SNPs and hypermutable loci, we examine the
2 values for SNPs with different MAFs, averaged across all
regions. The horizontal black line in Figure 3 shows the mean
empirical 7% for SNPs binned by MAF value, for each mutation
rate. The outer ends of the red vertical lines in this figure
indicate the range between the 25th and 75th percentiles (5th
and 95th for the ends of the blue lines).

In general, the SNP MAF only has a weak effect on the
mean 72; the range of 2 values is similar for most SNP MAFs.
However, for the lowest-MAF SNPs, the maximum possible
12 values are very small and the distribution of > shows that
almost all low-MAF SNPs have very weak associations with
the hypermutable locus. More importantly, Figures 3 (b) and
(c) show that common SNPs (MAF > 0.1) can sometimes be
in relatively high LD (2 > 0.2) with hypermutable loci at the
lower range of mutation rates (4 = 10~* to 1075).

C. SNP-SNP correlations

To put all of the above results in context, we examine how SNPs
are correlated with each other. We find that, on average, SNPs
have an extremely low mean 72 value with other SNPs (Figure 4
(a)). The maximum mean 2 value, provided by SNPs in close
proximity to the central SNP, is less than 0.05. Importantly, most
SNPs have extremely low MAF (Figure 1 (d)), and the mean
12 value is strongly influenced by weak associations with rare
SNPs (not shown). The correlation between common SNPs and
rare SNPs is known to be weak (Sun ef al. 2011), so the lack of a
regional association between a single rare SNP and surrounding
SNPs is expected. Furthermore, this scenario represents a
breakdown of the approximation; the value of N(c+k) is too
small for the approximation to be accurate. Therefore the
predicted and emperical p? of almost 0.45 for the SNPs that are
in close proximity are clearly not a good approximation for the

mean 7’2 .

Because hypermutable elements tend to have higher
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MAFs, perhaps a more appropriate comparison is to examine
a central SNP only if its MAF is above 0.05. When these
common central SNPs are examined for their correlations
with surrounding SNPs with any MAF, the mean 2 values
increase, but again the approximation (5) is not a good
approximation for E(r?) because again N(c+k) is too small
(Figure 4(b)). To explore how the MAF of surrounding SNPs
affects these values, we plot the 72 values for correlations
between a central common SNP and surrounding SNPs with
binned MAF (Figure 4 (c)). Again the rare SNPs (MAF < 0.05)
show a very weak association, and common SNPs show a
higher correlation. Intriguingly, common SNPs tag rare SNPs
worse than they tag (the often common) hypermutable elements.

The correlations found using common central SNPs are
similar to those found with hypermutable elements with a
mutation rate of 107> (Figure 2). However, the distribution of
the 2 values for common central SNPs (Figure 4 (c)) indicates
that the upper 95th percentile of > values for common SNP
associations are higher than those of any hypermutable element
(Figure 3 (c)). Therefore, large 12 values (e.g. 2 > 0.5) will
be more frequent between common SNPs than between any
hypermutable element and surrounding SNPs.

D. Relating hypermutable locus-SNP correlations with SNP-
SNP correlations

To compare the mean 2 values for each scenario used, we plot
all of the mean 72 values for all simulations together (Figure 5).
This plot demonstrates the relatively high mean r* values for
common SNPs (peaking just below 0.15), and a lower mean r?
values for loci with a mutation rate of 10~°. Additionally, loci
with a mutation rate of 10~ provide an interesting comparison
to the analysis using all SNPs. In close proximity, the mean
2 measured on all SNPS is higher than that for loci with a
mutation rate of 10~#, but the correlation decays with distance
much more rapidly for the SNPs. At a distance of 4000 bp the
mean 2 is nearly zero for all SNPs, but it remains above 0.1 at
400(2 bp for hypermutable loci with mutation rates of 10~# and
107>.

To further investigate these simulation results, we examine
the locus with the largest 2 found in each simulation, 2000
simulations per scenario. The maximum r? that occurs in an
individual population is of interest because GWAS associations
typically focus on SNPs with the lowest p-values. The scatter
plot of the maximum per-simulation 7% for a central hyper-
mutable lcous(Figure 6 (a)) demonstrates that SNPs with the
strongest associations are more centralized in the simulations
using lower mutation rates than in those using higher mutation
rates. There is almost no localization in the simulations with
U= 1073 (Figure 6 (c)). Furthermore, the maximum 72 values
under the mutation rate of 103 are always small; the largest
maximum 72 was only 0.202.

When the central locus is a common SNP, the maximum
2 values are often near one (Figure 6 (b)). When the central
SNP is rare, the maximum 72 for the simulation is usually either
very low or near one. Rare SNPs often have no association with
surrounding loci, but occasionally a rare central SNP will be in
perfect LD with another rare SNP, and this surrounding SNP in
perfect LD is sometimes at a great distance. The maximum r?

for common central SNPs is often relatively large and localized
to the central region (Figure 6 (d)).

2. Discussion

A. Comparing results from the approximation with simula-
tions

The approximation made by Ohta and Kimura (1969),
E(r?) =~ 1/[4N(c + k)], provides a useful way to think about
how mutation rates are related to linkage: the effects of mutation
are similar to the effects of recombination, breaking linkage
disequilibrium between loci. Although this approximation is
only accurate when N(c+k) is large, one can nevertheless use
it to build intuition about how mutation reduces correlations
between loci. A forward-backward mutation rate of 1072 acts
like a genetic distance of 0.002 M, about 200kb (k ~ 2y = 0.002,
corresponding to ¢=0.002). Loci at a distance of 200kb are
essentially unlinked. Therefore, even SNPs in close proximity to
a hypermutable element with such a high mutation rate will be
unlinked. This simple approximation makes it clear that SNPs
do not tag variation caused by the most hypermutable loci in
the genome. Furthermore, the simulations demonstrate that the
Ohta and Kimura (1969) approximation over-estimates E(r2).
When a site mutates rapidly, almost all of its correlation with
surrounding loci is lost.

The approximation breaks down when N(c+k) is smaller
than one (Ohta and Kimura 1969), which is the case for most
of the scenarios examined here. In these scenarios, the ratio
of expectations in (4), p? is a poor approximation for the
expectation of the ratio given in (3). The only scenario in
which N(c + k) is larger than one is when the mutation rate
is 1073 (Figure 2 (c)). Oddly, this is also the only scenario in
which empirical p? does not appear to match the analytical
approximation p? of equation (5).

Therefore, although the approximation made by Ohta and
Kimura (1969) can be helpful for understanding how mutation
rates relate to recombination distance, simulations are required
to estimate the mean r?> values for hypermutable elements
with mutation rates larger than 1073, For investigating these
mutation rates, neither decreasing the population size nor
increasing genetic distance would increase the accuracy or
utility of the approximation. The diffusion approximation
breaks down as population sizes decrease. Furthermore,
our interest here is to understand how SNPs can tag nearby
hypermutable elements, and examining SNPs that are a great
distance to a hypermutable element provides limited utility
because a tiny 72 is expected across large genetic distances. Thus
the approximation p? has many limitations when studying
hypermutable elements.

The simulation results provide useful insight into how SNPs
correlate with hypermutable elements. For most hypermutable
elements, the mean 2 values with nearby SNPs are small,
especially in comparison to common SNP-SNP associations
(Figure 5). However, for hypermutable elements with mutation
rates of 107> not all of the correlation is lost. The mean 2
value for mutation rates of 1072 is approximately half that of
common SNP-SNP associations (Figure 5). Furthermore, for
a mutation rate of 1075 the top 5th percentile of 1 values are
all above 0.3 when the surrounding SNPs have an MAF above
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0.2 (Figure 3 (c)). Stronger associations exist between common
SNPs and other common SNPs (Figure 4 (c)), but the scenario
with mutation rates of 1075 is somewhat comparable.

Rare SNPs are known to have a small 72 value with other
SNPs (Sun et al. 2011), and rare SNPs are a potential explanation
for missing heritability (Manolio et al. 2009) and still-missing
heritability (Wray et al. 2014; Witte et al. 2014). The simulations
indicate that rare SNPs have a low mean 2 with other SNPs,
comparable to hypermutable elements with mutation rates of
10~* or smaller. However, the mean 72 diminishes across genetic
distance faster for SNPs than for hypermutable loci (Figure 5).
This suggests that although hypermutable elements may behave
similarly to rare SNPs, associations with hypermutable elements
may show weaker localization. This delocalization spreads asso-
ciations with hypermutable loci around the genome. Therefore,
methods that use all SNPs together to measure overall genetic
effects, such as GCTA (Yang ef al. 2011), may be able to recover
information about causal hypermutable loci.

B. Implications for GWAS

Hypermutable tandem repeat loci may be partially responsible
for missing heritability (Hannan 2010; Press ef al. 2014) and also
still-missing heritability. The results presented here suggest
that loci with high mutation rates are not well tagged by SNPs,
and therefore much of the heritable variation caused by such
loci will not have been captured in modern GWAS analyses.
Scientists have just recently begun to estimate the mutation rates
of hypermutable elements in the human genome (Whittaker
et al. 2003; Kelkar et al. 2008; Sun et al. 2012; Legendre et al. 2007),
and a database of know tandem repeat variants has recently
been developed (Willems et al. 2014). As more tandem repeat
variants are cataloged, understanding how these variants can be
tagged by SNPs will allow researchers to measure their relative
contributions to phenotypes.

When a tandem repeat has a lower mutation rate (such as
G/C rich microsatellites or minisatellites), studies have shown
that SNPs can be linked to disease repeat alleles (Wray et al.
2009; Laaksovirta et al. 2010; Mok et al. 2012; Majounie et al.
2012; Pliner et al. 2014), and our results corroborate this. For the
C9orf72 repeat expansion there appears to have been a single
repeat expansion in the European population, with nearby SNPs
in strong linkage disequilibrium (Mok et al. 2012). This finding,
along with the analyses here, suggests that other GWAS could
be picking up phenotypic variation caused by tandem repeats.
However, because SNPs are the main focus of contemporary
genetics research, tandem repeats are often overlooked as
potential causal variants. Furthermore, due to the limitations of
PCR and next-gen sequencing technologies, tandem repeats are
often difficult to genotype or sequence (Treangen and Salzberg
2012; Loomis et al. 2013; Press et al. 2014; Gymrek et al. 2012;
Brahmachary et al. 2014; Krsticevic ef al. 2015; Ummat and
Bashir 2014; Doi et al. 2014). Consequently, researchers could
easily miss a causal tandem repeat variant while investigating a
GWAS signal using DNA sequencing.

An important consideration when investigating a GWAS
signal is the distance between the SNP with the lowest p-value
and the variant(s) driving the association. The position of
the lowest p-value SNP is often used to link a gene with a
phenotype. Our results suggest that the top SNP associations
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are far less localized for hypermutable elements, with almost
no localization for elements with a mutation rate of 1073
(Figure 6 (c)). Therefore, if a hypermutable element is causing
a SNP association, the strongest SNP association may occur at
a great distance from the causal element. Associations with
hypermutable elements are also spread across a larger region
(Figure 5), providing an association signature that may be
noticeably distinct from other types of associations.

Finally, because traits can be influenced by hypermutable
elements and/or low frequency variants, SNP data alone cannot
be used to exclude a gene or region of the genome as causal.
If a gene is affected by hypermutable elements and/or rare
variants, then SNPs will often fail to find an association. Regions
or genes that contain potentially functional hypermutable
elements require further genotyping of these elements before
they can be totally excluded as potentially impacting a trait.
Furthermore, many sequencing technologies have a limited
ability to genotype some tandem repeat variants (Treangen and
Salzberg 2012; Loomis et al. 2013; Press et al. 2014; Krsticevic
et al. 2015; Doi et al. 2014), so our results apply to any data that
is limited to SNPs. Recent advances in sequencing technology
(Loomis et al. 2013; Ummat and Bashir 2014; Krsticevic et al. 2015)
and tandem repeat genotyping (Gymrek ef al. 2012; Carlson et al.
2015; Brahmachary et al. 2014; Doi ef al. 2014) provide hope that
some hypermutable elements will be included in future studies
of genetic heritability and genetic disease. Nevertheless, some
of the missing heritability cause by hypermutable elements may
remain missing, at least for the near future.

C. Limitations and potential extensions

This study only use two possible states at each locus, and the
forward and backward mutations are equal. This simplifies both
the analytical approach as well as the simulations, and can be
used as a simple model of tandem repeat evolution. Tandem
repeats often have more than two states, but diseases caused
by tandem repeats are often caused by expansion (Hannan
2010; Gemayel et al. 2010). Therefore, tandem repeats can
sometimes fit into a two-allele model as was done here (short
versus long). However, transitions between a short allele and a
long allele depend on the repeat length (Kelkar et al. 2008), and
thus forward and backward mutation rates are not necessarily
equivalent. A step-wise mutation model, allowing multiple
allele sizes at the hypermutable locus and binning them as
short or long, may provide a more accurate model of tandem
repeat diseases. These more complicated models are likely
to return similar results because empirical data indicates that
small 72 values are found between SNPs and tandem repeat loci,
whether they are bi-allellic or multi-allelic Willems et al. (2014).

In addition, the use of a stable population with an effective
size of 10,000 without population history may further limit the
direct application of these results. The results from smaller
population sizes might drastically change because the diffusion
approximation does not work well for small effective population
sizes. In addition, complicated population histories may
change these results in unexpected ways, especially because
tandem repeats and SNPs provide different information about
population histories (Payseur and Jing 2009). Future simulations
could address these possibilities.
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Equation (6) suggests that increasing the population size will
result in an approximately harmonic decrease in the mean 2.
Therefore, one can expect the mean 72 from an effective popula-
tion size of 20,000 to be approximately half of the mean % found
here with an effective population size of 10,000. Extrapolating
the results presented here to smaller population sizes would not
be as straightforward. Due to the aforementioned effect that
small populations have on the accuracy of the diffusion approxi-
mation, estimating how these result would change if one used
a smaller population size is not as simple as applying a linear
transformation.

D. Summary and conclusion

As shown by Ohta and Kimura (1969), mutation and re-
combination act in a similar fashion to break up linkage
between loci. The magnitude of the mutation rate can be
approximately equated to recombination distance in Morgans.
However, this approximation only holds when the mutation
rates are high and/or population sizes are large. With lower
mutation rates the approximation breaks down and simula-
tions must be used to estimate the expected linkage between loci.

The simulations reported here suggest that the variation
caused by some hypermutable elements can be captured using
SNPs. At mutation rates of 107° or smaller the associations
between hypermutable loci and SNPs is comparable to, although
lower than, common SNP - common SNP associations. On
the other hand, the correlations between SNPs and loci with
mutation rates of 10~% and 1073 are relatively low, and therefore
variation caused by loci with these mutation rates are likely to
show only weak association with SNPs of any MAF.

Heritable variation can be caused by genetic loci with a range
of mutation rates (Rando and Verstrepen 2007). Hypermutable
loci can remain highly polymorphic in a population, and they
may be important causes of human disease and heritability of
complex traits. Common SNP variants are currently inexpensive
and widely used to search for genes that contribute to heritable
variation. Unfortunately, many hypermutable loci will have
poor linkage with SNPs, and therefore these loci will be unlikely
to be uncovered using SNP GWAS methods. Direct genotyping
will be necessary to uncover the effects that many hypermutable
loci have on genetic variation. We hope that this work will help
researchers investigating the sources of human diseases and
heritable traits.
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Figure 1 Histograms of allele frequencies from the simula-
tions. The minor allele frequencies for bi-allelic hypermutable
sites with mutation rates of 1073 (a) 10~* (b) and 10~ (c) are
shown. Only simulations with non-zero allele frequencies
were used. Plot (d) shows a histogram of minor allele frequen-
cies for SNPs in the simulation.
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Figure 2 Plots comparing mean > from simulations (green), its
approximation, p? (red), and the empirical value of p? (blue).
The hypermutable locus is central (position 0), and 72 values
were calculated between the central hypermutable element
and surrounding SNPs. Results for simulations using hyper-
mutable mutation rates of 1072 (a), 10~* (b), and 10~ (c) are
shown. The values of p? are far greater than the mean 12, with
the greatest difference found for low mutation rates. The val-
ues were calculated for bins of 100 base-pairs, and a line was
drawn between these binned values using LOESS smoothing.
Note the change in scale on the vertical axes between plots of
different mutation rates.
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Figure 3 Mean 72 values between the hypermutable locus and
SNPs with varying MAF. The mean 72 values are represented
by the horizontal black line. The top (bottom) of the vertical
red line represents the 75th (25th) percentile, and the top (bot-
tom) of the blue lines represents the 95th (5th) percentile. Re-
sults for simulations using a hypermutable mutation rate of
1073 (a), 10~* (b), and 10~° (c) are shown.
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Figure 4 The 72 between a central SNP and surrounding SNPs.
(a) Mean 72 values for SNP-SNP pairs, using a central SNP
with any MAF (green). Also the analytical approximation for
72 (pz, red), and empirical p2 (blue). (b) Same as in (a) but for
central SNPs with an MAF above 0.05, i.e. common central
SNPs. (c) Distribution of r? for comparisons between a cen-
tral SNP with MAF above 0.05 and surrounding SNPs binned
by their MAF. The mean 72 values are represented by the hor-
izontal black line. The top (bottom) of the vertical red line
represents the 75th (25th) percentiles, and the top (bottom) of
the blue lines represent the 95th (5th) percentiles.
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Figure 5 The mean r> between surrounding SNPs, with any
MAF, and a central variant with these classes: mutation rates
of 1073,107%, and 102, as well as a central SNP with any
MAF and also a central common SNP (MAF>0.05).
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Figure 6 Characteristics of the maximum 72 between a central
element and surrounding SNPs from each individual simula-
tion, 2000 in total. (a) Scatterplot of the maximum 2 against
the position relative to a central hypermutable element. Col-
ors indicate mutation rate of the hypermutable element. (b)
Scatterplot of the maximum r? against the position relative

to a central SNP (i.e., a central locus with normal mutation
rate). Colors indicate MAF of the central SNP (common or
unconstrained). (c) Density of the position of the locus with
maximum 72, relative to a central hypermutable element. (d)
Density of the position of the locus with maximum 2, relative
to a central SNP.
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