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ABSTRACT

Recently developed maximum entropy methods infer evolutionary constraints on protein
function and structure from the millions of protein sequences available in genomic databases.
The EVfold web server (at EVfold.org) makes these methods available to predict functional and
structural interactions in proteins. The key algorithmic development has been to disentangle
direct and indirect residue-residue correlations in large multiple sequence alignments and
derive direct residue-residue evolutionary couplings (EVcouplings or ECs). For proteins of
unknown structure, distance constraints obtained from evolutionarily couplings between
residue pairs are used to de novo predict all-atom 3D structures, often to good accuracy.
Given sufficient sequence information in a protein family, this is a major advance toward
solving the problem of computing the native 3D fold of proteins from sequence information
alone.
Availability: EVfold server at http://evfold.org/
Contact: evfoldtest@gmail.com
Abbreviations: DI: direct information; EC: evolutionary coupling; EV: evolutionary; MSA:
multiple sequence alignment; PLM: pseudo-likelihood maximization; PPV: positive predictive
value (number of true positives divided by the sum of true and false positives); TM-score:
template modeling score

1 INTRODUCTION

Evolution of species is now revealed at the molecular level through genomic sequencing.
Extensive output from high-throughput sequencing has made it increasingly productive
to mine this data for interactions affecting protein structure and function. Knowledge of
which protein residues are involved in functionally important interactions and how these
are arranged in space benefits research in many areas of biology. A long-standing goal in
computational biology has been to predict 3D structure from amino acid sequence alone. As
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2 EVOLUTIONARY COUPLINGS AND PROTEIN 3D STRUCTURES 2

the Critical Assessment of Techniques for Protein Structure Prediction (CASP) has shown,
accurate structure prediction remains a largely unsolved challenge, especially in the absence
of a homologous template [1]. In addition, predicting the identity and role of functional
residues in incompletely characterized proteins is another persistent challenge [2]. However,
recent developments have led to a breakthrough in computational methods employing co-
evolution [3–6] for both structure and function prediction. The use of evolutionary couplings
(ECs) between residues to accurately predict all-atom protein structures was, to our knowledge,
first demonstrated in the fall of 2010 and published in 2011 [7].

The EVcouplings method uses a global probability model for an isostructural set of protein
sequences in the form of an exponential model, which has a pseudo-energy expression up to
second order (residue pair interactions) as the exponent. The parameters in the model are
extracted (not fit in the sense of machine learning) from co-variation counts for all pairs of
residue positions in a multiple sequence alignment (MSA) of evolutionarily related protein
sequences. The inferred ECs disambiguate direct from indirect correlations. Importantly, ECs
between residue pairs are often involved in key functional and structural interactions that in
general cannot be detected using single-column conservation within an MSA. ECs often occur
between residues in structural contact, enabling their use in de novo predictions of protein
structure. Complementary to the EVold server, which commenced public operation in April
2013, there are now several additional online resources for protein contact prediction [8–10].
Development of methods and applications is very active in the field of evolutionary couplings,
including focused efforts on beta-barrel membrane proteins [11], protein complexes [12,13]
and hybrid methods for structure determination, such as combining sparse NMR data with
residue-residue ECs (EC-NMR) [14].

2 EVOLUTIONARY COUPLINGS AND PROTEIN 3D STRUCTURES

2.1 Capabilities: structures and functional interactions

For a target protein sequence, embedded in a protein family alignment, the EVfold server
derives ECs, which reflect structural and functional constraints. From the residue pair
constraints, the server can de novo model 3D structures from sequence information alone
(Figure 1), without the need for the 3D structure of homologous proteins or protein fragments,
as in template model building or model building by homology.

Beyond their use in computing 3D structures, the inferred ECs can be used to identify
functionally constrained residue interactions indicative of active sites, protein-protein in-
terfaces and other functional sites, and can be used to guide or interpret experiments that
measure the phenotypic consequences of residue substitutions. The server can handle 3D
structure prediction for globular and helical transmembrane proteins, with server capability
for beta-barrel membrane proteins and for protein complexes technically feasible [11, 12], but
not yet implemented.

2.2 Input: sequences

Minimal server input is a specific protein (database ID or amino acid sequence) and a sequence
range (domain) within the protein. Computing ECs for a target protein sequence requires a
MSA for a set of proteins plausibly isostructural with the target protein, typically paralogs
from the same organism and homologs from other species. The MSA can be provided by the
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2 EVOLUTIONARY COUPLINGS AND PROTEIN 3D STRUCTURES 3

user or is retrieved from the Pfam domain database [15], or generated using software that
searches for homologs in protein sequence databases, such as HHblits [16] or jackhmmer [17].
The depth (number and diversity of sequences) and breadth (coverage of the target protein
domain by the aligned residues) of the protein family alignment has to be sufficient to allow
reliable extraction of ECs. Typically, we suggest at least 5L sequences in the MSA, where
L is the number of residues of the target protein domain and 75% breadth of coverage.
For example, we suggest a 200 residue target protein have at least 1000 sequences in the
MSA. For unknown structures, the server automatically predicts secondary structure using
PSIPRED [18] and alpha-helical transmembrane topology using MEMSAT-SVM [19] and
uses these as input to the 3D structure generation. Users can override the secondary structure
predictions using experimental data or other predictions.

If an experimental structure or 3D structure model of the protein is known, this can
be entered via a Protein Databank (PDB) identifier [20]. In the EVFold mode, the server
assesses the accuracy of structure prediction from sequence alone by comparing the EVfold
predicted structure to the known structure using standard 3D superimposition methods, such
as the one in the PyMOL molecular graphics software. In the EVcouplings mode, the server
can map ECs onto the known structure for functional interpretation, without 3D structure
prediction.

2.3 Algorithm: maximum-entropy model for protein sequences

The algorithm uses a by now well-established [3,7,21–24] maximum-entropy probability model
to identify ECs in the protein family. It uses a subset of the ECs to impose residue pair
distance constraints in the molecular modelling software CNS [25] to generate 3D structures
using distance geometry projection followed by (moderately long, as of March 2015) simulated
annealing by molecular dynamics.

The server has a choice of two levels of approximation for inferring the parameters of the
global, maximum-entropy probability model: “DI”, a mean-field based coupling analysis with
parameters obtained by inversion of the covariance matrix and direct information scoring
using an analogue of mutual information with direct information marginal probabilities [7,21];
and “PLM”, a pseudo-likelihood maximization approximation with corrected norm scoring [23].
DI, also called mean field DCA, tends to be the faster but less accurate method compared to
PLM. For a review of methods see [24]. We recommend the slower but more accurate PLM
as default.

2.4 Output: evolutionary couplings and/or predicted 3D structures

The server provides a list of evolutionarily coupled residue pairs ranked by EC score, 2D maps
of predicted contacts and/or a set of predicted all-atom 3D structures. High-ranking ECs
represent strong evolutionary constraints and tend to reflect residue proximity in the folded
protein structure and/or functionally important interactions for any protein in the family.
The ECs are visualized as a 2D contact map and also mapped onto a known or predicted
3D structure of the target protein, for example as lines connecting two residues. The total
strength of ECs affecting a single particular residue is visualized as a residue property in 3D,
with the aggregate EC strength (summed over all partner residues) as residue atomic sphere
color (Figure 2) or residue thickness in “sausage” mode.
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2 EVOLUTIONARY COUPLINGS AND PROTEIN 3D STRUCTURES 4

Figure 1: EVfold server process: from amino acid sequences to all-atom 3D structures (option
EVfold). User supplies a sequence of interest (the target sequence) in the context of a large multiple
sequence alignment (left) that provides residue-residue covariation information. Evolutionary
constraints (ECs) are computed using DI or PLM (see Method) and the top ECs are predictive of
residue-residue contacts (middle). The predicted 3D fold of the human subunit one of Complex I
(right, gene name: MT-ND1, Uniprot: NU1M_HUMAN) [26] agrees well with the subsequently
published crystal structure of the Thermus thermophilus homolog (Uniprot: NQO8_THET8, PDB:
4HE8) [27].

Figure 2: Evolutionary couplings visualized on known structures or predicted structures are
informative about essential residue-residue interactions (option EVcouplings for known
structures, EVfold for unknown structures). Many strong residue pair couplings (left, green
lines) in a bacterial protein transacylase (Uniprot: FABD_ECOLI; PDB: 1MLA) link residues that
are in contact in 3D. Residues with strong single residue constraint strength (ECs summed over all
coupled residue partners) may point to interaction sites that implement evolutionary requirements
(the most strongly coupled residues as red spheres, followed by orange spheres for medium strength,
and yellow ribbon for low strength).
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2 EVOLUTIONARY COUPLINGS AND PROTEIN 3D STRUCTURES 5

To reflect modelling uncertainty for a given set of distance constraints and stochastic
decisions in the simulated annealing protocol, the server typically computes several hundred
models for a given target protein, e.g, ∼2L models for a protein of length L. The models
are ranked by a scoring function that estimates the likelihood of being a correct and typical
protein structure, using criteria based on distributions of dihedral angles, torsion angles,
solvent accessibility, constraint satisfaction, and agreement with predicted secondary structure.
The model scoring function is under development and improvements are expected in a future
version of the server.

2.5 Current status of prediction accuracy

For a blinded benchmark set (testing 3D prediction on proteins of known 3D structure
without using any information from the known structure) good 3D models (TM-score ≥
0.5 [28] can be predicted, in the current implementation, in about half of all cases (Table
1). For this test, we used a structurally representative set of domains of known structure
(using the CATH database as a guide [29]) and, following sequence searches and MSA
construction, used a stringent cutoff on the minimal depth and breadth of the multiple
sequence alignment. In particular, we required that the effective number of non-redundant
sequences (Meff) normalized by protein length (L) is greater than 4.0 (depth) and that the
coverage of the protein domain being modeled by non-gappy alignment columns exceeds 75
percent (breadth). In the reduced set of 63 protein domains (out of 140), which exceeded
these thresholds, 38 (60%) had very good prediction accuracy (TM-score >= 0.5), while 25
(40%) had accuracy below the customary threshold (TM-score < 0.5). Deeper alignments
(more sequences available in the family) tend to lead to better prediction accuracy. As a
rule of thumb, proteins above these thresholds yield good predictions in about half the cases
(Figure 3, Table 1).

While the TM-score as a quantitative measure of 3D structure prediction accuracy is useful,
and often used, it does not fully reflect the essence of the success of the EVfold method,
which in many cases correctly predicts the topographical arrangement, i.e., the relative
spatial arrangement of secondary structure elements. In some cases predicted structures
with TM-score < 0.5 have perfect prediction of topography, while for TM-score > 0.5 there
can be topographical errors. We therefore provide, for intuitive inspection by the reader, a
number of explicit examples of predicted structures in the ’well folded’ (Figures 4-6) and
’less well or badly folded’ (Figures 7-9) categories, both as 2D contact maps as well as
3D structural superimpositions on the known structure. Coordinates for these structures
are on the EVfold.org web site. While a purist comparison of prediction accuracy would
only assess the top-ranked predicted structure, we typically compute prediction error in the
blinded test for the actually best structure in the top ten ranked ones, on the grounds that
serious exploration of predicted structure, for functional interpretation for example, can afford
scanning through ten predicted structures. Prediction accuracy for the single top-ranked
structure are provided for completeness.

2.6 Factors affecting prediction accuracy and future improvements

The most important factor affecting 3D structure prediction accuracy is the depth and diversity
of sequence information in the family containing the target protein domain. Inspection of
about 50 cases, anecdotally, suggests additional factors related to lower prediction success,
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2 EVOLUTIONARY COUPLINGS AND PROTEIN 3D STRUCTURES 6

Figure 3: EVfold benchmark on 140 proteins of known structure indicates requirements for the
amount of sequence information for good predictions. Folding results from proteins (dots)
with diverse CATH topologies. (A) 3D structure prediction quality as measured by TM-score as
a function of the prediction quality for residue contacts as measured by PPV. (B) 3D structure
prediction quality as measured by TM-score as a function of the effective number of sequences
normalized by protein length. Proteins in the upper right quadrant (’well folded’ in Figures 4-6)
were well predicted. Proteins in the lower right quadrant were less well predicted (’less well or
badly folded’ in Figures 7-9) although they passed the threshold for sufficient sequence information.
Runs were done at E-value 10−4, 5 jackhmmer iterations, and filtering of alignment columns and
rows if gap content exceeded 30 percent. PPV is the positive predictive value (number of true
positives divided by the sum of true and false positives). TM-score is the template modeling score
(>0.5 considered good). Results are for the best model within top 10 ranked. Secondary structure
protein fold types are alpha helical (blue), beta-strand (green), alpha-beta mix (red), few secondary
structures (’few SS’, teal).
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2 EVOLUTIONARY COUPLINGS AND PROTEIN 3D STRUCTURES 7

Table 1: Performance of EVfold on a diverse set of proteins.

Meff - effective number of non-redundant sequences. L - protein length. Our initial dataset included 140 proteins, which were
filtered such that Meff normalized by length is greater than 4 and the coverage (alignment columns used) within the region of
the protein being modeled is greater than 75 percent. After filtering, 63 cases remained.
A - Alignment issue
R - Ranking issue (best structure missed in top 10)
T - TM-score just below cutoff of 0.5 for good structures
H - Hydrogen-bond formation suboptimal (refinement issue)
L - Structurally important ligand not used in folding procedure
B - Unusual beta-barrel (unoptimized)
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such as unusual amino acid composition or disulfide patterns, apparently erratic sections
of the MSA, or apparently discontinuous subfamily structure. In some cases, predicted
structures in very good agreement with experimental structures were at a low rank in the set
of all computed structures (generally ∼2L), indicating less than fully adequate criteria in
the ranking score. In some cases of correctly predicted topography of structure segments,
well-placed beta-strands did not have the expected pattern of well-formed hydrogen bonds.
Therefore, three important areas of desired improvement are: improved alignment procedure
(cutoffs, filters, uneven sequence weights); improved refinement of the 3D coordinates of
the protein models using more elaborate simulated annealing by molecular dynamics; and
improved ranking criteria for structures in the set of predicted structures for a target protein.

3 RECOMMENDATIONS

Before submitting a protein for 3D structure prediction, it is useful to first check for protein
domains in the target sequence, via the Pfam database for example, and consider submitting
each domain separately. For each domain, one should check whether a 3D structure or
that of a homologous ’template’ is available, which would directly lead to a 3D structure
model. Such models are often already deposited in the very useful database of protein models,
www.proteinmodelportal.org, or can be generated using existing tools such as HHpred [30].
For any prediction or EC analysis run, one can check the alignment quality by inspection,
as this is the single most important factor affecting predicition quality. We suggest a
minimum number of ∼5L diverse sequences (depth) and coverage of the target domain over
at least ∼0.75L (breadth). Once a contact map (top ECs) is generated, visual inspection
can provide useful clues as to likely prediction success, looking for ’protein-like’ structured
patterns in the 2D predicted contact map. Caution is needed for homo-multimers and
alternative conformations, as inferred ECs from the target sequence may reflect contacts
between monomers of a homo-oligomer or contacts in alternative conformations, such as
closed and open forms of a channel. The server returns a ranked set of 3D models for the
target protein, typically several hundred; it is reasonable to inspect the top ranked model
and perhaps about a dozen top additional ones. In our view, both the ranking score as well
as the 3D structure refinement process can be substantially improved (work in progress). In
summary, currently about one in two proteins with alignment quality above the recommended
thresholds lead to excellent predictions. The number of proteins accessible to the method is
rising rapidly as genome sequencing accelerates.
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6 Figures (cont’d) 12

Well folded proteins

Figure 4: Well folded proteins. A selected subset of proteins in Table 1 with TM-score above 0.5 (best
predicted by TM-score, sorted by Meff/L). Protein names (example): Uniprot Name_Species
(CYP1_BRUMA), Uniprot ID (Q27450), residue range from-to (1-177). Left: Quality of contact
prediction is higher the more predicted contacts (red to orange as EC value decreases) match the
contacts derived from the experimental structure (grey). No experimental information is available
in segments of the protein missing in the reference (PDB) structure (light blue ribbons). Contact
patterns parallel or antiparallel to the diagonal are contacts between secondary structure helices
(orange rectangles) or beta strands (arrows). Right: predicted 3D structure (rainbow-colored
cartoon) superimposed against reference experimental structure (grey ribbon).
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6 Figures (cont’d) 13

Well folded proteins (cont’d)

Figure 5: Well folded proteins (cont’d). Coloring as above.
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6 Figures (cont’d) 14

Well folded proteins (cont’d)

Figure 6: Well folded proteins (cont’d). Coloring as above.
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6 Figures (cont’d) 15

Less well or badly folded proteins

Figure 7: Less well or badly folded proteins. A selected subset of proteins in Table 1 with TM-score below 0.5
(least well predicted by TM-score, sorted by Meff/L). Graphical representation as in previous figure.
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6 Figures (cont’d) 16

Less well or badly folded proteins (cont’d)

Figure 8: Less well or badly folded proteins (cont’d). Coloring as above.
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6 Figures (cont’d) 17

Less well or badly folded proteins (cont’d)

Figure 9: Less well or badly folded proteins (cont’d). Coloring as above.
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