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Abstract

The large amount and high quality of genomic data available today enables, in principle,

accurate inference of evolutionary history of observed populations. The Wright-Fisher model

is one of the most widely used models for this purpose. It describes the stochastic behavior in

time of allele frequencies and the influence of evolutionary pressures, such as mutation and

selection. Despite its simple mathematical formulation, exact results for the distribution

of allele frequency (DAF) as a function of time are not available in closed analytic form.

Existing approximations build on the computationally intensive diffusion limit, or rely on

matching moments of the DAF. One of the moment-based approximations relies on the beta

distribution, which can accurately describe the DAF when the allele frequency is not close to

the boundaries (zero and one). Nonetheless, under a Wright-Fisher model, the probability

of being on the boundary can be positive, corresponding to the allele being either lost or

fixed. Here, we introduce the beta with spikes, an extension of the beta approximation,

which explicitly models the loss and fixation probabilities as two spikes at the boundaries.

We show that the addition of spikes greatly improves the quality of the approximation. We

additionally illustrate, using both simulated and real data, how the beta with spikes can be

used for inference of divergence times between populations, with comparable performance

to existing state-of-the-art method.
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INTRODUCTION

Advances in sequencing technologies have revolutionized the collection of genomic data, in-

creasing both the volume and quality of available sequenced individuals from a large variety

of populations and species (Romiguier et al. 2014; Gudbjartsson et al. 2015). These data,

which may involve up to millions of single nucleotide polymorphisms (SNPs), contain infor-

mation about the evolutionary history of the observed populations. There has been great

focus in the recent years on inferring such histories and, to this end, one of the most widely

used models is the Wright-Fisher (Gautier et al. 2010; Sirén et al. 2011; Malaspinas et al.

2012; Pickrell and Pritchard 2012; Gautier and Vitalis 2013; Steinrücken et al. 2014; Terhorst

et al. 2015).

The Wright-Fisher model characterizes the evolution of a randomly mating population

of finite size in discrete non-overlapping generations. The model describes the stochastic

behavior in time of the number of copies (frequency) of alleles at a locus. The frequency

is influenced by a series of factors, such as random genetic drift, mutations, migrations,

selection, and changes in population size. When inferring the evolutionary history of a

population, the effects of the different factors have to be untangled. The frequency varies

from one generation to the next due to random sampling of a finite sized population (random

genetic drift). Mutations, migrations and selection affect the sampling probability in a

deterministic manner. We collectively refer to these as evolutionary pressures. Mutations

and migrations result in linear changes of the sampling probability, while selection is a non-

linear pressure (Kimura 1964; Crow and Kimura 1970) and is therefore more difficult to

study analytically.

A crucial step for carrying out statistical inference in the Wright-Fisher model is the

determination of the distribution of the allele frequency (DAF) as a function of time, con-

ditional on an initial frequency. Even though the Wright-Fisher model has a very simple

mathematical formulation, no tractable analytical form exists for the DAF (Ewens 2004).

Therefore, various approximations have been developed, ranging from purely analytical to
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purely numerical. They generally either build on the diffusion limit of the Wright-Fisher, or

rely on matching moments of the true DAF. Both types of approximations have been used

successfully for inference of populations divergence times (Sirén et al. 2011; Gautier and

Vitalis 2013), populations admixture (Pickrell and Pritchard 2012), SNPs under selection

(Gautier et al. 2010) and selection coefficients from time serial data (Malaspinas et al. 2012;

Steinrücken et al. 2014; Terhorst et al. 2015).

Wright (1945) was the first to use the diffusion approximation to determine the stationary

DAF. Kimura (1955) solved the diffusion limit and found the time-dependent distribution for

pure drift, and Crow and Kimura (1956) extended the solution to include linear evolutionary

pressures. However, these contain infinite sums, making their use cumbersome in practice.

After decades dominated by inference based on the dual coalescent process (Rosenberg and

Nordborg 2002; Hoban et al. 2012), diffusion has recently received increasing attention, and

researchers have started to investigate other ways to solving analytically or approximating

the diffusion equation (McKane and Waxman 2007; Waxman 2011; Malaspinas et al. 2012;

Song and Steinrücken 2012; Zhao et al. 2013; Steinrücken et al. 2013; Steinrücken et al.

2014).

Moment-based approximations are less ambitious in that they aim at fitting mathematical

convenient distributions by equating the first moments of the true DAF. Such approximations

typically use either the normal distribution (Nicholson et al. 2002; Coop et al. 2010; Gautier

et al. 2010; Pickrell and Pritchard 2012; Terhorst et al. 2015) or the beta distribution (Balding

and Nichols 1995; Balding and Nichols 1997; Sirén et al. 2011; Sirén 2012). The rationale

behind the use of these distributions is two-fold. Firstly, they are motivated by the diffusion

limit: the normal distribution is the resulting DAF when drift is small (Nicholson et al.

2002), while the beta distribution is the stationary DAF under linear evolutionary pressures

(Wright 1945; Crow and Kimura 1956). Secondly, they are entirely determined by their mean

and variance. One major difference between the two is their support. Because the normal

distribution is defined over the whole real line, it needs to be truncated to [0, 1] (Nicholson
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et al. 2002; Coop et al. 2010; Gautier et al. 2010). The truncated normal distribution has two

atoms at zero and one (corresponding to the allele being lost or fixed) containing the densities

in the intervals (−∞, 0] and [1,∞), respectively. However, the truncation procedure leads to

a variance that no longer matches the variance of the true DAF (Gautier and Vitalis 2013).

Alternatively, the full distribution can be applied for intermediary frequencies only, when

the probabilities of lying outside the zero and one boundaries are small and can therefore be

ignored (Pickrell and Pritchard 2012; Terhorst et al. 2015). Unlike the normal distribution,

the beta distribution has the interval [0, 1] as support, but, due to its continuous nature,

the probabilities at the boundaries will always be zero. Under a Wright-Fisher model, the

loss and fixation events have a positive probability. The beta distribution provides a good

fit for intermediary frequencies, but fails at capturing the non-zero boundary probabilities,

as illustrated for pure drift in Figure 1A – C. When time is small, most of the probability

mass is found close to the initial value x0 (Figure 1A). As time becomes larger, the allele

frequency drifts away from x0 and more and more probability accumulates at the boundaries

(Figure 1B and C).

Here, we propose an accurate extension of the beta distribution under linear evolutionary

pressures, entitled the beta with spikes, which explicitly models the probabilities at the

boundaries. We show that the addition of spikes greatly improves the fit to the true DAF.

We use simulation experiments and published chimpanzee exome data to demonstrate that

the beta with spikes can be used for inference of population divergence times under pure

drift, with performance comparable with a state-of-the-art diffusion-based method, and less

computational burden. We additionally discuss how the beta with spikes can be used in

future development to account for variable population size and selection.

Here, we propose an accurate extension of the beta distribution under linear evolutionary

pressures, entitled the beta with spikes, which explicitly models the probabilities at the

boundaries. We show that the addition of spikes greatly improves the fit to the true DAF.

We use simulation experiments and published chimpanzee exome data to demonstrate that
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Figure 1: Fit of the beta and beta with spikes approximations. The figure shows the true

discrete DAF as given by the Wright-Fisher model with a population size 2N = 200 under

pure drift, and the corresponding discretized beta (A – C) and beta with spikes (D – F)

approximations. The distributions are conditional on an initial frequency x0 = 0.2 and for

different time points: t/2N = 0.035 (A, D), t/2N = 0.115 (B, E) and t/2N = 0.195 (C,

F), where t is the number of discrete generations that the population has evolved. The

discretization procedure is detailed in the Supplementary Material.

the beta with spikes can be used for inference of population divergence times under pure

drift, with performance comparable with a state-of-the-art diffusion-based method, and less

computational burden.

THE BETA WITH SPIKES APPROXIMATION

Consider a diploid randomly mating population of size 2N and a biallelic locus with alleles

A1 and A2. Under a Wright-Fisher model, the count of one of the alleles, A1, at the discrete

generation t is a random variable Zt ∈ {0, 1, . . . , 2N}. Let Xt = Zt/(2N) be the correspond-

ing allele frequency. The evolution of Zt is shaped by random genetic drift and deterministic

evolutionary pressures. We capture the joint effect of the deterministic pressures in g(x), a

polynomial in the allele frequency 0 ≤ x ≤ 1. Conditional on Zt, Zt+1 follows a binomial
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distribution (Ewens 2004)

Zt+1 | Zt = zt ∼ Bin(2N, g(xt)). (1)

Here, we only consider linear evolutionary pressures, such as mutation and migration. Then

g(x) takes the form

g(x) = (1− a)x+ b. (2)

The parameters a and b verify that 0 ≤ b ≤ a ≤ 1 such that 0 ≤ g(x) ≤ 1 for all 0 ≤ x ≤ 1.

The case where a = 1, for which g(x) = b for all 0 ≤ x ≤ 1, has no biological meaning and

we therefore assume that a 6= 1.

Under pure drift, a = b = 0. If mutations happen with probabilities u (from A1 to A2)

and v (from A2 to A1), then a = u + v and b = v. Migration can be modeled, for example,

by assuming that individuals can migrate away from the population under study and that

there is an influx of individuals from a large population with constant frequency xc. Then,

with probabilities m1 and m2, individuals migrate from and to the population under study,

respectively. We have a = m1 and b = m2xc. Mutation and migration can be modeled

jointly, resulting in a = m1 + (1−m1)(u + v) and b = (1 −m1)v + m2xc. In the following,

we treat the general linear case.

We are interested in the distribution of allele frequency (DAF) Xt conditional on X0 = x0,

as a function of the generation t,

f(x; t) = P (Xt = x | X0 = x0 ) . (3)

For simpler notation, we leave out the explicit condition on X0 = x0, and implicit condition

on population size and evolutionary pressures.

Under the beta approximation, the DAF is

fB(x; t) =
xαt−1 (1− x)βt−1

B (αt, βt )
, (4)
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where B (α, β ) is the beta function. The two shape parameters of the beta distribution are

entirely determined by its mean and variance,

αt =

(
E [Xt ] (1− E [Xt ])

Var (Xt )
− 1

)
E [Xt ] ,

βt =

(
E [Xt ] (1− E [Xt ])

Var (Xt )
− 1

)
(1− E [Xt ]) .

(5)

Therefore, in order to fit fB to f , we need to calculate E [Xt ] and Var (Xt ). These can

be obtained in closed analytical form (see Supplementary Material for full derivation). The

mean is entirely determined by the initial frequency x0 and the parameters a and b of the

linear evolutionary pressures, while the variance also depends on the population size. Under

pure drift (a = b = 0) we have

E [Xt ] = x0,

Var (Xt ) = x0 (1− x0)

(
1−

(
1− 1

2N

)t)
.

(6)

When a 6= 0 we get

E [Xt ] =
b

a
+ (1− a)t

(
x0 −

b

a

)
,

Var (Xt ) =
b

a

(
1− b

a

)
1− (1− a)2t

(
1− 1

2N

)t
2N − (1− a)2 (2N − 1)

+

(
1− 2b

a

)(
x0 −

b

a

)
(1− a)t

1− (1− a)t
(
1− 1

2N

)t
2N − (1− a) (2N − 1)

−
(
x0 −

b

a

)2

(1− a)2t

(
1−

(
1− 1

2N

)t)
.

(7)

In the limit of infinite population size, the above formulas are equivalent to the mean

and variance obtained by Sirén (2012) (up to some minor typographical errors, as confirmed

by correspondence with the author; see also Supplementary Material).

To account for loss and fixation probabilities, we surround the beta distribution with two
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spikes

f ?B(x; t) = P (Xt = 0 ) · δ(x)

+ P (Xt = 1 ) · δ(1− x)

+ P (Xt 6∈ {0, 1} ) · x
α?
t−1 (1− x)β

?
t −1

B (α?t , β
?
t )

,

(8)

where δ(x) is the Dirac delta function and P (Xt 6∈ {0, 1} ) = 1−P (Xt = 0 )−P (Xt = 1 ).

To fit f ?B to f , we need to determine the mean and variance of Xt conditional on polymor-

phism (Xt 6∈ {0, 1}), and the probabilities P (Xt = 0 ) and P (Xt = 1 ) of loss and fixation,

respectively. Given E [Xt ], Var (Xt ), P (Xt = 0 ) and P (Xt = 1 ), the conditional mean

and variance can easily be calculated (see Supplementary Material). Therefore, we only

require means of calculating the loss and fixation probabilities in order to fully specify the

beta with spikes approximation. We use a recursive approach where we calculate the prob-

abilities for Xt+1 by relying on the approximated f ?B(x; t). We additionally assume that a

and b are small to obtain the following approximation for loss and fixation probabilities (see

Supplementary Material for full derivation)

P (Xt+1 = 0 ) ≈ P (Xt = 0 ) · (1− b)2N

+ P (Xt = 1 ) · (a− b)2N

+ P (Xt 6∈ {0, 1} ) · (1− a)2N
B (α?t , β

?
t + 2N )

B (α?t , β
?
t )

,

P (Xt+1 = 1 ) ≈ P (Xt = 0 ) · b2N

+ P (Xt = 1 ) · (1− a+ b)2N

+ P (Xt 6∈ {0, 1} ) · (1− a)2N
B (α?t + 2N, β?t )

B (α?t , β
?
t )

.

(9)

Figure 1D – F depicts the beta with spikes approximation for the same cases as in

Figure 1A – C. When time is small (Figure 1A and D), the beta and beta with spikes

distributions are equivalent, but as the time becomes larger, the advantage of adding the

spikes becomes evident. As illustrated in supplementary Figure S1, the addition of spikes
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Figure 2: History of three populations in the present. The ancestral population 5 splits

in populations 3 and 4, which further splits in populations 2 and 1. For each SNP i and

present population j ∈ {1, 2, 3}, the data consists of the sample size nij and allele count zij.

The branch length between populations k and j is given as (t/2N)k�j and represents the

scaled number of generations that population j evolved since the split from the ancestral

population k. The unknown allele frequencies of each population are denoted as Xij, with

1 ≤ j ≤ 5.

drastically improves the fit of the beta approximation to the true DAF under a Wright-Fisher

model.

INFERENCE OF DIVERGENCE TIMES

To further illustrate the advantage of incorporating the spikes, we inferred divergence times

between populations, using both simulated data and exome sequencing data from three

chimpanzee subspecies (Bataillon et al. 2015).

Populations are represented as successive descendants of a single ancestral population.

We assume that after each split, the new populations evolved in isolation (no migration)

under pure drift. A rooted tree (Figure 2) can be used to describe the joint history of

several present populations, located at the leaves, while the common ancestral population

is represented as the root. The data D = {(zij, nij) | 1 ≤ i ≤ I, 1 ≤ j ≤ J} consist of I

independent SNPs for J populations in the present: the (arbitrarily defined) reference (A1)

allele count zij in a sample of size nij (0 ≤ zij ≤ nij) for each locus 1 ≤ i ≤ I and population

1 ≤ j ≤ J .
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Conditional on the topology (i.e. tree without branch lengths), we inferred the scaled

branch lengths by numerically maximizing the likelihood of the data.

Likelihood of the data: Assuming Hardy-Weinberg equilibrium, the probability of ob-

serving zij alleles in a sample of size nij given the population allele frequency xij is given by

the binomial distribution

P ( zij | nij, xij ) =

(
n

zij

)
x
zij
ij (1− xij)nij−zij . (10)

However, the allele frequencies xij are unobserved and the likelihood of the data Di for

SNP i is obtained by integrating over the unknown allele frequencies

L(Di; Θ, π) =

∫ 1

0

. . .

∫ 1

0

f(Xi1, Xi2, . . . , XiJ | Θ, π)

·
J∏
j=1

P ( zij | nij, Xij ) dXi1 . . . dXiJ ,

(11)

where f(Xi1, Xi2, . . . , XiJ | Θ, π) is the joint distribution of the Xij’s at the leaves. The

likelihood is a function of the scaled branch lengths, denoted here as Θ, and π, the unknown

DAF at the root. The joint distribution f(Xi1, Xi2, . . . , XiJ | Θ, π) is, in turn, an integral

over the allele frequencies in the ancestral populations, represented as internal nodes in the

tree. We approximate the integrals with sums by discretizing the allele frequencies. The

discretized joint distribution is then obtained using a peeling algorithm (Felsenstein 1981),

where the transition probabilities on each branch are given by the DAF (see Supplementary

Material for details). As the SNPs are assumed to be independent, the full likelihood is a

product over the SNPs,

L(D; Θ, π) =
I∏
i=1

L(Di; Θ, π). (12)

As SNP data contains only polymorphic sites, we further condition the above likelihood

on polymorphic data as follows

L(Di; Θ, π | polymorphismi) =
L(Di; Θ, π)

P ( polymorphismi | Θ, π )
, (13)
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where

P ( polymorphismi | Θ, π ) = 1− L(D0
i ; Θ, π)− L(D1

i ; Θ, π). (14)

Here, D0
i and D1

i are data corresponding to site i where the allele was lost or fixed, respec-

tively, in the samples from all populations,

D0
i = {(0, nij) | 1 ≤ j ≤ J}, D1

i = {(nij, nij) | 1 ≤ j ≤ J}. (15)

We treat π, the root DAF, as a nuisance parameter assumed to be a beta distribution.

For a given topology (i.e. tree without branch lengths), the most likely branch lengths and

shape parameters of π can be recovered by numerically maximizing the likelihood conditional

on polymorphism.

Simulated data: Using the topology depicted in Figure 2, we simulated multiple data sets

containing independent SNPs under a Wright-Fisher model, given an acenstral frequency Xi5

sampled from π, the root DAF, which we set to be a beta distribution. We used two different

scenarios, labeled I and II, summarized in Table 1. Scenario I has a uniform π and large

sample sizes, while scenario II is built to produce data that resembles the chimpanzee exome

data analyzed below. For this, we used the chimpanzee sample sizes, and scaled branch

lengths and root DAF as inferred by the beta with spikes on the chimpanzee data (see also

Table 2).

For each simulated data set, we estimated the branch lengths using both the beta and beta

with spikes as described previously. We additionally ran Kim Tree (Gautier and Vitalis 2013)

using the default settings. Kim Tree is a method designed for inference of divergence times

between populations evolving under pure drift. It uses Kimura’s solution to the diffusion

limit for the DAF (Kimura 1955) and relies on a Bayesian MCMC approach. Here, we use

the posterior means of the branch lengths as point estimates.

All methods estimate well the branches leading to populations 1 and 2 (Figure 3). Beta

with spikes estimates the branch lengths more accurately and with lower variance than the
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Figure 3: Inference of divergence times for simulation scenarios I (A) and II (B). The figure

shows boxplots summarizing the inferred lengths for the four branches of the tree, indicated

at the top of each column in black. The inferred lengths are plotted for beta (B), beta with

spikes (BS) and Kim Tree (Gautier and Vitalis 2013) (KT). The (true) simulated length of

each branch is plotted as a horizontal line. Each plot is scaled relative to the corresponding

simulated branch length τ , with the limits of the y-axis set to [τ · 0.1, τ · 1.5].

beta approximation (see also supplementary Figure S2). Despite the fact that the spikes

probabilities do not perfectly match the true loss and fixation probabilities (Figure 1E and

F), this seems to have little effect on the accuracy of branch length estimation for beta with

spikes. For both scenarios, the branch leading to population 2 and the inner branch from

the root to population 4 have similar lengths, but the beta approximation and Kim Tree

provide a worse estimate for the inner branch. This could be due to the fact that there is no

data available resulting directly from the evolution on that branch, making the estimation

problem harder. A similar result was obtained by Gautier and Vitalis (2013), where trees

with the same topology were used. Interestingly, beta with spikes recovers the inner branch

much more accurately than either beta and Kim Tree. When measuring the accuracy of the
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Table 1: Simulation study scenarios.

scenario I scenario II

(t/2N)4�1 40/(2 · 200) = 0.1 132/(2 · 500) = 0.132

(t/2N)4�2 40/(2 · 150) = 0.133 44/(2 · 500) = 0.044

(t/2N)5�4 40/(2 · 150) = 0.133 14/(2 · 250) = 0.028

(t/2N)5�3 80/(2 · 200) = 0.2 300/(2 · 250) = 0.6

shape parameters of π 1, 1 0.0188, 0.0195

number of SNPs 5, 000 10, 000

sample sizes ni1, ni2, ni3 100, 100, 100 22, 24, 12

replicates 50 50

The table indicates the values used for the branch lengths (t), population sizes (N) and scaled branch lengths

(t/2N), shape parameters of the beta distribution π, the root DAF, number of SNPs and sample sizes used

in the two simulation scenarios.

inferred lengths as an average over all four branches (supplementary Table S1), it is clear

that beta with spikes outperforms Kim Tree for both scenarios.

Chimpanzee data: The chimpanzee data analyzed here consisted of allele counts of au-

tosomal synonymous SNPs obtained from exome sequencing of the Eastern, Central and

Western chimpanzee subspecies (Bataillon et al. 2015) for 11, 12 and 6 individuals, respec-

tively. From the original data set containing 59,905 synonymous SNPs, we filtered the SNPs

where there was missing data, obtaining a total of 42,063 SNPs. We inferred the scaled

branch lengths (Figure 4 and Table 2) using beta, beta with spikes and Kim Tree on the full

data set and on 50 smaller data sets containing only 10,000 randomly sampled SNPs. Beta

with spikes and Kim Tree infer comparable branch lengths, with the exception of the branch

leading to the Western chimpanzee subspecies (population 3). We additionally report in Ta-

ble 2 the likelihood of the full data calculated using beta with spikes for the branch lengths
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Figure 4: Inference of divergence times for the chimpanzee exome data. The figure shows

boxplots summarizing the inferred lengths using 50 data sets with 10,000 SNPs that where

randomly sampled from the full data set. The corresponding tree branches are indicated at

the top of each plot in black. The inferred lengths are plotted for beta (B), beta with spikes

(BS) and Kim Tree (Gautier and Vitalis 2013) (KT). The non-solid lines indicate the inferred

lengths when running the methods on the full data set of 42,064 SNPs. The populations at

the leaves are: Eastern (1), Central (2) and Western (3). Each plot is scaled relative to the

corresponding branch length τ inferred by the beta with spikes on the full data set. The

limits of the y-axis are set to [τ · 0.05, τ · 1.5].

inferred using the three methods and the ones reported in the original study (Bataillon et al.

2015). Bataillon et al. (2015) used an ABC approach to fit a demographic model to the

synonymous SNPs. Their results are consistent with the ones obtained here for the branches

leading to the Eastern (population 1) and Central (population 2) chimpanzees. However, we

obtain very different estimates for the remaining two branches. The likelihood in Table 2

indicates that the differences between beta with spikes and beta / Kim Tree / ABC are

not merely a result of the numerical optimization being trapped in a local optimum, as the

branch lengths obtained by the beta with spikes have the highest likelihood. The discrep-

ancy between the beta with spikes and the ABC results is, perhaps, not surprising, as the

difference in inferred branch lengths seems to correlate with the goodness of fit of the ABC
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Table 2: Inferred scaled branch lengths for the chimpanzee exome data.

Method (t/2N)4�1 (t/2N)4�2 (t/2N)5�4 (t/2N)5�3 log L

Beta 0.273 0.086 0.002 0.955 -209646

Beta with spikes 0.132 0.044 0.028 0.595 -204045

Kim Tree 0.160 0.019 0.018 0.729 -205838

ABC (Bataillon et al. 2015) 0.183 0.027 0.333 1.914 -233802

The notation follows the one in Figure 2 and the populations (1 to 5) correspond to the ones in Figure 4, with

the leaves population: Eastern (1), Central (2) and Western (3). The last column shows the corresponding

log likelihood calculated using beta with spikes.

demographic model to the observed data. Bataillon et al. (2015) report that their inferred

demographic model shows a very good fit for the Central chimpanzees (difference in inferred

branch length: 0.017), a slightly less good fit for the Eastern chimpanzees (difference in

inferred branch length: 0.051) and a poorer fit for the Western chimpanzees (difference in

inferred branch length: 1.319).

DISCUSSION

We have developed a new approximation to the distribution of allele frequency (DAF) as a

function of time, conditional on an initial frequency, under a Wright-Fisher model with linear

evolutionary pressures. Our work provides an accurate extension of the beta approximation

(Balding and Nichols 1995; Balding and Nichols 1997; Sirén et al. 2011; Sirén 2012). As noted

by Gautier and Vitalis (2013), the beta distribution ignores the possibility of loss or fixation

of alleles. We addressed this issue by explicitly modeling the loss and fixation probabilities

as two spikes at the boundaries. We showed that the addition of the spikes improves the

quality of the approximation and results in more exact inference of divergence times between

populations. We expect the beta with spikes to provide a less accurate approximation to the

true DAF than the diffusion limit. Nevertheless, we showed that it can infer divergence times
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just as accurately as Kim Tree (Gautier and Vitalis 2013), a software built for inference of

divergence times using Kimura’s solution to the diffusion limit (Kimura 1955).

Computational complexity: The advantage of the beta with spikes becomes more

clear when one considers its computational complexity. Diffusion methods rely on heavy

computations, such as calculations of Gegenbauer polynomials (Gautier and Vitalis 2013),

spectral decomposition of large matrices (Steinrücken et al. 2013; Steinrücken et al. 2014) or

matrix inverse (Zhao et al. 2013). In contrast, the beta with spikes requires operations which

are performed in constant time per iteration. Perhaps the most expensive evaluation is the

beta function used in the loss and fixation probabilities, but very efficient approximations

exist for this (Abramowitz and Stegun 1964). The difference in computational complexity is

noticeable when comparing the running times of beta with spikes, implemented in python

2.7, and Kim Tree, implemented in Fortran. For the chimpanzee data set of 42,063 SNPs,

beta with spikes ran in just under 5 minutes, while Kim Tree took almost an hour, even

though python 2.7 is a programming language less efficient than Fortran. We also note that

the two inference methods are inherently different, as here we used a numerical optimization

procedure, while Kim Tree uses a Bayesian MCMC approach.

Extensions: We end this section by discussing possible extensions of the beta with spikes

approximation and how these can be used in inference problems. Throughout this paper, we

assumed that the population size is constant. Due to its recursive formulation, the beta with

spikes lends itself naturally to incorporating variable population size, without any increase in

computational complexity. This can then be used for inference of population size backwards

in time, similar to methods relying on the coalescent with recombination (Li and Durbin

2011; Sheehan et al. 2013; Schiffels and Durbin 2014). A recently published method (Liu

and Fu 2015) illustrates that allele frequency data, summarized as site frequency spectra,

can be efficiently used for inference of variable population size backwards in time. Even
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though Liu and Fu (2015) assume sites are independent and do not use linkage information,

their method can handle larger data sets than Li and Durbin (2011), which leads to more

accurate inference of population sizes for the recent past. The results obtained by Liu and

Fu (2015) indicate that the beta with spikes could be successfully used for such demographic

inference.

Another extension of the presented approximation would be to incorporate selection,

which is a non-linear evolutionary pressure. In the recent years, there has been a great fo-

cus on inference of selection coefficients from time-series data under a Wright-Fisher model

(Malaspinas et al. 2012; Bank et al. 2014; Steinrücken et al. 2014; Foll et al. 2015; Ter-

horst et al. 2015). A newly developed statistical method aims at modeling the evolution

of multi-locus alleles under a Wright-Fisher model with selection (Terhorst et al. 2015), by

fitting a multivariate normal distribution from the first moments of the DAF. Using the

approach of Terhorst et al. (2015) for moment calculation, the beta with spikes can be ex-

tended to non-linear evolutionary pressures. Terhorst et al. (2015) do not treat the loss and

fixation probabilities. However, as selection is expected to drive allele frequencies towards

the boundaries faster than pure drift, including the explicit spikes becomes crucial.

AVAILABILITY

The beta, beta with spikes approximations, inference of divergence times and simulation

under a Wright-Fisher model were implemented in python 2.7. The code is freely available

at https://github.com/paula-tataru/SpikeyTree.
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