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Abstract: The increased availability of both open ecological data, and software to interact with it, allows the22

fast collection and integration of information at all spatial and taxonomic scales. This offers the opportunity23

to address macroecological questions in a cost-effective way. In this contribution, we illustrate this approach24

by forecasting the structure of a stream food web at the global scale. In so doing, we highlight the most salient25

issues needing to be addressed before this approach can be used with a high degree of confidence.26
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Ecologists are often asked to provide information and guidance to solve a variety of issues, across30

different scales. As part of the global biodiversity crisis, notable examples include predicting the31

consequences of the loss of trophic structure (Estes et al. 2011), rapid shifts in species distribu-32

tions (Gilman et al. 2010), and increased anthropogenic stress on species and their environment.33

Most of these pressing issues require the integration of a variety of ecological data and information,34

spanning different geographical and environmental scales, to be properly addressed (Thuiller et al.35

2013). Because of these requirements, relying solely on de novo sampling of the ecological systems36

of interests is not a viable solution on its own. Chiefly, there are no global funding mechanisms37

available to finance systematic sampling of biological data, and the spatial and temporal scales re-38

quired to acquire meaningful data on biodiversity change are such that it would take a long time39

before realistic data would be available to support the decision process. While that data collection40

must continue, we propose that there are a large number of macroecological questions that could41

be addressed without additional data or with data acquired at minimal cost, by making use of open42

data and community-developed software and platforms.43

Existing datasets can, to an increasing extent, be used to build new datasets (henceforth synthetic44

datasets, since they represent the synthesis of several types of data). There are several parallel45

advances that make this approach possible. First, the volume of data on ecological systems that46

are available openly increases on a daily basis. This includes point-occurrence data (as in GBIF or47

BISON), but also taxonomic knowledge (through ITIS, NCBI or EOL) or trait and interactions data.48

In fact, there is a vast (and arguably under-exploited) amount of ecological information, that is now49

available without having to contact and secure authorization from every contributor individually.50

Second, these data are often available in a programmatic way; as opposed to manually visiting data51

repositories, and downloading or copy-and-pasting datasets, several software packages offer the52

opportunity to query these databases automatically, considerably speeding up the data collection53

process. As opposed to manual collection, identification, and maintenance of datasets, most of54

these services implement web APIs (Application Programming Interface, i.e. services that allow55

users to query and/or upload data in a standard format). These services can be queried, either once56

2

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2015. ; https://doi.org/10.1101/021402doi: bioRxiv preprint 

https://doi.org/10.1101/021402
http://creativecommons.org/licenses/by/4.0/


or on a regular basis, to retrieve records with the desired properties. This ensures that the process57

is repeatable, testable, transparent, and (as long as the code is properly written) nearly error proof.58

Finally, most of the heavy lifting for these tasks can be done through a burgeoning ecosystem of59

packages and software that handles query formatting, data retrieval, and associated tasks, all the60

while exposing simple interfaces to researchers. None of these are new data, in the sense that these61

collections represent the aggregation of thousands of ecological studies; the originality lies in the62

ability to query, aggregate, curate, and use these data consistently and in a new way using open63

solutions.64

Hypothesis testing for large-scale systems is inherently limited by the availability of suitable datasets65

– most data collection results in small scale, local data, and it is not always clear how these can be66

used at more global scales. Perhaps as a result, developments in macroecology have primarily been67

driven by a search for patterns that are very broad both in scale and nature (Keith et al. 2012, Beck-68

nell et al. 2015). While it is obvious that collecting exhaustive data at scales that are large enough69

to be relevant can be an insurmountable effort (because of the monetary, time, and human costs70

needed), we suggest that macroecologists could, in parallel, build on existing databases, and aggre-71

gate them in a way that allows direct testing of proposals stemming from theory. To us, this opens72

no less than a new way for ecologists to ask critical research questions, spanning from the local to73

the global, and from the organismal to the ecosystemic, scales. Here, we (i) outline approaches for74

integrating data from a variety of sources (both in terms of provenance, and type of ecological in-75

formation), (ii) identify technical bottlenecks, (iii) discuss issues related to scientific ethics and best76

practice, and (iv) provide clear recommendations moving forward with these approaches at larger77

scales. Although we illustrate the principles and proposed approaches with a real-life example, the78

objective of this paper is to highlight the way different tools can be integrated in a single study, and to79

discuss the current limitations of this approach. This approach can, for example, prove particularly80

fruitful if it allows researchers to either offer new interpretation of well-described macroecological81

relationships, or to provide tests of hypotheses suggested by theoretical studies (Levin 2012).82

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2015. ; https://doi.org/10.1101/021402doi: bioRxiv preprint 

https://doi.org/10.1101/021402
http://creativecommons.org/licenses/by/4.0/


1 An illustrative case-study83

Food-web data, that is the determination of trophic interactions among species, are notoriously dif-84

ficult to collect. The usual approach is to assemble literature data, expert knowledge, and additional85

information coming from field work, either as direct observation of feeding events or through gut-86

content analysis. Because of these technical constraints, food-web data are most often assembled87

based on sampling in a single location. Assessments of food web structure over space may there-88

fore require comparisons of communities composed of different taxa. As a consequence, most food89

web properties over large (continental, global) spatial extents remain undocumented. For example,90

what is the relationship between latitude and connectance (the density of feeding interactions)? One91

possible way to approach this question is to collect data from different localities, and document the92

relationship between latitude and connectance through regressions. The approach we illustrate uses93

broad-scale data integration to forecast the structure of a single system at the global scale (Pellissier94

et al. 2013). We are interested in predicting the structure of a pine-marsh food web, worldwide.95

1.1 Interactions data96

The food-web data were taken from Thompson et al. (2012), as made available in the IWDB database97

(https://www.nceas.ucsb.edu/interactionweb/html/thomps_towns.html) – starting from98

the Martins dataset (stream food web from a pine forest in Maine). Wetlands and other fresh-99

water ecosystems are critically endangered and serve as a home to a host of endemic biodiversity100

(Fensham et al. 2011, Minckley et al. 2013). Stream food webs in particular are important because101

they couple terrestrial and aquatic communities and ensure the maintenance of ecosystem services102

such as freshwater quality and flood regulation. Anthropogenic pressure on wetlands makes them103

particularly threatened. They represent a prime example of ecosystems for which data-driven pre-104

diction can be used to generate scenarios at a temporal scale relevant for conservation decisions,105

and at a faster rate than sampling allows.106
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The data from the original food web had 105 nodes, including vague denominations like Unidenti-107

fied detritus or Terrestrial invertebrates. First, we aggregated all nodes to the genus level. Due to108

the high level of structure in trophic interactions emerging from taxonomic rank alone (Eklof et al.109

2011, Stouffer et al. 2012, Eklöf and Stouffer 2015), aggregating to the genus level has the double110

advantage of (i) removing ambiguities on the identification of species and (ii) allowing integration111

of data when any two species from given genera interact. Second, we removed all nodes that were112

not identified (Unidentified or Unknown in the original data). The cleaned network documented113

227 interactions, between 80 genera. We then used the name-checking functions from the taxize114

package (Chamberlain and Szöcs 2013) to perform the following steps. First, all names were re-115

solved, and one of the following was applied: valid names were conserved, invalid names with a116

close replacement were corrected, and invalid names with no replacement were removed. In most117

situations, invalid names were typos in the spelling of valid ones. After this step, 74 genera with 189118

interactions remained, representing a high quality genus-level food-web from the original sampling.119

Because this food web was sampled locally, there is the possibility that interactions between genera120

are not reported; either because species from these genera do not interact or do not co-occur in121

the sampling location, or because of spatial mismatches between genus occurrence and sampling.122

To circumvent this, we queried the GLOBI database (Poelen et al. 2014) for each genus name,123

and retrieved all feeding interactions; this includes taxa from the original dataset, but also taxa that124

establish interactions with them even though these were not observed in the original sample. For all125

new genera retrieved through this method, we also retrieved their interactions with genera already126

in the network. The inflated network (original data plus data from GLOBI) has 368 genera, and a127

total of 4796 interactions between them.128

As a final step, we queried the GBIF taxonomic rank database with each of these (tentatively) genera129

names. Every tentative genus that was either not found, or whose taxonomic level was not genus,130

was removed from the network.131

The code to reproduce this analysis is in the 1_get_data.r suppl. file.132
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It should be noted that this analysis relies on databases, and a vast majority of information is con-133

fined to the primary literature. While it is possible to do manual literature surveys (e.g. Strong134

and Leroux 2014), this task becomes daunting for large number of species. Initiatives like text-135

mining (Milani et al. 2012) will speed up the rate at which we can recover interactions data from136

the literature – if publishers allow researchers to mine the literature they create.137

1.2 Occurrence data and filtering138

For each genus, we retrieved the known occurrences (approx. 2 × 105) from GBIF and BISON.139

Because the ultimate goal is to perform spatial modeling of the structure of the network, we removed140

genera for which fewer than 100 occurrences in the entire dataset. This stringent filter enables us141

(i) to maintain high predictive powers for SDMs, and (ii) to work on the genera for which we have142

“high-quality” data. The cleaned foodweb had a total of 134 genera and 782 interactions, for 118269143

presences. Given the curated publicly available data, it represents the current best description of144

feeding interactions between species of this ecosystem. A visual depiction of the network is given145

in Figure 1.146

On its own, the fact that filtering for genera with over 100 records reduced the sample size from 368147

genera to 134 indicates the importance of the deposition of all observations in public databases.148

This is because the analysis we present here, although cost-effective and enabling rapid evaluation149

of different scenarios, is only as good as the underlying data. Since most modeling tools require a150

minimal sample size in order to achieve acceptable accuracy, concerted efforts by the community151

and funding agencies to ensure that the minimal amount of data is deposited upon publication or152

acquisition is needed. It must also be noted that the threshold of 100 occurrences is an arbitrary153

one.154

The approach is amenable to sensitivity analysis, and indeed this will be a crucial component of155

future analyses. A taxon can have less observations than the threshold either because of under-156
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sampling or under-reporting, or because it is naturally rare. In the context of food webs, species157

higher-up the food chain can be less common than primary producers. To which extent these rela-158

tionships between, e.g., trophic position and rarity, can influence the predictions, will have to receive159

attention.160

The code to reproduce this analysis is in the 1_get_data.r suppl. file.161

1.3 Species Distribution Model162

For each species in this subset of data, we retrieved the nineteen bioclim variables (Hijmans et163

al. 2005), with a resolution of 5 arc-minutes. This enabled us to build climatic envelope models,164

using biolcim, for each species. These models tend to be more conservative than alternate modeling165

strategies, in that they predict smaller range sizes (Hijmans andGraham 2006), but they also perform166

well overall for presence-only data (Elith et al. 2006, Elith and Graham 2009). The output of these167

models is, for species i, the probability of an observation P(i) within each pixel. We appreciate that168

this is a coarse analysis, but its purpose is to highlight how to combine different data. A discussion169

of the limitations of this approach is given below.170

The code to reproduce this analysis is in the 2_get_sdm.r suppl. file.171

1.4 Assembly172

For every interactions in the food web, we estimated the probability of it being observed in each173

pixel as the product of the probabilities of observing each species on its own: P(Lij) ∝ P(i)P(j).174

This resulted in one LDM (“link distribution model”) for each interaction. It should be noted that175

co-occurrence is considered to be entirely neutral, in that we assume that the probability that two176

species co-occur is independent (i.e. a predator is not more likely to be present if there are, or are177

not, potential prey). We also assume no variability in interactions, as in Havens (2015). It is likely178
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that, in addition to their occurrence, species co-occurrences and interactions (Poisot et al. 2015) are179

affected by climate. Whether or not these constitute acceptable assumptions has to be decided for180

each study.181

The code to reproduce this analysis is in the 3_get_ldm.r suppl. file.182

Based on this information, we generated example illustrations (using 4_draw_figures.r – Figure183

2). The system is characterized, at the world-wide scale, by an increased number of genera and184

interactions in temperate areas, with diversity and interaction hotspots in Western Europe, North-185

East and South-Atlantic America, and the western coasts of New Zealand and Australia – this is186

clearly symmetrical along the equator. Network structure, here measured by network connectance,187

follows a different trend than genera richness or interactions do. Connectance is stable along the188

gradient, but declines at extreme latitudes (Figure 2B).189

2 Challenges moving forward190

The example provided illustrates the promises of data-driven approaches. It builds on new data191

availability, new statistical and computational tools, and new ways to integrate both. Most im-192

portantly, it allows us to use “classical” ecological data in a resolutely novel way, thus presenting193

an important opportunity to bridge a gap between field-based and theory-based macroecological194

research. But as with every methodological advancement, comes a number of challenges and limi-195

tations. Here we discuss a few we believe are important. In doing so, we hope to define these issues196

and emphasize that each of them, on their own, should be the subject of further discourse.197
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2.1 Attribution stacking and intellectual provenance198

The merging of large databases has already created a conflict of how to properly attribute data199

provenance (Carroll 2015). Here there are at least two core issues that will require community200

consultation in order to be resolved. First, what is the proper mode of attribution when a very large201

volume of data are aggregated? Second, what should be the intellectual property of the synthetic202

dataset? Currently, citations (whether to articles or datasets) are only counted when they are part203

of the main text. The simple example outlined here relies on well over a thousand references, and204

it makes little sense to expect that they would be provided in the main text (nor do we expect any205

journal to accept a manuscript with over a hundred references or so, with rare exceptions). One206

intermediate solution would be to collate these references in a supplement, but it is unclear that207

these would be counted (Seeber 2008), and therefore contribute to the impact of each individual208

dataset (and hence, collector; Kueffer et al. 2011). This is a problem that we argue is best solved209

by publishers; proper attribution and credit is key to provide incentives to data release (Kenall et210

al. 2014, Whelan et al. 2014, Pronk et al. 2015). As citations are currently the “currency” of211

scientific impact, publishers have a responsibility not only to ensure that data are available (which212

many already do), but that they are recognized; data citation, no matter how many data are cited, is213

a way to achieve this goal. The synthetic dataset, on the other hand, can reasonably be understood214

as a novel product; there is technical and intellectual effort involved in producing it, and although it215

is a derivative work, we would encourage authors to deposit it anew. Nevertheless, we would like216

to see a more meaningful dialogue between editors, publishers, and authors, to determine how the217

citation of thousands of datasets ought to be handled across the editorial process.218

2.2 Sharing of code and analysis pipeline219

Ideally, authors should release their analysis pipeline (that is, the series of steps, represented by220

code, needed to reproduce the analysis starting from a new dataset) in addition to the data and221
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explanation of the steps. The pipeline can take the form of a makefile (which allows one to generate222

the results, from the raw data, without human intervention), or be all of the relevant code that223

allows to re-generate the figures and results. For example, we have released all of the R code that224

was used to generate the figures at https://zenodo.org/record/31975. Sharing the analysis225

pipeline has several advantages. First, it is a first step towards ensuring the quality of analyses,226

since reviewers can (and should reasonably be expected to) look at the source code. Second, it227

provides a template for future analyses – instead of re-developing the pipeline from scratch, authors228

can re-use (and acknowledge) the previous code base and build on it. Finally, it helps identify areas229

of future improvement. The development of software should primarily aim to make the work of230

researchers easier. Looking at commonalities in the analytical pipelines for which no ready-made231

solutions exists will be a great way to influence priorities in software development. Properly citing232

and reviewing computer code is still an issue, because software evolves whereas papers remain (for233

now) frozen in the state where they were published. Being more careful with citation, notably by234

including version number (White 2015) or using unique identifiers (Poisot 2015), will help long-235

term reproducibility.236

2.3 Computational literacy237

This approach hardly qualifies as big data; nevertheless, it relies on the management and integration238

of a large volume of heterogeneous information, both qualitatively larger than the current “norm”.239

The first challenge is being able to manage these data; it requires data management skills that are240

not usually needed when the scale of the dataset is small, and, fallible though the process may be,241

when data can reasonably be inspected manually. The second challenge is being able to manipulate242

these data; even within the context of this simple use-case, the data do not fit in the memory of243

R (arguably the most commonly known and used software in ecology) without some adjustments.244

Once these issues were overcome, running the analysis involved a few hours worth of computation245

time. Computational approaches are going to become increasingly common in ecology (Hampton et246
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al. 2012, 2013), and are identified by the community as both in-demand skills and as not receiving247

enough attention in current ecological curricula (Barraquand et al. 2014). It seems that efforts248

should be allocated to raise the computational literacy of ecologists, and recognize that there is249

value in the diversity of tools one can use to carry out more demanding studies. For example, both250

Python and Julia are equally as user friendly as Rwhile also being more powerful and better suited251

for computationally- or memory-intensive analyses.252

2.4 Standards and best practices253

In conducting this analysis, we noticed that a common issue was the identification of species and254

genera. All of these datasets were deposited by individual scientists; whether we like it or not,255

individuals are prone to failure in a very different way than the “Garbage in, garbage out” idea256

that applies to computer programs. Using tools such as taxize (Chamberlain and Szöcs 2013) can257

allow us to resolve a few of the uncertainties, yet this must be done every time the data are queried258

and requires the end user to make educated guesses as to what the “true” identity of the species259

is. These limitations can be overcome, on two conditions. Database maintainers should implement260

automated curation of the data for which they are stewards, and identify potential mistakes and261

correct them upstream, so that users download high-quality, high-reliability data. Data contributors262

should rely more extensively on biodiversity identifiers (such as TSN, GBIF, NCBI Taxonomy ID,263

etc.), to make sure that even when there are typos in the species name, they can be matched across264

datasets. Constructing this dataset highlighted a fundamental issue: the rate-limiting step is rarely265

the availability of appropriate tools or platforms, but instead it is the adoption of common standards266

and the publication of data in a way that conforms to them. In addition, Maldonado et al. (2015)267

emphasize that point-occurence data are not always properly reported – for example, the center of268

a country or region can be used when no other information is known; this requires an improved269

dialogue between data collectors and data curators, to highlight which practices have the highest270

risk of biasing future analyses.271
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2.5 Propagation of error272

There are always caveats to using synthetic datasets. First, the extent to which each component273

dataset is adequately sampled is unknown (although there exist ways to assess the overall represen-274

tativeness of the assembled dataset; Schmill et al. (2014)). This can create gaps in the information275

that is available when all component datasets are being merged. Second, because it is unlikely that276

all component datasets were acquired using reconcilable standards and protocol, it is likely that277

much of the quantitative information needs be discarded, and therefore the conservative position278

is to do qualitative analyses only. Although these have to be kept in mind, we do not think they279

are so sufficient as to prevent use and evaluation of the approach we suggest. For one thing, as280

we illustrate, at large spatial and organizational scales, coarse- grained analyses are still able to281

pick up qualitative differences in community structure. Second, most emergent properties are rel-282

atively insensitive to fine- scale error; for example, Gravel et al. (2013) show that even though a283

simple statistical model of food-web structure mispredicts some individual interactions, it produces284

communities with realistic emergent properties. Which level of error is acceptable needs to be de-285

termined for each application, but we argue that the use of synthetic datasets is a particularly cost-286

and time-effective approach for broad-scale description of community-level measures.287

3 Conclusion – why not?288

In light of the current limitations and challenges, one might be tempted to question the ultimate289

validity and utility of this approach. Yet there are several strong arguments, that should not be290

overlooked, in favor of its use. As we demonstrate with this example, synthetic datasets allow us291

to rapidly generate qualitative predictions at large scales. These can, for example, serve as a basis292

to forecast the effect of scenarios of climate change on community properties (Albouy et al. 2012,293

2014). Perhaps more importantly, synthetic datasets will be extremely efficient at identifying gaps294

in our knowledge of biological systems: either because there is high uncertainty or sensitivity to295
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choices in the model output, or because there is no available information to incorporate in these296

models. By building these datasets, it will be easier to assess the extent of our knowledge of biodi-297

versity, and to identify areas or taxa of higher priority for sampling. For this reason, using synthetic298

datasets is not a call to do less field-based science. Quite the contrary: in addition to highlighting299

areas of high uncertainty, synthetic datasets provide predictions that require field-based validation.300

Only through this feedback can we build enough confidence in this approach to apply it for more301

ambitious questions, or disqualify it altogether. Meanwhile, the use of synthetic datasets will neces-302

sitate the development of both statistical methodology and software; this is one of the required steps303

towards real-time use and analysis of ecological data (Antonelli et al. 2014). We appreciate that304

this approach currently comes with some limitations – they are unlikely to be overcome except with305

increased use, testing, and validation. Since the community already built effective and user-friendly306

databases and tools, there is very little cost (both in time and in funding) in trying these methods307

and there is also the promise of great potential.308
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1 Visual representation of the initial data. On the left, we show the food web (orig-391

inal data and interactions from GLOBI), with genera forming modules (clusters of392
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data where each dot represents one observation from BISON and GBIF (again color394
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2 Maps for the number of genera, number of interactions, and connectance in the as-396

sembled networks (on the left) as well as their underlying relationship with latitude397

(on the right). The tropics are shaded in light yellow. The average value of each398

output has been (i) averaged across latitudes and (ii) z-score transformed; this em-399

phasizes variations across the gradient as opposed to absolute values (which is a400

more conservative way of looking at the results since the predictions are qualitative). 20401
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Figure 1: Visual representation of the initial data. On the left, we show the food web (original
data and interactions from GLOBI), with genera forming modules (clusters of densely connected
nodes) in different colors. On the right, we show the occurrence data where each dot represents one
observation from BISON and GBIF (again color coded by module).
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Figure 2: Maps for the number of genera, number of interactions, and connectance in the assembled
networks (on the left) as well as their underlying relationship with latitude (on the right). The
tropics are shaded in light yellow. The average value of each output has been (i) averaged across
latitudes and (ii) z-score transformed; this emphasizes variations across the gradient as opposed to
absolute values (which is a more conservative way of looking at the results since the predictions are
qualitative).
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