Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Modeling small RNA competition in C. elegans

Joshua M. Elkington
doi: https://doi.org/10.1101/021576
Joshua M. Elkington
1Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Website Summary Small RNAs are important regulators of gene expression; however, the relationship between small RNAs is poorly understood. Studying the crosstalk between small RNA pathways can help understand how gene expression is regulated. One hypothesis suggests that small RNA competition arises from limited enzymatic resources. Therefore, a model was created in order to gain insights into this competition.

Abstract Small RNAs have been determined to have an essential role in gene regulation. However, competition between small RNAs is a poorly understood aspect of small RNA dynamics. Recent evidence has suggested that competition between small RNA pathways arises from a scarcity of common resources essential for small RNA activity. In order to understand how competition affects small RNAs in C. elegans, a system of differential equations was used. The model recreates normal behavior of small RNAs and uses random sampling in order to determine the coefficients of competition for each small RNA class. The model includes endogenous small-interfering RNAs (endo-siRNA), exogenous small-interfering RNAs (exo-siRNA), and microRNAs (miRNA). The model predicts that exo-siRNAs is dominated by competition between endo-siRNAs and miRNAs. Furthermore, the model predicts that competition is required for normal levels of endogenous small RNAs to be maintained. Although the model makes several assumptions about cell dynamics, the model is still useful in order to understand competition between small RNA pathways.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted June 26, 2015.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Modeling small RNA competition in C. elegans
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Modeling small RNA competition in C. elegans
Joshua M. Elkington
bioRxiv 021576; doi: https://doi.org/10.1101/021576
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Modeling small RNA competition in C. elegans
Joshua M. Elkington
bioRxiv 021576; doi: https://doi.org/10.1101/021576

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Subject Areas
All Articles
  • Animal Behavior and Cognition (4087)
  • Biochemistry (8762)
  • Bioengineering (6479)
  • Bioinformatics (23341)
  • Biophysics (11750)
  • Cancer Biology (9149)
  • Cell Biology (13248)
  • Clinical Trials (138)
  • Developmental Biology (7417)
  • Ecology (11369)
  • Epidemiology (2066)
  • Evolutionary Biology (15087)
  • Genetics (10399)
  • Genomics (14009)
  • Immunology (9121)
  • Microbiology (22040)
  • Molecular Biology (8779)
  • Neuroscience (47368)
  • Paleontology (350)
  • Pathology (1420)
  • Pharmacology and Toxicology (2482)
  • Physiology (3704)
  • Plant Biology (8050)
  • Scientific Communication and Education (1431)
  • Synthetic Biology (2208)
  • Systems Biology (6016)
  • Zoology (1249)