Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

How competition governs whether moderate or aggressive treatment minimizes antibiotic resistance

C. Colijn, T. Cohen
doi: https://doi.org/10.1101/021998
C. Colijn
1Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Cohen
2School of Public Health, Yale University, 60 College Street 608 New Haven, CT 06510 USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

The growing burden of antimicrobial resistance is one of the most challenging problems facing public health today, and understanding how our approaches for using antimicrobial drugs shapes future levels of resistance is crucial. Recently there has been debate over whether an aggressive (i.e. high dose) or more moderate (i.e. lower dose) treatment of individuals will most limit the emergence and spread of resistant bacteria. Here we demonstrate how one can understand and resolve these apparently contradictory conclusions. We show that a key determinant of which treatment strategy will perform best at the individual level is the extent of effective competition between resistant and sensitive pathogens within a host. We extend our analysis to the community level, exploring the spectrum between strict inter-strain competition and strain independence. From this perspective as well, we find that the magnitude of effective competition between resistant and sensitive strains determines whether an aggressive approach or moderate approach minimizes the burden of resistance in the population.

Footnotes

  • c.colijn{at}imperial.ac.uk

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted July 06, 2015.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
How competition governs whether moderate or aggressive treatment minimizes antibiotic resistance
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
How competition governs whether moderate or aggressive treatment minimizes antibiotic resistance
C. Colijn, T. Cohen
bioRxiv 021998; doi: https://doi.org/10.1101/021998
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
How competition governs whether moderate or aggressive treatment minimizes antibiotic resistance
C. Colijn, T. Cohen
bioRxiv 021998; doi: https://doi.org/10.1101/021998

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4384)
  • Biochemistry (9602)
  • Bioengineering (7100)
  • Bioinformatics (24890)
  • Biophysics (12626)
  • Cancer Biology (9968)
  • Cell Biology (14365)
  • Clinical Trials (138)
  • Developmental Biology (7966)
  • Ecology (12117)
  • Epidemiology (2067)
  • Evolutionary Biology (15998)
  • Genetics (10933)
  • Genomics (14746)
  • Immunology (9875)
  • Microbiology (23684)
  • Molecular Biology (9486)
  • Neuroscience (50911)
  • Paleontology (370)
  • Pathology (1540)
  • Pharmacology and Toxicology (2684)
  • Physiology (4022)
  • Plant Biology (8669)
  • Scientific Communication and Education (1510)
  • Synthetic Biology (2397)
  • Systems Biology (6442)
  • Zoology (1346)