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Abstract 
 
The sequential changes occurring with cancer progression are now being 
harnessed with therapeutic intent. Yet, there is no understanding of the chemical 
thermodynamics of proteomic changes associated with cancer progression/ 
cancer stage. This manuscript reveals a strong correlation of a chemical 
thermodynamic measure (known as Gibbs free energy) of protein-protein 
interaction networks for several cancer types and 5-year overall survival and 
stage in patients with cancer. Earlier studies have linked degree entropy of 
signaling networks to patient survival data, but not with stage. It appears that 
Gibbs free energy is a more general metric and accounts better for the 
underlying energetic landscape of protein expression in cells, thus correlating 
with stage as well as survival.  
 
This is an especially timely finding because of improved ability to obtain and 
analyze genomic/ proteomic information from individual patients. Yet, at least at 
present, only candidate gene imaging (FISH or immunohistochemistry) can be 
used for entropy computations. With continually expanding use of genomic 
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information in clinical medicine, there is an ever-increasing need to understand 
the thermodynamics of protein-protein interaction networks.  
 
 
Introduction 
 
Early understanding about protein-protein interaction (PPI) networks suggest that 
changes in PPI network architecture correlates with stage[1] and survival[2]. 
Paliouras et al 2011[1] used mass spectrometry on prostate clinical samples to 
show how changes in the protein-protein interaction network architecture relate 
to Gleason score and prostate specific antigen (PSA). Similarly, Freije et al.[2] 
showed that gene expression profiling of gliomas correlated with patient survival. 
In order to reduce the uncertainty inherent to a PPI network and ameliorate the 
difficulties with reconciling disparate PPI networks, one can combine PPI 
networks, transcriptome, stage and survival data.  The consolidation of PPI data 
with expression transcriptome data into a coherent abstract model is not only 
likely to improve the quality of the information in each of these previously 
unrelated data types, but also improve the data quality sufficiently to use the 
information for personalized therapies.  
 
There are several ways of measuring complexity of protein-protein interaction 
networks. Recent papers [3, 4] describe topological metrics of PPI cancer 
networks that correlate with 5-yr cancer patient survival. Breitkreutz et al 
(2012)[5] and Takemoto and Kaori (2013)[6] describe a thermodynamic measure 
based on degree distribution. A degree distribution is essentially a Boltzmann 
[7]distribution, which allows us to consider real-world thermodynamics. 
 
In the present manuscript we describe a thermodynamic measure of molecular 
PPI networks. After a brief review of how thermodynamics can be applied to 
cancer biology, we describe how to compute Gibbs free energy for cancer 
networks and show its correlation with 5-yr survival and cancer stage. 
 
Thermodynamics and entropy in particular, have been applied to biology and 
especially to cancer dynamics in the past. In one of the iterations 
thermodynamics can be applied as information entropy[8], but because there is 
no intelligent observer in nature in general or molecular information in particular, 
thermodynamic entropy is the more appropriate measure. Demetrius (2013)[9] 
reviewed the thermodynamics of biology, and described the directionality in 
evolution and the manner in which populations of different organisms enable 
growth of larger populations. An earlier work by Schneider and Kay [10] 
suggested the role of entropy in large-scale ecosystems. There are clearly 
similarities in the role of entropy in large ecosystems networks and the role of 
entropy in protein-protein interaction networks. Tseng and Tuszynski (2010)[11] 
propose that an understanding of the maximum entropy principle can lead to a 
better understanding of biological systems. Complex ecosystems maximize 
entropy to much higher degree and much more rapidly than simple ecosystems. 
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Thus, the maximization of entropy in complex biological systems parallels 
maximization of entropy in complex protein-protein interaction networks. They 
cite examples of small-scale entropy of protein folding, which can be directly 
correlated to tubulin isotypes in different cancer cell lines, and better define 
entropy of drug-protein targets. Similarly, earlier manuscripts describing classical 
Logistic, Bertalanffy and Gompertz models of tissue growth, [12]or using entropy 
production rate to calculate avascular cancer growth [13] support the relevance 
of using entropy for network analysis.  
 
At the cellular and tissue level one can calculate the entropy of an 
individual/collection cell(s) from karyotype and draw a similar analogy of the 
molecular network interactions. A number of groups have introduced the concept: 
Davies et al. discusses thermodynamic entropy of self-organization of biological 
cells and organisms[14], Metze et al. use the same ideas to describe 
pathophysiology of cancer by calculating the entropy observed in microscopic 
images of tissues[15], and Castro et al. [16]describes the use of information 
entropy using karyotypic analysis of 14 different epithelial tumor types. 
Computing Shannon information from the karyotype they found a Spearman Rho 
correlation (rs > 0.8) with 5-yr survival of cancer patients[16]. PPI networks are 
being used with increasing frequency for mining information about cancer 
dynamics, cancer progression and therapy, but there are no meaningful tools to 
analyze them. Breitkreutz et al (2012) found a correlation of degree-entropy of 
PPI with 5-yr survival[5] , introducing the concept, and the work was further 
elaborated on by Takemoto and Kaori in 2013[6].  Thus, the concept of 
mathematically analyzing complexity of networks is not new. As far back as 
1955, Rashevsky suggested that the study of topology can be applied to 
networks, and introduced degree-entropy as a network complexity measure[17]. 
His broad thinking in this purely theoretical paper discussed entropy from an 
information theory perspective, but did not suggest a connection to 
thermodynamics. The extension of information theory to thermodynamics in 
networks was made by Dehmer and Mowshowitz (2011), in a review of the varied 
entropy measures in network analysis[18]. 
 
More recently attempts are being made to combine protein-protein interaction 
network data and RNA expression data. The quest to find correlations between 
the PPI networks/transcription data and survival/prognosis has continued. In 
2012 Liu et al.[19] defined a measure called state-transition-based local network 
entropy (SNE). It is a Shannon information measure that is probabilistically, or 
conditionally, dependent on the previous state of a local dynamical network – a 
Markov process. They used RNA expression data at different stages of tumor 
development, overlayed it on protein-protein interaction (PPI) network data, and 
showed that SNE change significantly with cancer progression. Others have 
used Shannon entropy measure to show that gene expression patterns of 
melanoma and prostate cancers group according to cancer stage[20]. Shannon 
entropy, unlike degree entropy is not a thermodynamic measure.  
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We now introduce Gibbs free energy, a thermodynamic measure encompassing 
both network complexity and cell thermodynamics (as represented by 
transcriptome), and show that it can be correlated with cancer stage and survival.  
 
 
Theoretical Background  
 
The homeostasis of cells is maintained by a complex, dynamic network of 
interacting molecules ranging in size from a few dozen Daltons to hundreds of 
thousands of Daltons. Any change in concentration of one or more of these 
molecular species alters the chemical balance, or in terms of thermodynamics, 
chemical potential. These changes then percolate through the network affecting 
the chemical potential of other species. The end result are perturbations in the 
network manifesting as concentration changes, giving rise to changes in the 
energetic landscape of the cell.  These energetic changes can be described as 
chemical potential on an energetic landscape. 
 
Mutational events invariably alter the chemical potential of one or more proteins 
and/or other molecular species within a single cell. Yet, two neighboring cancer 
cells in the same microenvironment may exhibit a different energetic landscape 
because the chemical potential is different within the two cells. Naturally, when a 
bundle of cells is harvested, for example in a biopsy, and the cells are digested to 
extract RNA for transcription analysis, the transcriptome is essentially an average 
of that bundle of cells. Since many genes code for proteins, the transcriptome 
can act as a surrogate for the concentration of the proteins. To support this 
conjecture, several research groups have described correlations of mRNA with 
protein concentrations [21, 22]) and found Pearson correlation, R, to range from 
0.4 to 0.8, in a large number of experiments across five different species. More 
recently studies of the human proteome across multiple tissue types included in 
the relevant transcriptomic analysis, and found an average correlation between 
transcription signal and mass spectrometry proteomic information to be 83% 
 [23, 24]. 
 
Work more related to our own is Huang et al. (2005)[25] who proposed that RNA 
expression data are surrogate metrics for the protein state of cells and represent 
the concentration of specific numbers of individual proteins exposed to either 
dimetholsulfoxide or all-trans-retinoic acid. Thus, the authors first introduced the 
concept of a chemical energy landscape for cells. Following exposure to the 
chemical perturbation, the gene expression data were collected at different time 
points, cleaned to remove low expression genes, and a self-organizing map 
created. A principal component analysis was then used to produce a map 
showing the energetic (chemical potential) trajectory of the cells.  The 
transcriptome has been shown to correlate with protein concentrations [23, 24], 
and can be generally correlated to the state of the cell. Certainly there are high-
throughput protein concentration techniques [26], but the transcriptome provides 
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a higher number of measurements (probes) identified with gene label and readily 
mapped to protein-protein interaction networks (e.g. BioGrid.org). 
 
The dynamics of cells are coordinated and controlled by protein-protein 
interactions, and the complete set (known) protein–protein interactions (PPI) 
gives rise to a network. The state-of-the-art database of these PPI networks is 
Biogrid (http://thebiogrid.org ), described by Breitkreutz et al. (2002)[27].  It 
should be stressed that, even though state-of-the-art today, it is not complete, 
and does not describe the full species-specific PPI networks. There are several 
reasons for this, and they include the fact that the proteome has not been fully 
mapped from open-reading frames to genes and proteins. Consequently, 
calculations of the networks’ properties such as entropy or the Gibbs free energy 
should be taken as estimates reflecting the present state of knowledge about 
these networks. 
 
We report the outcomes of merging two types of data, transcriptome and PPI 
networks, to compute the energetic state of cancer. We show a correlation 
between the Gibbs free energy and 5-yr patient survival for different cancers. 
Similarly, we show a correlation with Gibbs free energy and cancer stage for liver 
cancer and prostate cancer as two illustrative examples. In the following 
paragraphs we describe the calculation of Gibbs free energy of cells, outline the 
data sources, and present the results and discussion.  We hypothesize that 
transcriptome information can be combined with existing PPI networks and 
calibrated using Gibbs free energy thus improving the quality of the information 
with the ultimate goal of enabling future use of transcriptomic information for 
targeted therapies in clinic.  
 
Our basic hypothesis is that protein-protein interaction (PPI) networks, with the 
transcriptome acting as surrogate to protein concentration, can be used to 
compute an estimate of the Gibbs free energy of a cell, or a tumor given the 
available data. Gibbs free energy, by providing a measure of network complexity 
and robustness can, in turn, predict the success or failure of therapeutic 
interventions. The interaction network characterizes PPIs with no regard for time, 
i.e. the network is time invariant and does not show any time dynamics. The 
implicate interactions can represent either primary or secondary bonding. In 
either case the reaction can be represented as: 
 

 
�

A+B
k

f

k
r

⎯ →⎯← ⎯⎯ AB   (1.1)  

 
where A and B are two proteins and their interaction product is AB, and kf and kr 

are the forward and reverse reaction rate constants, respectively.  When this 
reaction takes place there is associated with it a bonding free energy (Connors, 
1987)[28]. The forward and reverse rate constants are not necessarily equal. 
From standard physical chemistry we can write the Gibbs free energy of this 
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reaction as: , where the symbols represent the change in Gibbs 
free energy, G; the change in enthalpy, H, and the change in entropy, S .  
 
Proteins do not interact simultaneously with large numbers of neighbors, as 
would be implied by the PPI network view of some hub proteins (e.g. p53). 
Instead the hub protein may be interacting with one or two neighbors at a time 
forming a complex nanomachine part such as a ribosome. We make the 
ensemble assumption that many copies of the hub protein may be located in 
many places in cells and each of the copies may be interacting with a different 
protein partner. Therefore, we can assume an ensemble of the protein of interest, 
as well as that its interactions with its neighbors are akin to an ideal gas mixture. 
 
To help in the understanding of the calculation of Gibbs free energy from the 
transcriptome and the PPI, we present a simple example shown in Figure 1.  
Figure 1 shows a small network with individual nodes (proteins) within the 
network (labeled A, B, C, D, E, and F). For example, D represent a protein 
connected to E, C, and F by its edges (or links), which represent the interactions 
between the proteins. Because there is no directionality assigned to the links, the 
network is said to be an undirected. We compute the Gibbs free energy for 
protein D below. The network reveals that protein D interacts with proteins C, E, 
and F, and assuming an ideal mixture of these three proteins, we can assign a 
nominal chemical potential: 

 

��

μ
D

= ln
c
D

c
D

+ c
E

+ c
F

⎡

⎣
⎢

⎤

⎦
⎥   (1.2) 

 
where ci denotes the concentration of protein i. Since Eq. (2) is written as a ratio, 
we can replace the concentrations with mole fractions, or even normalized 
expression, to give the same chemical potential. This is known as the entropy of 
mixing (Maskill, 1985)[29]. The nominal chemical potentials, represented with 
either concentration or expression, can be used to calculate a nominal Gibbs free 
energy for not only a single protein with its neighbors, but also for the entire 
network, for the cell, and the tumor as represented by the transcriptome. 
 
 
The chemical potential can be used to compute the Gibbs free energy for node D 
in the above network as follows: 

 

��

G
D

= c
D
ln

c
D

c
D

+ c
E

+ c
F

⎡

⎣
⎢

⎤

⎦
⎥  (1.3) 

 
Gibbs free energy scales the expression to thermal energy units, and we can 
drop the usual convention of including the RT coefficient. Furthermore, because 
we do not have information on the molar fractions, or molar concentrations, we 
substitute a normalized, (rescaled) [0,1] RNA transcription value in place of the 
concentrations.  
 

ΔG = ΔH −TΔS
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The general equation for Gibbs free energy can thus be written as: 

 

��

G
i
= c

i
ln

c
i

c
j

j

∑
  (1.4) 

Where the sum is over all neighbors j to node i , and the sum includes the 
concentration of node i. We can now compute this quasi-Gibbs free energy for 
the tumor by summing over all the nodes in the network: 
 

�

G = G
i

i

∑   (1.5) 

 
 
 
Data Sources and Methods 
 
Data for several cancers from The Cancer Genome Atlas (TCGA) hosted by the 
National Institute of Health (http://cancergnome.nih.gov ) were collected. The 
Cancer Genome Atlas is described in TCGA-Research Network, et al., 
(2013)[30]. More specifically, we collected a set of data that used the Agilent 
platform G4502A and was pre-collapsed on gene symbols. We collected a total 
of eleven cancers: KIRC (kidney renal clear cell, TCGA 2013b)[31]; KIRP (kidney 
renal papillary cell); LGG (low grade glioma); GBM (glioblastoma multiforme, 
TCGA, 2008); COAD (colon adenocarcinoma, TCGA 2012a); BRCA (breast 
invasive carcinoma, TCGA 2012c)[32]; LUAD (lung adenocarcinoma); LUSC 
(lung squamous cell, TCGA 2012b)[33]; UCEC (uterine corpus endometrial, 
TCGA, 2013a)[34]; OV (ovarian serous cystadenocarcinoma); READ (rectum 
adenocarcinoma).  
 
We used the human protein-protein interaction network (Homo sapiens, 3.3.99, 
March, 2013) from BioGrid, which contains 9561 nodes and 43,086 edges. 
BioGrid (http://thebiogrid.org) [35, 36]. The entire human PPI was loaded into 
Cytoscape (version 2.8.1[37]). The list of genes obtained from TCGA (full-length 
expression set was 17,814 genes) for a specific cancer was “selected” using the 
Cytoscape functions, the “inverse selection” of Cytoscape function applied, and 
the nodes and their edges were removed. The resulting network, which now 
included only those genes found in both Biogrid and TCGA, consisted of 7951 
nodes and 36,509 edges. This Cytoscape network was unloaded as an 
adjacency list for processing by custom Python code using Python (2.6.4) with 
appropriate NetworkX functions.  
 
We used two databases for survival data: The Surveillance Epidemiology and 
End Results (SEER) National Cancer Institute database, which contains detailed 
statistical information about the five-year survival rates of patients with cancer, 
and the National Brain tumor Society database.   
 
For transcription data relevant to prostate and liver carcinoma, we accessed 
Gene Expression Omnibus (GEO) at http://ncbi.nlm.nih.gov. The data for the liver 
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cancer study (hepatocellular carcinoma) was GSE6764[38], and the prostate 
study GSE3933 [39] and GSE6099 [40].The GSE3933 and GSE6099 as 
obtained were log-2 processed, and collapsed to gene IDs. The data was 
modified to gene cluster text file format (.gct) format and processed with 
GenePattern® at Broad Institute.  The expression data for liver cancer, 
GSE6764, was in an Affymetrix® format (HG_U133_Plus_2 probe set), and also 
preprocessed to collapse them into gene IDs. The GSE6764 dataset, the liver 
data, were not preprocessed by log-2. Consequently the numerical value of the 
Gibbs energies between those data that were log-2 processed and those data 
that were not differ and are not comparable. Nonetheless as we show below that 
preprocessing is not important for scaling between 0 and 1 for concentration. 
 
 
Results 
 
Using equations [4,5] we computed the Gibbs free energy for each node in the 
network as well as the sum of all nodes, i.e. total Gibbs free energy. The analysis 
is limited to cancers for which transcription data existed in the TCGA database. 
All of the data sets had used the Agilent® platform, providing a very good gene 
ID match across all cancers listed in Table 1. The data, which were already log2 
transformed and collapsed into gene IDs, were averaged across samples for 
each gene to create a single expression vector representing the entire set for 
each cancer.  To evaluate correlation of Gibbs free energy with cancer stage, we 
calculated an average expression vector for each stage. Table 1 also shows the 
number of samples, the types of cancers and the respective survival rates.  
 
Before actually overlaying the expression data on the PPI network the average 
expression vector is rescaled to be in the range [0,1], effectively setting highly 
up-regulated gene expressions to 1 and highly down-regulated gene expressions 
to 0. A base assumption was made that previously established correlation that 
highly up-regulated genes result in a high protein concentration and highly down-
regulated genes result in a very low protein concentration [23, 24]. This 
prevented any negative argument in the natural logarithm of Equation [4], and 
provided consistency from a chemical physics perspective. The calculated Gibbs 
values are shown in Table 1.  
 
A plot of Gibbs free energy values versus percent 5-yr survival for these cancers 
is shown in Figure 2. There are nine cancers shown in the graph (GBM, LUAD, 
LUSC, READ, COAD, OV, LGG, UCEC, BRCA) with Pearson R correlation of -
0.718, with a p-value 0.0294. KRIC (“Kidney renal clear cell”) and KRIP (“kidney 
renal papillary cell”) are abnormal tissue growths, which, even though highly 
proliferative and destructive, are of questionable malignant potential.  If one were 
to include these two abnormal growths (KRIC and KIRP) in the analysis, the 
correlation would drop to  -0.016.  
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For comparisons, we compared another measure of the expression data versus 
survival. We calculated singular values using numpy.lanalg.svd(X) in Python and 
compared them to survival. The first three singular values versus survival gave R 
correlations of: -0.070, +0.115, +0.176, respectively (leaving out KIRC, KRIP). 
These are very poor correlations, and it is reasonable to conclude that Gibbs free 
energy is more effective in evaluating a real effect on survival or cancer stage, 
because it is associated with significant changes in energy. An important 
implication of the correlation between Gibbs free energy and survival/stage is 
that the higher the Gibbs free energy of a given cancer cell, the more robust it is 
against external perturbations and the lower the probability of patient survival 
over a 5 year period. In other words, relative robustness of a cancer cell type can 
be a prognostic measure of the malignant phenotype of the cancer. This is 
consistent with other concepts in physics where Gibbs free energy is a measure 
of stability of a thermodynamic system. Gibbs free energy and entropy are both 
thermodynamic measures, and because the observations are similar, we can 
compare the two thermodynamic measures. 
 
As noted in the Introduction, the degree distribution used by Breitkreutz et al. 
(2012)[5] is essentially a Boltzmann distribution. This allows us to compare 
entropy with Gibbs free energy. The empirical equation for the linear fit of the 
Gibbs free energy with survival without kidney cancer is: � � 8.112� � 5753.9    
(Figure 2).  Using the data from Breitkreutz et al. [5] we can write the empirical 
equation for the liner fit of entropy as: S �  �0.0087� � 2.2731. Solving both 
these equation for 5-year survival probability, σ, and equating we get: � �

7873 � 932�.  Note that in order to relate G and S, we used the absolute value 
of the Gibbs.  This is consistent with the fundamental thermodynamic relationship 
linking Gibbs free energy and entropy: G=H-TS. What remains to be analyzed in 
the future as more data sets become available is the nature of the proportionality 
constant playing the role of the absolute temperature, the character of which may 
be a biological constant of fundamental importance or simply a fitting parameter. 
 
Having shown the correlation of Gibbs free energy with cancer patient survival 
probability, we turned to examine two specific cancers, stage-by-stage in order to 
determine whether a relationship exists between the Gibbs free energy and 
cancer progression. The first cancer analyzed was hepatocellular carcinoma 
(HCC), one of the more common cancers. We collected GSE6764 data, an 
Affymetrix data set described by Wurmbach et al. (2007)[38], and processed it 
using Equations [4,5]. As described by the group contributing the GSE6764 data, 
three hospitals (Mt. Sinai, New York, USA; Hospital Clinic, Barcelona, Spain; 
National Cancer Institute, Milan, Italy) were involved in data collection. The 
results are shown in Figure 3, and define cancer stages as: 0) normal tissue, 1) 
cirrhotic, 2) low-grade dysplastic, 3) very early hepatocellular carcinoma (HCC), 
4) early HCC, 5) advanced HCC, 6) very advanced HCC. The Spearman 
correlation between these stage-ordinal numbers with respect to Gibbs free 
energy is R = -1.00 with a p-value of <0.0001 The Kendall tau correlation is -
1.000 and p-value 0.0016.  
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The second example was prostate cancers. We collected two completely 
disparate prostate datasets, one GSE6099 from Lapointe et al. (2004)[39] and 
another GSE3933 from Tomlins et al. (2007)[40]. The data was compiled, 
processed as individual transcriptome vectors for computing the Gibbs free 
energy, and an ordinal integer scale was assigned for each cancer stage. The 
results are shown in Figure 4, and define cancer stages as: 1) benign prostate 
hypoplasia (BPH), 2) prostatic intraepithelial neoplasia (PIN), 3) primary tumor, 
and 4) metastatic disease (MET). The Spearman R correlation is -1.000 with p-
value <0.0001. The Kendall tau correlation is -1.000 with  p-value 0.0415. Note 
BPH is essentially age-matched normal prostate tissue for comparison with the 
diseased tissues. These demonstrate excellent correlation between the 
thermodynamic measure (Gibbs free energy) and the progression of the 
neoplastic disease.  
 
 
Discussion 
 
As information about cancer related genomic alterations emerge and more and 
more data becomes available, we can begin to establish the relationships 
between protein-protein interaction network complexity and cancer progression.  
We provide Gibbs free energy, a thermodynamic measure encompassing both 
network complexity and protein concentration (transcriptome), and show that 
thermodynamics can be correlated with cancer stage and survival. This allows us 
to potentially differentiate between normal and cancer cells using thermodynamic 
measures.  
 
We have shown that there is no correlation between the singular values of the 
expression and survival, and pointed out that the first three singular values 
(leaving out kidney) versus survival gave R correlations of: -0.070, +0.115, 
+0.176. This suggests that the expression data is not the most significant 
component for the analysis and that the PPI network must be playing a 
significant part. To establish that the network architecture itself does not account 
for the correlation of Gibbs free energy and survival either, we tested a random 
network. One can view the mathematical steps in Equations [4,5] as follows: 
 

  (6) 
 

The symbol qG represent a quasi-Gibbs free energy, the symbol ξ represent the 
expression vector and the little network symbol represents the PPI network. This 
is analogous to a vector, vector-like product producing a scalar (vector dot 
product). In these calculations the network architecture is fixed for all expression 
vectors, for all cancers. To evaluate whether the architecture of the network itself, 
may play a role, we used random networks, more specifically, random 
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perceptrons (Anderson 1995)[41],and found the dot product for each expression 
vector with this perceptron network. We computed the indicated dot product, and 
showed that these random networks did not correlate with survival (R=0.094). 
Thus, the expression data and the PPI network are both needed for a meaningful 
Gibbs free energy. In effect the PPI network provides a structure to the 
expression data. 
 
One can use an analogy and view cancer as an invasive species assaulting a 
complex dynamic ecosystem of the human body – organs and microorganisms 
all considered. Huang (2011)[42] has argued that the energetic landscape of the 
epigenome – the epigenetic landscape –inevitably leads to cancer. The 
molecular network comprising a cell represents a dynamic system on the edge of 
chaos. Environmental and/or probabilistic fluctuations can push this dynamic 
system into a trajectory that leads to a stable attractor – cancer – a lower energy 
state. This concept has been put forward as a general context of cell dynamics 
by one of the authors of this manuscript[14]. Similarly, Huang et al. (2009)[43] 
shows how transcriptome data for lung cancer correlates with the various cancer 
stages, and follows a trajectory of dynamical systems.  
 
A number of other investigators view cancer as an alien species. To name a few, 
cancer has been viewed as a clonal evolution of cancer cells [44], center around 
the concept of aneuploidy [45, 46], or creates an analogy that the genome of 
cancer cells resembles more primitive Metazoa [47]. To maintain their viability 
cancer cells actually explore a region in attractor space [48] similarly to a strange 
attractor [49], suggesting many nearby attractors of varying energetic stability. 
Whatever the forces contributing to cancer evolution may be, they account for 
observed heterogeneity of cancer cells in the same tumor [50] and provide 
support to the view that cancer phenotype corresponds to a locally stable Gibbs 
free energy minimum. Conceptually, a dynamic relationship must exist between 
stabilizing and destabilizing aneuploidy[48] and the metabolic advantage of tumor 
cells[51]. This concept of limited attractors in the phase space of cancers is 
supported by recent research by Hoadley et al. [52] who examined multiplatform 
data from over 3500 patients and 12 cancer types, and observed that there is 
only a small subset of mutation types that repeatedly occur in various cancers.  
 
Our work may provide some theoretical support for the recent research reported 
by Zhang, et al [53] and Suva, et al [54]. The group of Zhang et al [53] describes 
reprogramming of sarcoma cells in culture. The cells first convert to a pluripotent-
like state, and only then differentiate into the appropriate mature connective 
tissue or red blood cells. Similarly, Suva, et al. [54] describe corresponding 
reprogramming for the tumor-propagating cells of glioblastoma. We describe 
cancer as a dynamical system capable of undergoing state changes on an 
energy landscape. We show this by associating a quantitative measure of the 
protein-protein interaction network (Gibbs free energy) to the malignancy level of 
the tumor as a whole (from the transcriptome of tumor biopsy tissues), and show 
a trajectory from a low-grade tumor to a much higher-grade tumor, as 
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represented by the Gibbs vs. cancer stage plots.. This suggests it may be 
possible to treat cancer not strictly from a mutation perspective but from an 
engineering perspective. Rather than simply thinking of inhibiting a specific 
protein from a mutated gene (or two), it may be possible to treat cancer as a 
reprogramming of the molecular network with an associated Gibbs free energy 
landscape. This more holistic perspective considers not just the oncogenes and 
highly mutated genes but rather the network associated with the relevant proteins 
and their energetic profile. 
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Figure and Table Legends 
 
Table 1: Summary table of the number of subjects in TCGA data sets and 
respective 5-year survival of individual cancer types from SEER. We 
collected a total of eleven cancers: KIRC (kidney renal clear cell, TCGA 
2013b)[31]; KIRP (kidney renal papillary cell); LGG (low grade glioma); GBM 
(glioblastoma multiforme, TCGA, 2008); COAD (colon adenocarcinoma, TCGA 
2012a); BRCA (breast invasive carcinoma, TCGA 2012c)[32]; LUAD (lung 
adenocarcinoma); LUSC (lung squamous cell, TCGA 2012b)[33]; UCEC (uterine 
corpus endometrial, TCGA, 2013a)[34]; OV (ovarian serous 
cystadenocarcinoma); READ (rectum adenocarcinoma). Gibbs free energy 
included in this table is the average of the respective N for each individual cancer 
and was computed using equation 4,5. 
 
Figure 1: An example of a small protein-protein interaction network created 
using Cytoscape®. The nodes (A-F) represent individual proteins, the lines, 
called edges, represent protein-protein interactions. No information about 
directionality of the interactions is implied. Protein D, for example, represent a 
protein connected to E, C, and F by its edges (or links). To compute Gibbs free 
energy for node D in this network, we start with the normalized gene expression 
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data as a surrogate for protein concentration of each node in this network. Gibbs 
free energy for node D would be: normalized gene expression value divided by 
the sum of normalized expression of node D+the normalized gene expression 
values of the neighbors (E,F,C). This quotient becomes the argument for the 
natural logarithm.  The coefficient of the natural logarithm is the normalized 
expression value for node D. All this is summarized in equation 2. 
 
Figure 2: Gibbs free energy and the probability of 5-yr survival. Data from 
the TCGA gene list were overlaid on BioGrid® in order to merge protein-protein 
interaction network data with transcription data using Equation 4. As evident, 
Gibbs free energy can be correlated with 5-year survival with an Pearson R 
coefficient of -0.718, p-value 0.0294. We have excluded KIRC and KIRP, 
because the biology of neuroectodermal and epithelial cancers differ from KIRC 
and KIRP. The inclusion of KIRC and KRIP in the calculation decreased 
correlation to  -0.016. 
 
Figure 3: Gibbs free energy correlation with cancer stage for liver cancer.  
Representing each stage as an ordinal number we present the correlation of: 0) 
normal tissue, 1) cirrhotic, 2) low-grade dysplastic, 3) very early hepatocellular 
carcinoma (HCC), 4) early HCC, 5) advanced HCC, 6) very advanced HCC. For 
this calculation gene expression data from GSE6764 was normalized so as to be 
in the range of [0,1] and overlaid on a protein-protein interaction network from 
Biogrid® using equation 5.  Unlike the data in Figure 2 or Figure 4, these data 
were not log-2 preprocessed prior to scaling between 0 and 1. The Spearman 
correlation of the mean Gibbs free energy for the individual cancer stages is R = -
0.99 with a p-value of 0.0001. Kendall’s tau correlation is 1.000, with a p-value of 
0.0016.< 
 
Figure 4: Gibbs free energy vs. cancer stage for prostate cancer. 
Representing each stage as an ordinal number we present the correlation of 
normal benign prostate hypoplasia (1), prostatic interepithelial neoplasia (2), 
primary tumor (3), and metastatic (4). For this calculation gene expression data 
from GSE3933 and GSE6099 were normalized so as to be in the range of [0,1] 
and overlaid on Biogrid® protein-protein interaction network using equation 5.  
The Spearman R correlation is -1.000 with p-value <0.0001. The Kendall tau 
correlation is -1.000 with  p-value 0.0415 
 
 
 
References 
 
 
[1] Paliouras, M., Zaman, N., Lumbroso, R., Kapogeorgakis, L., Beitel, L.K., 
Wang, E. & Trifiro, M. 2011 Dynamic rewiring of the androgen receptor protein 
interaction network correlates with prostate cancer clinical outcomes. Integrative 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 13, 2015. ; https://doi.org/10.1101/022491doi: bioRxiv preprint 

https://doi.org/10.1101/022491
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14

biology : quantitative biosciences from nano to macro 3, 1020-1032. 
(doi:10.1039/c1ib00038a). 
[2] Freije, W.A., Castro-Vargas, F.E., Fang, Z., Horvath, S., Cloughesy, T., Liau, 
L.M., Mischel, P.S. & Nelson, S.F. 2004 Gene expression profiling of gliomas 
strongly predicts survival. Cancer Res 64, 6503-6510. (doi:10.1158/0008-
5472.CAN-04-0452). 
[3] Hinow, P.R., E. A.; Omar, S.I.; Tuszynski, J. A. 2015 Algebraic and 
Topological Indices of Molecular Pathway Networks in Human Cancers. 
Mathematica Biosciences and Engineering in press. 
[4] Benzekry, S.T., J.A.; Rietman, E.A., Klement, G.L. 2015 Design Principles for 
Cancer Therapy guided by changes in complexity of Protein-Protein Interaction 
Networks. Biology Direct in press. 
[5] Breitkreutz, D., Hlatky, L., Rietman, E. & Tuszynski, J.A. 2012 Molecular 
signaling network complexity is correlated with cancer patient survivability. Proc 
Natl Acad Sci U S A 109, 9209-9212. (doi:10.1073/pnas.1201416109). 
[6] Takemoto, K. & Kihara, K. 2013 Modular organization of cancer signaling 
networks is associated with patient survivability. Bio Systems 113, 149-154. 
(doi:10.1016/j.biosystems.2013.06.003). 
[7] Gronholm, T. & Annila, A. 2007 Natural distribution. Mathematical biosciences 
210, 659-667. (doi:10.1016/j.mbs.2007.07.004). 
[8] Tuszynski, J.A. 2001 Entropy vs Information: Is a living cell a machine or a 
computer. In Computing and Information Technologies: Exploring Emerging 
Technologies (pp. 41-54. Montclair State University, NJ, USA. 
[9] Demetrius, L.A. 2013 Boltzmann, Darwin and Directionality theory. Physics 
Reports 530, 1-85. (doi:http://dx.doi.org/10.1016/j.physrep.2013.04.001). 
[10] Schneider, E.D. & Kay, J.J. 1994 Life as a manifestation of the second law of 
thermodynamics. Mathematical and Computer Modelling 19, 25-48. 
(doi:http://dx.doi.org/10.1016/0895-7177(94)90188-0). 
[11] Tseng, C.-Y. & Tuszynski, J.A. 2010 Using Entropy Leads to a Better 
Understanding of Biological Systems. Entropy 12, 2450-2469. 
[12] Ling, Y. & He, B. 1993 Entropic analysis of biological growth models. IEEE 
transactions on bio-medical engineering 40, 1193-1200. 
(doi:10.1109/10.250574). 
[13] Izquierdo-Kulich, E., Alonso-Becerra, E. & Nieto-Villar, J.M. 2011 Entropy 
Production Rate for Avascular Tumor Growth. Journal of Modern Physics 2, 615-
620. (doi:10.4236/jmp.2011.226071). 
[14] Davies, P.C., Rieper, E. & Tuszynski, J.A. 2013 Self-organization and 
entropy reduction in a living cell. Biosystems 111, 1-10. 
(doi:10.1016/j.biosystems.2012.10.005). 
[15] Metze, K., Adam, R., Kayser, G. & Kayser, K. 2010 Pathophysiology of 
Cancer and the Entropy Concept. In Model-Based Reasoning in Science and 
Technology (eds. L. Magnani, W. Carnielli & C. Pizzi), pp. 199-206, Springer 
Berlin Heidelberg. 
[16] Castro, M.A., Onsten, T.T., de Almeida, R.M. & Moreira, J.C. 2005 Profiling 
cytogenetic diversity with entropy-based karyotypic analysis. J Theor Biol 234, 
487-495. (doi:10.1016/j.jtbi.2004.12.006). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 13, 2015. ; https://doi.org/10.1101/022491doi: bioRxiv preprint 

https://doi.org/10.1101/022491
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15

[17] Rashevsky, N. 1954 Topology and life: In search of general mathematical 
principles in biology and sociology. Bulletin of Mathematical Biophysics 16, 317-
348. (doi:10.1007/BF02484495). 
[18] Dehmer, M. & Mowshowitz, A. 2011 A history of graph entropy measures. 
Inf. Sci. 181, 57-78. (doi:10.1016/j.ins.2010.08.041). 
[19] Liu, R., Li, M., Liu, Z.P., Wu, J., Chen, L. & Aihara, K. 2012 Identifying critical 
transitions and their leading biomolecular networks in complex diseases. 
Scientific reports 2, 813. (doi:10.1038/srep00813). 
[20] Berretta, R. & Moscato, P. 2010 Cancer biomarker discovery: the entropic 
hallmark. PLoS One 5, e12262. (doi:10.1371/journal.pone.0012262). 
[21] Greenbaum, D., Colangelo, C., Williams, K. & Gerstein, M. 2003 Comparing 
protein abundance and mRNA expression levels on a genomic scale. Genome 
biology 4, 117. (doi:10.1186/gb-2003-4-9-117). 
[22] Maier, T., Guell, M. & Serrano, L. 2009 Correlation of mRNA and protein in 
complex biological samples. FEBS Lett 583, 3966-3973. 
(doi:10.1016/j.febslet.2009.10.036). 
[23] Kim, M.S., Pinto, S.M., Getnet, D., Nirujogi, R.S., Manda, S.S., Chaerkady, 
R., Madugundu, A.K., Kelkar, D.S., Isserlin, R., Jain, S., et al. 2014 A draft map 
of the human proteome. Nature 509, 575-581. (doi:10.1038/nature13302). 
[24] Wilhelm, M., Schlegl, J., Hahne, H., Moghaddas Gholami, A., Lieberenz, M., 
Savitski, M.M., Ziegler, E., Butzmann, L., Gessulat, S., Marx, H., et al. 2014 
Mass-spectrometry-based draft of the human proteome. Nature 509, 582-587. 
(doi:10.1038/nature13319). 
[25] Huang, S., Eichler, G., Bar-Yam, Y. & Ingber, D.E. 2005 Cell fates as high-
dimensional attractor states of a complex gene regulatory network. Physical 
review letters 94, 128701. 
[26] Spindel, S. & Sapsford, K. 2014 Evaluation of Optical Detection Platforms for 
Multiplexed Detection of Proteins and the Need for Point-of-Care Biosensors for 
Clinical Use. Sensors 14, 22313-22341. 
[27] Breitkreutz, B.J., Stark, C. & Tyers, M. 2002 The GRID: The General 
Repository for Interaction Datasets. Genome biology 3, PREPRINT0013. 
[28] Connors, K.A. 1987 Binding Constants: The Measurement of Molecular 
Complex Stability. New York, John Wiley & Sons. 
[29] Maskill, H. 1986 The Physical Basis of Organic Chemistry. New York, New 
York, Oxford University Press. 
[30] Cancer Genome Atlas Research, N., Weinstein, J.N., Collisson, E.A., Mills, 
G.B., Shaw, K.R., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C. & 
Stuart, J.M. 2013 The Cancer Genome Atlas Pan-Cancer analysis project. Nat 
Genet 45, 1113-1120. (doi:10.1038/ng.2764). 
[31] Cancer Genome Atlas Research, N. 2013 Comprehensive molecular 
characterization of clear cell renal cell carcinoma. Nature 499, 43-49. 
(doi:10.1038/nature12222). 
[32] Cancer Genome Atlas, N. 2012 Comprehensive molecular portraits of 
human breast tumours. Nature 490, 61-70. (doi:10.1038/nature11412). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 13, 2015. ; https://doi.org/10.1101/022491doi: bioRxiv preprint 

https://doi.org/10.1101/022491
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16

[33] Cancer Genome Atlas Research, N. 2012 Comprehensive genomic 
characterization of squamous cell lung cancers. Nature 489, 519-525. 
(doi:10.1038/nature11404). 
[34] Cancer Genome Atlas Research, N., Kandoth, C., Schultz, N., Cherniack, 
A.D., Akbani, R., Liu, Y., Shen, H., Robertson, A.G., Pashtan, I., Shen, R., et al. 
2013 Integrated genomic characterization of endometrial carcinoma. Nature 497, 
67-73. (doi:10.1038/nature12113). 
[35] Breitkreutz, B.J., Stark, C., Reguly, T., Boucher, L., Breitkreutz, A., Livstone, 
M., Oughtred, R., Lackner, D.H., Bahler, J., Wood, V., et al. 2008 The BioGRID 
Interaction Database: 2008 update. Nucleic Acids Res 36, D637-640. 
(doi:10.1093/nar/gkm1001). 
[36] Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A. & Tyers, 
M. 2006 BioGRID: a general repository for interaction datasets. Nucleic Acids 
Res 34, D535-539. (doi:10.1093/nar/gkj109). 
[37] Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., 
Amin, N., Schwikowski, B. & Ideker, T. 2003 Cytoscape: a software environment 
for integrated models of biomolecular interaction networks. Genome Res 13, 
2498-2504. (doi:10.1101/gr.1239303). 
[38] Wurmbach, E., Chen, Y.B., Khitrov, G., Zhang, W., Roayaie, S., Schwartz, 
M., Fiel, I., Thung, S., Mazzaferro, V., Bruix, J., et al. 2007 Genome-wide 
molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. 
Hepatology (Baltimore, Md.) 45, 938-947. (doi:10.1002/hep.21622). 
[39] Lapointe, J., Li, C., Higgins, J.P., van de Rijn, M., Bair, E., Montgomery, K., 
Ferrari, M., Egevad, L., Rayford, W., Bergerheim, U., et al. 2004 Gene 
expression profiling identifies clinically relevant subtypes of prostate cancer. Proc 
Natl Acad Sci U S A 101, 811-816. (doi:10.1073/pnas.0304146101). 
[40] Tomlins, S.A., Mehra, R., Rhodes, D.R., Cao, X., Wang, L., Dhanasekaran, 
S.M., Kalyana-Sundaram, S., Wei, J.T., Rubin, M.A., Pienta, K.J., et al. 2007 
Integrative molecular concept modeling of prostate cancer progression. Nat 
Genet 39, 41-51. (doi:10.1038/ng1935). 
[41] Anderson, J. 1995 An Introduction to Neural Networks. Cambridge, MA, MIT 
press. 
[42] Huang, S. 2011 On the intrinsic inevitability of cancer: from foetal to fatal 
attraction. Semin Cancer Biol 21, 183-199. 
(doi:10.1016/j.semcancer.2011.05.003). 
[43] Huang, S., Ernberg, I. & Kauffman, S. 2009 Cancer attractors: a systems 
view of tumors from a gene network dynamics and developmental perspective. 
Seminars in cell & developmental biology 20, 869-876. 
(doi:10.1016/j.semcdb.2009.07.003). 
[44] Vincent, M.D. 2010 The animal within: carcinogenesis and the clonal 
evolution of cancer cells are speciation events sensu stricto. Evolution; 
international journal of organic evolution 64, 1173-1183. (doi:10.1111/j.1558-
5646.2009.00942.x). 
[45] Duesberg, P. & Rasnick, D. 2000 Aneuploidy, the somatic mutation that 
makes cancer a species of its own. Cell Motil Cytoskeleton 47, 81-107. 
(doi:10.1002/1097-0169(200010)47:2<81::AID-CM1>3.0.CO;2-#). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 13, 2015. ; https://doi.org/10.1101/022491doi: bioRxiv preprint 

https://doi.org/10.1101/022491
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17

[46] Duesberg, P., Mandrioli, D., McCormack, A. & Nicholson, J.M. 2011 Is 
carcinogenesis a form of speciation? Cell Cycle 10, 2100-2114. 
[47] Davies, P.C. & Lineweaver, C.H. 2011 Cancer tumors as Metazoa 1.0: 
tapping genes of ancient ancestors. Physical biology 8, 015001. 
(doi:10.1088/1478-3975/8/1/015001). 
[48] Li, L., McCormack, A.A., Nicholson, J.M., Fabarius, A., Hehlmann, R., 
Sachs, R.K. & Duesberg, P.H. 2009 Cancer-causing karyotypes: chromosomal 
equilibria between destabilizing aneuploidy and stabilizing selection for 
oncogenic function. Cancer genetics and cytogenetics 188, 1-25. 
(doi:10.1016/j.cancergencyto.2008.08.016). 
[49] Hilborn, R. 1994 Chaos and Nonlinear Dynamics: An Intoduction for 
Scientists and Engineers. New York, New York, Oxford University Press. 
[50] Marusyk, A., Almendro, V. & Polyak, K. 2012 Intra-tumour heterogeneity: a 
looking glass for cancer? Nat Rev Cancer 12, 323-334. (doi:10.1038/nrc3261). 
[51] Israel, M. & Schwartz, L. 2011 The metabolic advantage of tumor cells. 
Molecular cancer 10, 70. (doi:10.1186/1476-4598-10-70). 
[52] Hoadley, K.A., Yau, C., Wolf, D.M., Cherniack, A.D., Tamborero, D., Ng, S., 
Leiserson, M.D., Niu, B., McLellan, M.D., Uzunangelov, V., et al. 2014 
Multiplatform analysis of 12 cancer types reveals molecular classification within 
and across tissues of origin. Cell 158, 929-944. (doi:10.1016/j.cell.2014.06.049). 
[53] Zhang, X., Cruz, F.D., Terry, M., Remotti, F. & Matushansky, I. 2013 
Terminal differentiation and loss of tumorigenicity of human cancers via 
pluripotency-based reprogramming. Oncogene 32, 2249-2260, 2260 e2241-
2221. (doi:10.1038/onc.2012.237). 
[54] Suva, M.L., Rheinbay, E., Gillespie, S.M., Patel, A.P., Wakimoto, H., Rabkin, 
S.D., Riggi, N., Chi, A.S., Cahill, D.P., Nahed, B.V., et al. 2014 Reconstructing 
and reprogramming the tumor-propagating potential of glioblastoma stem-like 
cells. Cell 157, 580-594. (doi:10.1016/j.cell.2014.02.030). 
 
 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 13, 2015. ; https://doi.org/10.1101/022491doi: bioRxiv preprint 

https://doi.org/10.1101/022491
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18

 
  

Table 1 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 13, 2015. ; https://doi.org/10.1101/022491doi: bioRxiv preprint 

https://doi.org/10.1101/022491
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19

 
  

Figure 1 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 13, 2015. ; https://doi.org/10.1101/022491doi: bioRxiv preprint 

https://doi.org/10.1101/022491
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20

 
  

GB

M 

LGG 

BRCA 

COAD 

READ 

OV 

LUSC 

LUAD 

UCEC 

Figure 2 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 13, 2015. ; https://doi.org/10.1101/022491doi: bioRxiv preprint 

https://doi.org/10.1101/022491
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21

 
  

Figure 3 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 13, 2015. ; https://doi.org/10.1101/022491doi: bioRxiv preprint 

https://doi.org/10.1101/022491
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22

 

Figure 4 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 13, 2015. ; https://doi.org/10.1101/022491doi: bioRxiv preprint 

https://doi.org/10.1101/022491
http://creativecommons.org/licenses/by-nc-nd/4.0/

