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Abstract 

Estimates of microbial fitness from growth curves are inaccurate. Rather, competition 

experiments are necessary for accurate estimation. But competition experiments require 

unique markers and are difficult to perform with isolates derived from a common ancestor or 

non-model organisms. Here we describe a new approach for predicting relative growth of 

microbes in a mixed culture utilizing mono- and mixed culture growth curve data. We 

validated this approach using growth curve and competition experiments with E. coli. Our 

approach provides an effective way to predict growth in a mixed culture and infer relative 

fitness. Furthermore, by integrating several growth phases, it provides an ecological 

interpretation for microbial fitness. 
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Introduction 

Microbial fitness is usually defined as the relative growth of different microbial strains or 

species in a mixed culture1. Pairwise competition experiments can provide accurate estimates 

of relative growth and fitness2, but they are laborious and expansive, especially in non-model 

organisms. Instead, growth curves are commonly used to estimate fitness of individual 

microbial isolates, despite clear evidence that they provide an insufficient alternative3,4. 

Growth curves describe the density of cell populations in liquid culture over time and are 

usually acquired by measuring the optical density (OD) of one or more cell populations. The 

simplest way to infer fitness from growth curves is to estimate the growth rate during the 

exponential growth phase by inferring the slope of the log of the growth curve5 (see example 

in Figure 1). Indeed, the growth rate is often used as a proxy of the selection coefficient, s, 

which is the standard measure of relative fitness in population genetics1,6. However, 

exponential growth rates do not capture the dynamics of other phases of a typical growth 

curve, such as the length of lag phase and the cell density at stationary phase7 (Figure 1A). 

Moreover, the maximal specific growth rate is not typical for the entire growth curve (Figure 

1B). Thus, it is not surprising that growth rates are often poor estimators of relative fitness3,4. 

 

 
Figure 1. Common approach for analyzing growth curve data using an exponential model. Growth rates are 

commonly estimated from growth curves data by taking the log of the growth curve and performing linear regression around 
the time of maximum growth (see Materials and Methods for specific details). Implicitly, this is equivalent to fitting an 
exponential growth model N(t)=N0ert to the growth curve. (A) The red markers represent N(t) the mean cell density in 22 
growth curves. The solid red line represents a smooth line through the points (e.g. by fitting a polynomial). The dashed black 
line represents the exponential model N0ert fitted to the data, with r=0.27 and N0=0.058. The dotted vertical line denotes tmax. 
(B) The red solid curve shows dN/dt, the derivative of the mean density (calculated as the derivative of the red line in A). 
The dotted vertical line denotes tmax. Data in this figure corresponds to the growth of the red strain in experiment A (red 
markers in Figure 2A). 
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In contrast, competition experiments can infer relative fitness in a manner that accounts 

for all growth phases8. In pairwise competition experiments, two strains are grown together in 

a mixed culture: a reference strain and a strain of interest. The frequency of each strain in the 

mixed culture is measured during the course of the experiment using  specific markers, for 

example, by counting colonies formed by drug resistant or auxotrophic strains8, by 

monitoring fluorescent markers with flow cytometry2, or counting DNA barcodes reads using 

deep sequencing9,10. The selection coefficient of the strains of interest can then be estimated 

from changes in their frequencies during the competition experiments. These methods can 

infer relative fitness with high precision2, as they directly estimate fitness from changes in 

strain frequencies over time.  

However, competition experiments are more laborious and expensive than growth curve 

experiments, requiring the development of genetic or phenotypic assays (see Concepción-

Acevedo et al.3 and references therein). Moreover, competition experiments are often 

impractical in non-model organisms. Therefore, many investigators prefer to use proxies of 

fitness such as growth rates. Even when competition experiments are a plausible approach 

(for example, in microbial lineages with established markers8), methods for interpreting and 

understanding how differences in growth contribute to differences in fitness are lacking. Such 

differences have a crucial impact on our understanding of microbial fitness and the 

composition of microbial populations and communities. 

Here we present a new computational approach which provides a predictive and 

descriptive framework for estimating growth parameters from growth dynamics and 

predicting relative growth in mixed cultures. 

Results  

Our approach consists of three stages: (a) fitting growth models to monoculture growth 

curve data, (b) fitting competition models to mixed culture growth curve data, and (c) 

predicting relative growth in a mixed culture using the estimated growth and competition 

parameters. To test our approach, we measured growth of two E. coli strains in mono- and 

mixed culture over time and used our new approach to predict the relative frequencies of both 

strains in the mixed culture. We then compared these predictions to empirical measurements 

of strain frequencies. 
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Experimental design 

Before proceeding to describe our new approach in detail, we briefly describe the 

experiments we used to test it, as results of these experiments will be presented in the 

following sections. We performed growth curve and competition experiments with two 

different sets of E. coli strains marked with green and red fluorescent proteins (GFP and RFP, 

respectively). In each experiment, 32 replicate monocultures of the GFP strain, 30 replicate 

monocultures of the RFP strain alone, and 32 replicate mixed cultures containing the GFP 

and RFP strains together, were grown in a 96-well plate, under the same experimental 

conditions. In experiments A and B we used E. coli strains DH5α-GFP and TG1-RFP; in 

experiment C we used E. coli strains JM109-GFP and MG1655-Δfnr-RFP. The optical 

density of each culture was measured every 15 minutes using an automatic plate reader for at 

least 7 hours (Figure 2A-C). Samples were collected from the mixed culture every hour for 

the first 7-8 hours, and the relative frequencies of the two strains were measured by flow 

cytometry. See  

Materials and Methods for additional details. 

a. Estimate growth parameters 

Growth	model	

The Baranyi-Roberts model11 can be used to model growth composed of several phases: 

lag phase, exponential phase, deceleration phase, and stationary phase5. The model implicitly 

assumes that growth accelerates as cells adjust to new growth conditions, then decelerates as 

resources become scarce, and finally halts when resources are depleted12. The model is 

described by the following ordinary differential equation (see eqs. 1c, 3a, and 5a in Baranyi 

and Roberts, 199411; for a derivation of eq. 1 and further details, see Supporting Txt 1): 

 
!"
!#
= 𝑟 ⋅ 𝛼 𝑡 ⋅ 𝑁 1 − "

,

-
                                           [1] 

 

where 𝑡 is time, 𝑁 = 𝑁(𝑡) is the cell density at time 𝑡, 𝑟 is the specific growth rate in low 

density, 𝐾 is the maximum cell density, 𝜈 is a deceleration parameter, and 𝛼 𝑡  is the 

adjustment function, which describes the fraction of the population that has adjusted to the 

new growth conditions by time 𝑡 (𝛼 𝑡 ≤ 1). In microbial experiments, an overnight liquid 

culture of microorganisms that has reached stationary phase is typically diluted into fresh 
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media. Following dilution, cells enter lag phase until they adjust to the new growth 

conditions. We chose the specific adjustment function suggested by Baranyi and Roberts11, 

which is both computationally convenient and biologically  interpretable: 𝛼(𝑡) = 34
3456789, 

where 𝑞; characterizes the physiological state of the initial population, and 𝑚 is the rate at 

which the physiological state adjusts to the new growth conditions. 

The Baranyi-Roberts differential equation (eq. 1) has a closed form solution: 

 

𝑁 𝑡 = 𝐾 1 − 1 − ,
"4

-
𝑒>?	-A # 	

B -
																													[2] 

 

where 𝑁; = 𝑁(0) is the initial population density. For a derivation of eq. 2 from eq. 1, see 

Supporting Text 1. 

Model	fitting	

We estimated the growth model parameters by fitting the model (eq. 2) to the monoculture 

growth curve data of each strain. The best-fit models (black lines) and experimental data 

(markers) are shown in Figure 2; see Table S1 for the estimated growth parameters. From 

these best-fit models we also estimated the maximum specific growth rate max B
"
⋅ !"
!#

	 , 

the minimal specific doubling time (minimal time required for cell density to double), and the 

lag duration; see Table 1. The strains differ in their growth parameters: for example, in 

experiment A (Figure 2A), the red strain grows 41% faster than the green strain, has 23% 

higher maximum density, and a 60% shorter lag phase. 

 

 
Figure 2. Fitting the growth model to data from three growth curve experiments with E. coli. Colored markers 

represent the density of two strains (green for GFP labeled strain; red for RFP labeled strains) growing in monoculture in 
30+ experimental replicates, black lines represent the best-fit model. (A) Strain DH5α labeled with GFP, strain TG1 labeled 

with RFP. Experiment started by diluting stationary phase bacteria into fresh media, yielding a lag phase culture in which lag 
phase is longer for the green strain. (B) Strain DH5α labeled with GFP, strain TG1 labeled with RFP. Bacteria were pre-

grown in fresh media for 4 hours before the experiment and then diluted into fresh media, such that there is no observable 
lag phase. (C) Strain JM109 labeled with GFP and, strain K12 MG1655-Δfnr labeled with RFP. Experimental conditions as 

described in (A). 
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 Experiment A Experiment B Experiment C 

Strain 

Parameter 

GFP RFP GFP RFP GFP RFP 

Initial 

density 

𝑵𝟎  

0.125 0.124 0.286 0.23 0.188 0.204 

Max density 

(𝑲) 

0.528 (0.525, 

0.532) 

0.650 (0.643, 

0.658) 

0.619 (0.612, 

0.625) 

0.628 (0.624, 

0.632) 

0.633 (0.627, 

0.638) 

0.741 (0.735, 

0.746) 

Max 

specific 

growth rate  

0.268 (0.262, 

0.275) 
0.376 (0.371, 

0.382) 

0.256 (0.251, 

0.261) 

0.369 (0.355, 

0.384) 

0.228 (0.226, 

0.231) 

0.42 (0.391, 

0.426) 

Min 

doubling 

time 

2.695 (2.636, 

2.77) 

1.844 (1.809, 

1.88) 

4.372 (4.269, 

4.481) 

2.451 (2.397, 

2.506) 

3.117 (3.087, 

3.147) 

2.075 (2.035, 

2.124) 

Lag 

duration 

3.93 (3.82, 

4.028) 

1.578 (1.513, 

1.64) 

0.004 (0.002, 

0.013) 

0.014 (0.002, 

0.029) 

0.711 (0.684, 

0.749) 

0.039 (0.033, 

0.081) 

Table 1. Estimated growth parameters. 95% confidence intervals, calculated using bootstrap (1000 samples), are 
given in parentheses. Min doubling time is the minimal time required to double the population density. Densities are in 
OD595; growth rate in hours-1, doubling time and lag duration in hours. See Table S2 for additional parameter estimates. 

 

b. Estimate competition coefficients 

Competition	model	

To model growth in a mixed culture, we assume that interactions between the strains are 

solely due to resource competition. Therefore, all interactions are described by the 

deceleration of the growth rate of each strain in response to growth of the other strain. We 

derived a new two-strain Lotka-Volterra competition model13 based on resource consumption 

(see Supporting Text 2): 

 

𝑑𝑁B
𝑑𝑡

= 𝑟B𝛼B 𝑡 𝑁B 1 −
𝑁B
-K

𝐾B
-K − 𝒂𝟐 ⋅

𝑁N
-O

𝐾B
-K 	

𝑑𝑁N
𝑑𝑡

= 𝑟N𝛼N 𝑡 𝑁N 1 − 𝒂𝟏 ⋅
𝑁B
-K

𝐾N
-O −

𝑁N
-O

𝐾N
-O ,

 

[3a] 

 

[3b] 

where 𝑁R is the density of strain 𝑖 = 1,2, 𝑟R, 𝐾R, 𝜈R, 𝛼R, 𝑞;,R, and 𝑚R are the values of the 

corresponding parameters for strain 𝑖 (obtained from fitting the growth model (eq. 2) to 

monoculture growth curve data), and 𝑎R are competition coefficients, the ratios between inter- 

and intra-strain competitive effects. Note that each strain can have a different limiting 

resource and resource efficiency, based on the maximum densities 𝐾R  and competition 

coefficients 𝑎R determined for each strain. 
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Model	fitting	

The competition model (eq. 3) was fitted to growth curve data from the mixed culture, in 

which the combined OD of both strains was recorded over time (i.e. the total density, not the 

frequency or density of individual strains). The fitting provides estimates for the competition 

coefficients 𝑎R and was performed by minimizing the squared differences between 𝑁B + 𝑁N 

(the sum of the integrals of the system in eq. 3) and the total OD from the mixed culture 

(Figure 3A-C). Note that the total density of the mixed culture is usually ignored, despite 

being easy to produce, and part of the strength of our approach stems from using these data. 

c. Prediction and validation of relative growth 

Model	prediction		

With estimates of all the competition model parameters, we solved the competition model 

(eq. 3) using numerical integration, thus providing a prediction for the cell densities 𝑁B(𝑡) 

and 𝑁N 𝑡  of the two strains growing in a mixed culture. From these predicted densities, the 

frequencies of each strain over time were estimated: 

𝑓R 𝑡 = "X #
"K # 5"O #

. 

Experimental	validation	

The green and red markers and error bars in Figure 3D-F show the results of the 

competition experiment, that is, the frequency of each strain growing together in a mixed 

culture. These experimental results are compared to our model predictions in green and red 

dashed lines and to the exponential model predictions in black dashed lines (see Figure 1 and 

Introduction for details on the exponential model). Our model performs well and clearly 

improves upon the exponential model for predicting competition dynamics in a mixed 

culture: the colored dashed lines match the data much better than the black dashed lines. 
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Figure 3. Predicting growth in a mixed culture. Growth of two E. coli strains competing for resources in a mixed 

culture. (A-C) Blue triangles show the average overall density in a mixed culture; error bars show standard deviation from 
30 replicates (extremely small in B); solid blue lines show the best-fit competition model (eq. 3); dashed black lines show 

the exponential model prediction (see Figure 1). (D-F) Comparison of experimental data (circles) and model prediction 
(dashed lines; see Figure S3 for confidence intervals) of strain relative frequencies in a mixed culture. Green and red dashed 

lines show our model predictions; dashed black lines show exponential model predictions. Error bars show standard 
deviation (hardly seen in D and F). Root mean squared error of model fit (solid blue line to blue triangles A-C) are 0.011 for 
A, 0.01 for B, and 0.008 for C.  Estimated competition coefficients are a1=10, a2=0.77 for D; a1=3.7, a2=1.9 for E; a1=0.31, 

a2=0.56 for F. Inferred time-averaged selection coefficients are 0. A, 376 for D, 0.182 for E, and 0.124 for F. 

 

Discussion 

We developed a new computational approach to predict relative growth in a mixed culture 

from growth curves of mono- and mixed cultures, without measuring frequencies of single 

isolates within the mixed culture. We tested and validated this new approach, which 

performed far better than the approach commonly used in the literature.  

Our approach only assumes that the assayed strains grow in accordance with the growth 

and competition models: namely, that growth depends on resource availability. Therefore, 

this approach can be applied to data from a variety of organisms, experiments, and 

conditions. Growth curve experiments, in which only optical density is measured, require 

much less effort and resources than pairwise competition experiments, in which the cell 

frequency or count of each strain must be determined2,3,8,14. Current approaches to estimating 

fitness from growth curves mostly use the growth rate or the maximum population density as 

a proxy for fitness. However, the growth rate and other proxies for fitness based on a single 

growth parameter cannot capture the full scope of effects that contribute to differences in 

overall fitness15. In contrast, our new approach integrates several growth phases, allowing a 

more accurate estimation of relative growth and fitness from growth curve data, and 

providing information on the specific growth traits that contribute to differences in fitness.  
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We will release Curveball, an open-source software package which implements our new 

approach (http://curveball.yoavram.com). This software is written in Python16 and includes a 

user interface that does not require prior knowledge in programming. It is free and open, such 

that additional data formats, growth and competition models, and other analyses can be added 

by the community to extend its utility. 

Conclusions 

We developed and tested a new approach to analyze growth curve data, and applied it to 

predict growth of individual strains within a mixed culture. This approach can improve 

fitness estimation from growth curve data, has a clear biological interpretation, and can be 

used to predict and interpret growth in a mixed culture and results of competition 

experiments. 

Materials and Methods 

Strains and plasmids. Escherichia coli strains used were DH5α (Berman lab, Tel-Aviv 

University), TG1 (Ron lab, Tel-Aviv University), JM109 (Nir lab, Tel-Aviv University), and 

K12 MG1655-Δfnr (Ron lab, Tel-Aviv University). Plasmids contain a GFP or RFP gene and 

genes conferring resistance to kanamycin (KanR) and chloramphenicol (CapR) (Milo lab, 

Weizmann Institute of Science17).  

Media. All experiments were performed in LB media (5 g/L Bacto yeast extract (BD, 

212750), 10 g/L Bacto Tryptone (BD, 211705), 10 g/L NaCl (Bio-Lab, 190305), DDW 1 L) 

with 30 µg/mL kanamycin (Caisson Labs, K003) and 34 µg/mL chloramphenicol (Duchefa 

Biochemie, C0113). Green or red fluorescence of each strain was confirmed by fluorescence 

microscopy (Nikon Eclipe Ti, Figure S1). 

Growth and competition experiments. All experiments were performed at 30°C. Strains 

were inoculated into 3 ml LB+Cap+Kan and grown overnight with shaking. Saturated 

overnight cultures were diluted into fresh media so that the initial OD was detectable above 

the OD of media alone (1:1-1:20 dilution rate). In experiments that avoided a lag phase, 

cultures were pre-grown until the exponential growth phase was reached as determined by 

OD measurements (4-6 h). Cells were then inoculated into 100 µL LB+Cap+Kan in a 96-well 

flat-bottom microplate (Costar): 

• 32 wells contained a monoculture of the GFP-labeled strain 

• 30 wells contained a monoculture of the RFP-labeled strain 
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• 32 wells containing a mixed culture of both GFP- and RFP-labeled strains 

• 2 wells contained only growth medium 

 The cultures were grown in an automatic microplate reader (Tecan infinite F200 Pro), 

shaking at 886.9 RPM, until they reached stationary phase. OD595 readings were taken every 

15 minutes with continuous shaking between readings. 
Samples were collected from the incubated microplate at the beginning of the experiment 

and once an hour for 6-8 hours: 1-10 µL were removed from 4 wells (different wells for each 

sample), and diluted into cold PBS buffer (DPBS with calcium and magnesium; Biological 

Industries, 02-020-1). These samples were analyzed with a fluorescent cell sorter (Miltenyi 

Biotec MACSQuant VYB). GFP was detected using a 488nm/520(50)nm FITC laser. RFP 

was detected with a 561nm/615(20)nm dsRed laser. Samples were diluted further to eliminate 

"double" event (events detected as both "green" and "red" due to high cell density) and noise 

in the cell sorter2. 

Data analysis. Fluorescent cell sorter output data was analyzed using R18 with the 

flowPeaks package that implements an unsupervised flow cytometry clustering algorithm19. 

Growth curve data were analyzed using Curveball, a new open-source software written in 

Python16 that implements the approach presented in this manuscript. The software includes 

both a programmatic interface (API) and a command line interface (CLI), and therefore does 

not require programming skills. The source code makes use of several Python packages: 

NumPy20, SciPy21, Matplotlib22, Pandas23, Seaborn24, LMFIT25, Scikit-learn26, and SymPy27.  

Fitting growth models. To fit models to data we used the least-squares non-linear curve 

fitting procedure21,25. We then calculate the Bayesian Information Criteria (BIC) of several 

nested models, defined by fixing some of the parameters (see Supporting Text 1, Figure S2, 

and Table S1). BIC is given by: 

𝐵𝐼𝐶 = 𝑛 ⋅ log " #X >" #X
O`

XaK
b

+ 𝑘 ⋅ log 𝑛, 

where 𝑘 is the number of model parameters, 𝑛 is the number of data points, 𝑡R are the time 

points, 𝑁 𝑡R  is the optical density at time point 𝑡R, and 𝑁 𝑡R 	is the expected density at time 

point 𝑡R according to the model. We selected the model with the lowest BIC28,29. Other 

metrics for model selection can be used with Curveball, but BIC was chosen for its simplicity 

and flexibility.  

Fitting exponential models. The following represents a common approach for estimating 

growth rates from growth curve data, and was used as a benchmark for our new approach 
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(see Figure 1 and black dashed lines in Figure 3). A polynomial is fitted to the mean of the 

growth curve data N(t). The time of maximum growth rate tmax is found by differentiating the 

fitted polynomial and finding the maximum of the derivative. Values a and b are found such 

that f(t)=b+at describes a tangent line at the point of maximum growth (tmax, N(tmax)). The 

intercept b and the slope a are interpreted as the initial density N0=eb and the growth rate r=a 

in an exponential growth model N(t)=N0ert (N0 is usually disregarded). 

Selection coefficients estimation. Selection coefficients were estimated from pairwise 

competition results using 𝑠(𝑡) = !
!#
log eO #

eK #
 where 𝑓B(𝑡) and 𝑓N(𝑡) are the predicted 

frequencies of the strains and 𝑡 is time1. The resulting st values were then averaged across 

time. Note that these estimates can depend on the experimental conditions, such as duration, 

media, temperature, and strain composition. 

Data availability. Data deposited on figshare (doi:10.6084/m9.figshare.3485984). 

Code availability. Source code will be available upon publication at 

https://github.com/yoavram/curveball; an installation guide, tutorial, and documentation will 

be available upon publication at http://curveball.yoavram.com.  

Figure reproduction. Data was analyzed and figures were produced using a Jupyter 

Notebook30 that will be available as a supporting file and at 

https://github.com/yoavram/curveball_ms.  
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Supporting material 

Supporting Text 1: Monoculture model 

We derive our growth models from a resource consumption perspective13,31.  We denote 

by 𝑅 the density of a limiting resource, and by 𝑁 the density of the cell population, both in 

total mass per unit of volume.  

We assume that the culture is well-mixed and homogeneous and that the resource is 

depleted by the growing cell population without being replenished. Therefore, the intake of 

resources occurs when cells meet resource via a mass action law with resource intake rate ℎ. 

Once inside the cell, resources are converted to cell mass at a conversion rate of 𝜖. Cell 

growth is assumed to be proportional to 𝑅 ⋅ 𝑁, whereas resource intake is proportional to a 

power of cell density, 𝑅 ⋅ 𝑁-. We denote 𝑌 ∶= 𝑁-. 

We can describe this process with differential equations for 𝑅 and 𝑁: 

 

𝑑𝑅
𝑑𝑡

= −ℎ𝑅𝑁-	

𝑑𝑁
𝑑𝑡

= 𝜖ℎ𝑅𝑁,
 

[A1a] 

[A1b] 

These equations can be converted to equations in 𝑅 and 𝑌: 

𝑌 = 𝑁- ⇒ 

𝑑𝑌
𝑑𝑡

= 𝜈𝑁->B 𝑑𝑁
𝑑𝑡

= 

𝜈𝑁->B ⋅ 𝜖ℎ𝑅𝑁 = 𝜈𝜖ℎ𝑅𝑁-, 

which yields 

 

𝑑𝑅
𝑑𝑡

= −ℎ𝑅𝑌	

𝑑𝑌
𝑑𝑡

= 𝜇ℎ𝑅𝑌.
 

[A2a] 

[A2b] 

with 𝜇 = 𝜖𝜈.  

To solve this system, we use a conservation law approach by setting 𝑀 = 𝜇𝑅 + 𝑌32. We 

find that M is constant 
!o
!#
= 𝜇 !p

!#
+ !q

!#
≡ 0, 

and we can substitute 𝜇𝑅 = 𝑀 − 𝑌 in eq. A2b to get 

 !q
!#
= ℎ𝑌 𝑀 − 𝑌 = ℎ𝑀𝑌 1 − q

o
. [A3] 
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Substituting again 𝑁- = 𝑌, !q
!#
= 𝜈𝑁->B !"

!#
, and defining 𝐾 = 𝑀

K
s, 𝑟 = t

-
𝐾-, we get 

 !"
!#
= 𝑟 ⋅ 𝑁 ⋅ 1 − "

,

-
, [A4] 

which is the Richards differential equation33, with the maximum population density K and the 

specific growth rate in low density	𝑟. To the best of our knowledge this the first derivation of 

the Richards differential equation from a resource consumption perspective.  

We solve eq. A4 via eq. A3, which is a logistic equation and therefore has a known 

solution. Setting the initial cell density 𝑁 0 = 𝑁; we have 

𝑁 𝑡 = ,

B> B> u
v4

s
67ws9

K
s
	. 

Eq. A4 is an autonomous differential equation (𝑑𝑁 𝑑𝑡 doesn't explicitly depend on 𝑡). To 

include a lag phase, Baranyi and Roberts11 suggested to add an adjustment function 𝛼 𝑡 , 

which makes the equation non-autonomous (explicitly dependent on 𝑡): 

 !"
!#
= 𝑟 ⋅ 𝛼 𝑡 ⋅ 𝑁 ⋅ 1 − "

,

-
. [A5] 

Baranyi and Roberts suggested a Michaelis-Menten type of function34 

𝛼 𝑡 = 34
3456789, 

which has two parameters: q0 is the initial physiological state of the population, and m is rate 

at which the physiological state adjusts to growth conditions. Integrating 𝛼(𝑡) gives 

𝐴 𝑡 ∶= 𝛼(𝑠)𝑑𝑠#
; = 34

345678y 𝑑𝑠
#
; = 𝑡 + B

z
log 6789534

B534
. 

Therefore, integrating eq. A5 produces eq. 2.  

The term 1 − 𝑁 𝐾 - is used to describe the deceleration in the growth of the population 

as it approaches the maximum density 𝐾. When 𝜈 = 1, the deceleration is the same as in the 

standard logistic model !"
!#
= 𝑟 ⋅ 𝑁 ⋅ 1 − "

,
 and the density at the time of the maximum 

population growth !O"
!#O

𝑡 = 0  is half the maximum density, ,
N
. When 𝜈 > 1 or 1 > 𝜈, the 

deceleration is slower or faster, respectively, and the density at the time of the maximum 

growth rate is 𝐾 1 + 𝜈 B - (Richards 1959, substituting W = N, A = K,m = ν+ 1, k = r ⋅

ν). 

We use six forms of the Baranyi-Roberts model (Figure S2, Table S1). The full model is 

described by eq. 2 and has six parameters. A five-parameter form of the model assumes 𝜈 =

1, as in the standard logistic model, but still incorporates the adjustment function 𝛼 𝑡  and 

therefore includes a lag phase. Another five-parameter form has both rate parameters set to 
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the same value (𝑚 = 𝑟), which was suggested to make the fitting procedure more stable34,35. 

A four-parameter form has both of the previous constraints, setting 𝑚 = 𝑟 and 𝜈 = 134. 

Another four-parameter form of the model has no lag phase, with 1 𝑚 = 0 ⇒ 𝛼(𝑡) ≡1, 

which yields the Richards model33, also called the 𝜃-logistic model36, or the generalized 

logistic model. This form of the model is useful in cases where there is no observed lag 

phase: either because the population adjusts very rapidly or because it is already adjusted 

prior to the growth experiment, possibly by pre-growing it in fresh media before the 

beginning of the experiment. The last form is the standard logistic model, in which 𝜈 = 1 and 

1 𝑚 = 0. 

Supporting Text 2: Mixed culture model 

We consider the case in which two species or strains grow in the same culture, competing 

for a single limiting resource, similarly to eq. A1: 

 

𝑑𝑅
𝑑𝑡

= −ℎB𝑅𝑁B
-K − ℎN𝑅𝑁N

-O	

𝑑𝑁B
𝑑𝑡

= 𝜖BℎB𝑅𝑁B																	

𝑑𝑁N
𝑑𝑡

= 𝜖NℎN𝑅𝑁N																	

 

[B1a] 

[B1b] 

[B1c] 

We define 𝑌R = 𝑁R
-X, and 𝑀R = 𝜖R𝜈R𝑅 + 𝑌R +

�X-X
��-�

𝑌� (where j is 1 when i is 2 and vice versa) 

to find that !oX
!#

≡ 0 and 𝑀R is constant. We then substitute 𝜖R𝜈R𝑅 = 𝑀R − 𝑌R −
�X-X
��-�

𝑌� into the 

differential equations for !qX
!#

. Denoting 𝐾R = 𝑀R

K
sX	 and 𝑟R =

tX
-X
𝐾R
-X, we get 

 

𝑑𝑁B
𝑑𝑡

= 𝑟B𝑁B 1 −
𝑁B
-K

𝐾B
-K − 𝑎N ⋅

𝑁N
-O

𝐾B
-K

𝑑𝑁N
𝑑𝑡

= 𝑟N𝑁N 1 − 𝑎B ⋅
𝑁B
-K

𝐾N
-O −

𝑁N
-O

𝐾N
-O ,

 
[B2a] 

[B2b] 

where 𝑎� =
�X-X
��-�

.  

We get a similar result if each strain is limited by a different resource that both strains 

consume: 
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𝑑𝑅B
𝑑𝑡

= −ℎB𝑅B𝑁B
-K − ℎN𝑅B𝑁N

-O	

𝑑𝑅N
𝑑𝑡

= −ℎB𝑅N𝑁B
-K − ℎN𝑅N𝑁N

-O	

𝑑𝑁B
𝑑𝑡

= 𝜖BℎB𝑅B𝑁B																	

𝑑𝑁N
𝑑𝑡

= 𝜖NℎN𝑅N𝑁N																	

 

[B3a] 

[B3b] 

[B3c] 

[B3d] 

Here, we notice first that !
!#
log 𝑅B = !

!#
log 𝑅N  and therefore 𝜌 = pK

pO
 is a constant. We 

then substitute 𝑅B = 𝑅, 𝑅N = 𝜌𝑅 in eqs. B3 and continue as above. This changes the 

definition of 𝑎� =
�X-XpX
��-�p�

. 

If the intake rates depend only on the resource then 

 

𝑑𝑅B
𝑑𝑡

= −ℎB𝑅B𝑁B
-K − ℎB𝑅B𝑁N

-O	

𝑑𝑅N
𝑑𝑡

= −ℎN𝑅N𝑁B
-K − ℎN𝑅N𝑁N

-O	
 

[B4a] 

[B4b] 

Then we define 𝐻 = ℎB/ℎN and 𝜌 = pK
pO�

 and again continue as above.  
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Supporting figures 

 
Figure S1. Fluorescence microscopy of E. coli strains carrying GFP or RFP. Image of a mixture of DH5α-GFP and 

TG1-RFP cells. 

 

 
Figure S2. Growth models hierarchy. The Baranyi-Roberts model and five nested models defined by fixing one or two 

parameters. See Supporting Text 1 and Table S1 for more details. 
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Figure S3. Mixed culture growth predictions with confidence intervals. The green and red lines and markers 

correspond to the dashed green and red lines and the markers in Figure 3D-F, respectively. The gray area shows the 95% 
confidence interval, calculated using bootstrap (1000 samples). 

 

Supporting tables 

 

Model name # Parameters Free Parameters Fixed Parameters References 

Baranyi Roberts 

1994 
6 N;, K, r, ν, q;,m 

- 

 
11 

Baranyi 1997 5 N;, K, r, ν, q; m = r - 

Baranyi Roberts 

1994 
5 N;, K, r, q;,m ν = 1 - 

Richards 1959 4 N;, K, r, ν 
1
q;

=
1
m
= 0 33 

Baranyi 1997 4 N;, K, r, q; 
ν = 1 

m = r 
34 

Logistic 3 N;, K, r 
ν = 1 

1
q;

=
1
m
= 0 

37 

Table S1. Growth models. The table lists the growth models used for fitting growth curve data. All models are defined 
by eqs. 1 and 2, by fixing specific parameters. 𝑵𝟎 is the initial population density; 𝑲 is the maximum population density; 𝒓 

is the specific growth rate in low density; 𝝂 is the surface to mass ratio; 𝒒𝟎 is the initial physiological state; 𝒎 is the 
physiological adjustment rate. Note that when 𝟏 𝒎 = 𝟎, the value of 𝒒𝟎 is irrelevant. See also the hierarchy diagram in 

Figure S2 and a detailed discussion in Supporting text 1. 

 

 
 Experiment A Experiment B Experiment C 

Strain 

Parameter 

GFP RFP GFP RFP GFP RFP 

𝑵𝟎 0.125 0.124 0.286 0.23 0.188 0.204 

𝑲 0.528 0.65 0.619 0.628 0.633 0.741 

𝒓 0.376 0.587 0.304 0.484 8 8 

𝝂 2.636 1* 2.484 1.491 1* 0.164 

𝒒𝟎 0.032 0.008 -* -* 0.039 0.393 

𝒗 0.937 3.735 -* -* 0.188 0.104 

Table S2. Estimated parameters from growth model fitting. * denotes fixed parameters; - denotes invalid parameter 
values. 
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