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Abstract10

Background: The social hymenoptera are emerging as models for epigenetics. In mammals and11

flowering plants’ epigenetics, methylation affects allele specific expression. There is contradictory12

evidence for the role of methylation on allele specific expression and monoallelic methylation in13

social insects. The aim of this paper is to investigate allele specific expression and monoallelic14

methylation in the bumblebee, Bombus terrestris.15

Results: We found nineteen genes that were both monoallelically methylated and monoalleli-16

cally expressed. A number of these genes are involved in reproduction. Fourteen of these genes17

express the hypermethylated allele, while the other five express the hypomethylated allele.18

We also searched for allele specific expression in twenty-nine published RNA-seq libraries.19

We found 555 loci with allele-specific expression.20

Conclusions: Genomic imprinting in mammals often involves monoallelic methylation and21

expression. It is tempting to associate our results with genomic imprinting, especially as a22

number of the genes discovered are exactly the type predicted by theory to be imprinted. Caution23

however should be applied due to the lack of understanding of the functional role of methylation24

in gene expression in insects and in the as yet unquantified role of genetic cis effects in insect25

allele specific methylation and expression.26

Keywords: methylation, allele specific expression, hymenoptera, genomic imprinting27
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Background28

Epigenetics is the study of heritable changes in gene expression that do not involve changes to29

the underlying DNA sequence [1]. Social hymenoptera (ants, bees, and wasps) are important30

emerging models for epigenetics [2, 3, 4, 5]. This is due to theoretical predictions for a role for an31

epigenetic phenomenon, genomic imprinting, in their social organisation [6], the recent discovery32

of parent-of-origin allele specific expression in honeybees [7], and data showing a fundamental33

role in social insect biology for DNA methylation, an epigenetic marker [8]. Genomic imprinting34

is allele specific expression in diploid individuals, where expression is dependent on the sex of35

the parent from which an allele was inherited [9]. In mammals and flowering plants, genomic36

imprinting is often associated with methylation marks passed from parents to offspring [10].37

However the presence of allele specific expression and methylation does not necessarily mean38

an epigenetic process is involved. Allele specific expression, and DNA methylation, can be due39

to processes other than genomic imprinting. Allele specific expression is known to be caused by40

a number of genetic as well as epigenetic processes [11]. The genetic process usually involves cis41

effects such as transcription factor binding sites, or less often, untranslated regions which alter42

RNA stability or microRNA binding [12]. As well as genomic imprinting, DNA methylation is43

also involved in cellular differentiation [13]. Allele specific methylation can also be affected by44

the allele’s genotype as well as epigenetics [14].45

There is contradictory evidence for the role of methylation on allele specific expression and46

monoallelic methylation in social insects. Methylation is associated with allele specific expression47

in a number of loci in the ants Camponotus floridanus and Harpegnathos saltator [15]. Recently,48

we found evidence for allele specific expression in bumblebee worker reproduction genes [16]49

and that methylation is important in bumblebee worker reproduction [17]. However, other work50

on the honeybee Apis mellifera found no link between potentially imprinted loci and known51

methylation sites in that species [18].52

The aim of this paper is to investigate allele specific expression and monoallelic methylation53

in the bumblebee, Bombus terrestris. The recently sequenced genome of the bumblebee, Bom-54
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bus terrestris displays a full complement of genes involved in the methylation system [19]. An55

extreme form of imprinting involves monoallelic expression (one allele is completely silenced).56

In the canonical mammal and flowering plant systems, this is often associated with monoal-57

lelic methylation. In this paper, we examined the link between monoallelic methylation and58

monoallelic expression in the bumblebee, Bombus terrestris, by examining two whole methy-59

lome libraries and an RNA-seq library from the same bee. MeDIP-seq is an immunoprecipitation60

technique that creates libraries enriched for methylated cytosines [20]. Methyl-sensitive restric-61

tion enzymes can create libraries that are enriched for non-methylated cytosines (MRE-seq)62

[20]. Genes found in both libraries are monoallelically methylated, with the hypermethylated63

allele being in the MeDIP-seq data and the hypomethylated allele in the MRE-seq data [20].64

Monoallelic expression was identified in these loci from the RNA-seq library. If only one allele65

was expressed then we knew that these loci were both monoallelically methylated and monoal-66

lelically expressed in this bee. We confirmed this monoallelic expression in one locus using67

qPCR.68

We then more generally searched for allele specific expression by analysing twenty nine69

published RNA-seq libraries from worker bumblebees [21, 22]. We identified heterozygotes in70

the RNA-seq libraries and measured the expression of each allele. We then identified loci that71

showed significant expression differences between their two alleles.72
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Results73

In total, we found nineteen genes that were both monoallelically methylated (present in both74

Me-DIP and MRE-seq libraries) and monoallelically expressed (only one allele present in the75

RNA-seq library), for an example see Bicaudal-D in Figure 1. Of the nineteen genes, fourteen76

had the hypermethylated (MeDIP) allele expressed, while five had the hypomethylated (MRE-77

seq) allele expressed (see supplementary table 1).78

Figure 1: Coverage of three libraries for bicaudal d. Horizontal lines represent available
reads for each library over this genomic range (x-axis). The vertical line shows the position of
the snp and which genomic library shares the same allele.

Monoallelic expression was confirmed in one of these nineteen (slit homolog 2 protein-like79
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(AELG01000623.1)) by allele specific qPCR [16]. The allele with a guanine at the snp position80

had a mean expression of 6.04 ±8.28 (standard deviation) in four bees from three different81

colonies. The thymine allele was not expressed at all in these bees. This was not due to the82

efficiency of the primers as the DNA controls of both alleles showed similar amplification (G83

mean = 422.70 ±507.36, T mean = 1575.17 ±503.02). In the three other loci tested (Ras84

GTPase-activating protein 1, Ecdysone receptor, methionine aminopeptidase 1-like) we found85

apparent monoallelic expression, but could not dismiss primer efficiency as the cause.86

The nineteen genes were blasted against the nr/nt database (blastn). Four returned no hits87

and a further four returned noninformative hits. A number of these genes had homologs known88

to be methylated in other animals (Table 1). Six of the eleven genes with informative hits have89

functions to do with social organisation in the social insects (Table 1).90

We then looked at these nineteen genes in twenty-nine previously published RNA-seq li-91

braries. Fifteen of these nineteen genes expressed a single allele in all twenty nine RNA-seq li-92

braries, see supplementary table 2. The remaining four genes (AELG01000620.1, AELG01001021.1,93

AELG01002224.1a, AELG01002224.1b) were inconsistent; they showed expression of one allele94

in some B. terrestris workers, and expression of two alleles in other workers.95

We then searched more generally for allele specific expression in the twenty-nine RNA-seq96

libraries. 555 loci showed allele-specific expression in ≥3 of the 29 RNA-seq libraries (supple-97

mentary table 3). Blasting (Blastn) these loci against Bombus terrestris returned 211 hits. To98

search for gene ontology terms, we blasted (blastx) against Drosophila melanogaster, which re-99

turned 329 hits. One hundred and fifty-one Gene Ontology(GO) terms were enriched in the100

555 regions showing allele specific expression (Fishers exact test p >0.05), however none were101

significant at the more stringent FDR >0.05. Figure 2 shows the large number of biological102

functions associated with these 555 genes.103
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Figure 2: GO terms associated with allele specific expression. A summary of the
enriched GO terms (p <0.05, based on Blast2Go annotation) found for genes displaying allele
specific expression. This figure was produced using Revigo

Discussion104

Of the nineteen genes displaying monoallelic methylation and monoallelic expression, fourteen105

had the hypermethylated (MeDIP) allele expressed, while five had the hypomethylated (MRE-106

seq) allele expressed (see supplementary table 1). In ant genes with allele specific methylation,107

the hypermethylated allele showed more expression than the hypomethylated allele [15]. This fits108

with genome wide analysis that shows exonic methylation in insects associated with increased109

gene expression [35, 36]. Our fourteen genes with the hypermethylated allele expressed agree110
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with this pattern. But how to explain the five genes where the hypomethylated allele was111

expressed? Firstly, the role of methylation in insect gene expression is not clear cut, with the112

relationship between exonic methylation and expression often disappearing at the gene level [36].113

Secondly, even in the canonical mammalian methylation system, the ”wrong” allele has been114

shown to be expressed occasionally due to lineage specific effects [37, 38, 39, 40, 41].115

We then looked at the expression of these nineteen genes in all twenty-nine RNA-seq libraries.116

If they are monoallelically expressed in these bees, we would find only one allele in a given117

RNA-seq library. Fifteen of these nineteen genes were confirmed to show a single allele in all118

twenty-nine RNA-seq libraries. We would also find only one allele if that bee was homozygous.119

We can not rule out that these fifteen genes just happen to be homozygous in all twenty-nine120

bees from five different colonies from multiple sources, although this seems unlikely. This result121

suggests that the finding in the monoallelic analysis can be generalized.122

The remaining four genes showed inconsistent expression with one allele being expressed in123

some B. terrestris workers, and expression of two alleles in other workers. Natural intraspecific124

variation in imprinting has been found in other species [42]. Another explanation is that these125

loci are not imprinted but rather their allele specific expression is derived from genetic effects126

[43].127

There are three main genetic, as opposed to epigenetic, affectors of allele specific expression128

[44]. Allele specific expression can be caused by differences in the alleles’ sequence within the129

translated part resulting in a modified protein. A change at the alleles’ cis regulatory sites, could130

cause differential binding of transcription factors. Transcript processing can be affected by a131

change in the alleles’ sequence a splice site or untranslated region. This large number of possible132

causes of allele specific expression could explain why we see so many functions associated with133

the 555 genes showing allele specific expression (Figure 2).134

But it is not just allele specific expression that may have genetic as well as epigenetic effects.135

It has been shown in humans that some allele specific methylation is determined by DNA136

sequence in cis and therefore shows Mendelian inheritance patterns [14]. An extreme example137
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of genetically controlled allele specific methylation is found in Nasonia wasps, where there is no138

evidence for methylation driven genomic imprinting, but inheritable cis-mediated allele specific139

methylation has been found [45]. This cis-mediated methylation has recently been suggested as140

being important in social insect biology [43, 46].141

We have found that allele specific expression is widespread in the bumblebee. We have also142

found that the extreme version of allele specific expression, monoalleic expression is associated143

with monoallelic methylation. Genomic imprinting in mammals usually involves monoallelic144

methylation and expression. It is tempting to associate our results with genomic imprinting,145

especially as a number of the genes discovered are exactly the type predicted by theory to146

be imprinted [6]. Caution however should be applied due to the lack of understanding of the147

functional role of methylation in gene expression in insects and in the as yet unquantified role148

of genetic cis effects in insect allele specific methylation and expression.149
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Materials and Methods150

Samples151

Data from twenty-nine RNA-seq libraries were used for the allele specific expression analysis152

(six from Harrison et al. [21], and twenty-three from Riddell et al. [22]. The Riddell bees153

came from two colonies, one commercially reared bumblebee colony from Koppert Biological154

Systems U.K. and one colony from a wild caught queen from the botanic gardens, Leicester.155

The Harrison bees were from three commercially reared colonies obtained from Agralan Ltd.156

A Koppert colony worker bee was used for the MeDIP-seq / MRE-seq / RNA-seq experiment,157

and was from a separate Koppert colony to the bees used for the qPCR analysis. Samples are158

outlined in Table 2. Colonies were fed ad libitum with pollen (Percie du sert, France) and 50 %159

diluted glucose/fructose mix (Meliose Roquette, France). Before and during the experiments160

colonies were kept at 26oC and 60% humidity in constant red light.161

Table 2: Bees used in each experiment. K refers to Koppert, A to Agralan and Q to the
wild caught Leicester queen.

Experiment Number Colony

Allele specific expression
RNA-seq

1 A1

2 A2
2 A3
1 K1
14 K2
9 Q1

MeDip/MRE/RNA-seq 1 K1

qPCR 2 K3
1 K4
1 K5
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Next generation sequencing162

MeDIP-seq, MRE-seq and RNA-seq163

RNA and DNA was extracted from a single five day old whole bee (Colony K2). DNA was164

extracted using an ethanol precipitation method. Total RNA was extracted using Tri-reagent165

(Sigma-Aldrich, UK).166

Three libraries were prepared from this bee by Eurofins genomics. These were MeDIP-seq167

and MRE-seq libraries on the DNA sample and one amplified short insert cDNA library with168

size of 150-400 bp using RNA. Both the MeDIP-seq and MRE-seq library preparations are169

based on previously published protocols [20]. MeDIP-seq uses monoclonal antibodies against 5-170

methylcytosine to enrich for methylated DNA independent of DNA sequence. MRE-seq enriches171

for unmethylated cytosines by using methylation-sensitive enzymes that cut only restriction sites172

with unmethylated CpGs. Each library was individually indexed. Sequencing was performed on173

an Illumina HiSeq2000 instrument (Illumina, Inc.) by the manufacturers protocol. Multiplexed174

100 base paired-read runs were carried out yielding 9390 Mbp for the MeDIP-seq library, 11597175

Mbp for the MRE-seq library and 8638 Mbp for the RNA-seq library.176

Previously published RNA-seq177

Full details of the RNA-seq protocols used have been published previously [21, 22]. Briefly, for178

the Riddell bees, total RNA was extracted from twenty three individual homogenised abdomens179

using Tri-reagent (Sigma-Aldrich, UK). TruSeq RNA-seq libraries were made from the 23 sam-180

ples at NBAF Edinburgh. Multiplexed 50 base single-read runs was performed on an Illumina181

HiSeq2000 instrument (Illumina, Inc.) by the manufacturers protocol. For the Harrison bees,182

total RNA was extracted from whole bodies using a GenElute Mammalian Total RNA Miniprep183

kit (Sigma-Aldrich) following the manufacturers’ protocol. The six libraries were sequenced as184

multiplexed 50 base single-read runs on an Illumina HiSeq 2500 system in rapid mode at the185

Edinburgh Genomics facility of the University of Edinburgh.186
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Monoallelic methylation and expression - Bioinformatic analysis187

We searched for genes that were monoallelically methylated (present in both methylation li-188

braries), heterozygous and monoallelically expressed (only one allele present in the RNA-seq189

library).190

Alignment and bam refinement191

mRNA reads were aligned to the Bombus terrestris genome assembly (AELG00000000) using192

Tophat [47] and converted to bam files with Samtools [48]. Reads were labelled with the AddOr-193

ReplaceReadGroups.jar utility in Picard (http://picard.sourceforge.net/). The MRE-seq194

and MeDIP-seq reads were aligned to the genome using BWA mapper [49]. The resultant sam195

alignments were soft-clipped with the CleanSam.jar utility in Picard and converted to bam for-196

mat with Samtools. The Picard utility AddOrReplaceReadGroups.jar was used to label the197

MRE and MeDIP reads which were then locally re-aligned with GATK [50, 51]. PCR duplicates198

for all bams (mRNA, MeDIP and MRE) were marked with the Picard utility Markduplicates.jar.199

Identifying regions of interest and integrating data200

Coverage of each data type was calculated using GATK DepthofCoverage [51]. Only regions201

with a read depth of at least six in each of the libraries (RNA-seq, MeDIP-seq and MRE-seq)202

was used. Heterozygotes were identified using Samtools mpileup and bcftools on each data set203

separately [49] and results were merged with vcf tools [52]. CpG islands were identified using204

CpG island searcher [53]. Regions of mRNA with overlaps of MeDIP, MRE, CpG islands and205

monoallelic snps were identified with custom perl scripts.206

Allele specific expression - Bioinformatic analysis207

We created a pipeline to search for heterozygous loci that show allele specific expression and208

identify the associated enriched gene ontology (GO) terms in twenty-nine previously published209

RNA-seq libraries [21, 22].210
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Each RNA library was mapped to the Bombus terrestris reference genome (Bter 1.0, accession211

AELG00000000.1) [19] using the BWA mapper [49]. The mean GC content of the 29 libraries212

was 42.34%, with individual libraries having a similar GC content ranging from 40-46%. GC213

content differed with run (Nested ANOVA: F = 20.302, df = 1, p < 0.001), but not by colony214

(Nested ANOVA: F = 1.763, df = 4, p = 0.171). The mean coverage of the 29 libraries was215

13.29, with mean library coverage ranging from 9.84 to 17.61. Run had an effect on coverage216

(Nested ANOVA: F = 7.554, df = 1, p = 0.011), as did colony (Nested ANOVA: F = 6.962, df217

= 4, p < 0.001).218

Therefore, the combat method in the R package SVA (version 3.20.0) was used to remove219

any batch effects and control for original differences in coverage [54, 55]. The success of this220

control was confirmed by the R package edgeR (version 3.14.0) [56, 57]. The SVA adjustment221

reduced the edgeR dispersion value from 3.9994 (BCV=2) to 0 (BCV=0.0003) (supplementary222

figure 1).223

Bcftools (version 0.1.19-44428cd), bedtools (version 2.17.0), and samtools (version 0.1.19-224

44428cd) were used to prepare the RNA libraries and call the SNPs, before the SNPs were225

filtered based on mapping quality score [49, 58]. Only SNPs with a mapping quality score of p226

<0.05 and a read depth of ≥6 were included in the analyses. The R package, QuASAR, was then227

used to identify genotypes (according to the Hardy-Weinberg equilibrium) and locate any allele228

specific expression at heterozygous sites [59]. QuASAR removes snps with extreme differential229

allele expression from the analyses, thus controlling for any base-calling errors. The loci (the230

snp position +/- 2900bp) identified as showing ASE in at least three of the thirty libraries, were231

blasted (Blastx) against Drosophila melanogaster proteins (non-redundant (nr) database) [60].232

The blast results were annotated using Blast2Go [61]. Fisher’s exact test was implemented to233

identify enriched GO terms, which were then visualised using REVIGO [62]. To identify which234

bumblebee genes the snps were located in, the snp position +/- 25 bp was blasted (Blastn)235

against the Bombus terrestris genome [19].236
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Candidate gene allele specific qPCR237

DNA was extracted from four bees from three Koppert colonies using the Qiagen DNA Micro kit238

according to manufacturer’s instructions. RNA was extracted from samples of the heads of the239

same worker bees with the QIAGEN RNeasy Mini Kit according to manufacturer’s instructions.240

cDNA was synthesized from a 8µl sample of RNA using the Tetro cDNA synthesis Kit (Bioline)241

as per manufacturer’s instructions.242

We amplified numerous fragments of the 19 candidate genes. Sanger sequencing results243

were analyzed using the heterozygote analysis module in Geneious version 7.3.0 to identify244

heterozygotic nucleotide positions. It was difficult to identify snps in exonic regions of the 19245

loci, which could be amplified with primers of suitable efficiency. We managed to identify a246

suitable region in slit homolog 2 protein-like (AELG01000623.1 exonic region 1838-2420).247

The locus was run for 3 different reactions; T allele, G allele and reference. Reference primers248

were designed according to [63]. A common reverse primer (CTGGTTCCCGTCCAATCTAA)249

was used for all three reactions. A reference forward primer ( CGTGTCCAGAATCGACAATG)250

was designed to the same target heterozygote sequence, upstream of the heterozygote nucleotide251

position. The reference primers measure the total expression of the gene, whereas the allele252

specific primers (T allele: CCAGAATCGACAATGACTCGT, G allele: CAGAATCGACAAT-253

GACTCGG) measure the amount of expression due to the allele. Thus the ratio between the254

allele specific expression and reference locus expression would be the relative expression due to255

the allele.256

Three replicate samples were run for each reaction. All reactions were prepared by the257

Corbett robotics machine, in 96 well qPCR plates (Thermo Scientific, UK). The qPCR reaction258

mix (20µl) was composed of 1µl of diluted cDNA (50ng/µl), 1µl of forward and reverse primer259

(5µM/µl each), 10µl 2X SYBR Green JumpStart Taq ReadyMix (Sigma Aldrich, UK) and 7µl260

ddH20. Samples were run in a PTC-200 MJ thermocycler. The qPCR profile was; 4 minutes at261

95oC denaturation followed by 40 cycles of 30s at 95oC, 30s at 59oC and 30s at 72oC and a final262

extension of 5 minutes at 72oC.263
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Forward primers are different, both in their terminal base (to match the snp) and in their264

length. It is entirely possible that they may amplify more or less efficiently even if there was265

no difference in amount of template [64]. To test for this we repeated all qPCRs with genomic266

DNA (1µl of diluted DNA (20ng/µl) from the same bees as the template. We would expect267

equal amounts of each allele in the genomic DNA. We also measured efficiency of each reaction268

as per [65].269

Median Ct was calculated for each set of three technical replicates. A measure of relative270

expression (ratio) was calculated for each allele in each worker bee as follows:271

ratioallele =
E−Ctallele

allele

E
−Ctreference

reference

(1)

E is the median efficiency of each primer set [64, 65]. All statistical analysis was carried out272

using R (3.1.0) [66].273

Ethical declaration274

The protocol reported here conforms to the regulatory requirements for animal experimentation275

in the United Kingdom.276
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Figure and table legends516

Table 1. The eleven of the nineteen monoallelically methylated and expressed517

genes that returned informative blast hits.518

Figure 1. Coverage of three libraries for bicaudal d. Horizontal lines represent available519

reads for each library over this genomic range (x-axis). The vertical line shows the position520

of the snp and which genomic library shares the same allele.521

Figure 2. GO terms associated with allele specific expression. A summary of the522

enriched GO terms (p <0.05, based on Blast2Go annotation) found for genes displaying523

allele specific expression. This figure was produced using Revigo524

Table 2. Bees used in each experiment. K refers to Koppert, A to Agralan and Q to the525

wild caught Leicester queen.526

Supporting information legends527

Table S1. Nineteen genes showing both monoallelic methylation and monoallelic528

expression. Blast results and genomic coordinates of the reads from the RNA-seq, MRE-529

seq and MeDip-seq libraries.530

Table S2. Confirmation of single allele expression of nineteen monoallelically ex-531

pressed genes in twenty-nine previously published transcriptomes. For each of532

the 19 contigs are the previously published RNA-seq libraries with associated read counts.533

Table S3. 555 genes showing allele specific expression in at least three of the534

29 previously published RNA-seq libraries. This table details the blast results535

from both the bumblebee and drosophila genomes and the GO terms associated with the536

drosophila hits.537
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Figure S1. Biological coefficient of variation (BCV) of a) raw data, and b) SVA-538

adjusted data for the 29 RNA-seq Bombus terrestris libraries539
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