Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Estimating K in Genetic Mixture Models

Robert Verity, Richard A. Nichols
doi: https://doi.org/10.1101/022988
Robert Verity
*MRC centre for outbreak analysis and modelling, Imperial College London, London, W2 1PG, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard A. Nichols
†Queen Mary University of London, London, E1 4NS, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

ABSTRACT

A key quantity in the analysis of structured populations is the parameter K, which describes the number of subpopulations that make up the total population. Inference of K ideally proceeds via the model evidence, which is equivalent to the likelihood of the model. However, the evidence in favour of a particular value of K cannot usually be computed exactly, and instead programs such as Structure make use of simple heuristic estimators to approximate this quantity. We show – using simulated data sets small enough that the true evidence can be computed exactly – that these simple heuristics often fail to estimate the true evidence, and that this can lead to incorrect conclusions about K. Our proposed solution is to use thermodynamic integration (TI) to estimate the model evidence. After outlining the TI methodology we demonstrate the effectiveness of this approach using a range of simulated data sets. We find that TI can be used to obtain estimates of the model evidence that are orders of magnitude more accurate and precise than those based on simple heuristics. Furthermore, estimates of K based on these values are found to be more reliable than those based on a suite of model comparison statistics. Our solution is implemented for models both with and without admixture in the software TrueK.

Footnotes

  • ↵1 Robert Verity, MRC centre for outbreak analysis and modelling, Imperial College London, London, W2 1PG, UK; r.verity{at}imperial.ac.uk

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted July 22, 2015.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Estimating K in Genetic Mixture Models
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Estimating K in Genetic Mixture Models
Robert Verity, Richard A. Nichols
bioRxiv 022988; doi: https://doi.org/10.1101/022988
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Estimating K in Genetic Mixture Models
Robert Verity, Richard A. Nichols
bioRxiv 022988; doi: https://doi.org/10.1101/022988

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (2518)
  • Biochemistry (4968)
  • Bioengineering (3473)
  • Bioinformatics (15185)
  • Biophysics (6886)
  • Cancer Biology (5380)
  • Cell Biology (7718)
  • Clinical Trials (138)
  • Developmental Biology (4521)
  • Ecology (7135)
  • Epidemiology (2059)
  • Evolutionary Biology (10211)
  • Genetics (7504)
  • Genomics (9774)
  • Immunology (4826)
  • Microbiology (13186)
  • Molecular Biology (5130)
  • Neuroscience (29370)
  • Paleontology (203)
  • Pathology (836)
  • Pharmacology and Toxicology (1461)
  • Physiology (2131)
  • Plant Biology (4738)
  • Scientific Communication and Education (1008)
  • Synthetic Biology (1337)
  • Systems Biology (4003)
  • Zoology (768)