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Abstract 52 

Phase-amplitude coupling (PAC), the phenomenon where the phase of a low-frequency rhythm 53 

modulates the amplitude of a higher frequency, is becoming an important neurophysiological 54 

indicator of short- and long-range information transmission in the brain. Although recent evidence 55 

suggests that PAC might play a functional role during sensorimotor, and cognitive events, the 56 

neurobiological mechanisms underlying its generation remain imprecise. Thus, a realistic but simple 57 

enough computational model of the phenomenon is needed. Here we propose a neural mass model of 58 

a cortical column, comprising fourteen neuronal populations distributed across four layers (L2/3, L4, 59 

L5 and L6). While experimental studies often focus in only one or two PAC combinations (e.g., 60 

theta-gamma or alpha-gamma) our simulations show that the cortical column can generate almost all 61 

possible couplings of phases and amplitudes, which are influenced by connectivity parameters, time 62 

constants, and external inputs. Furthermore, our simulations suggest that the effective connectivity 63 

between neuronal populations can result in the emergence of PAC combinations with frequencies 64 

different from the natural frequencies of the oscillators involved. For instance, simulations of 65 

oscillators with natural frequencies in the theta, alpha and gamma bands, were able to produce 66 

significant PAC combinations involving delta and beta bands.  67 

 68 
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1. Introduction 103 

It has been hypothesized that phase-amplitude coupling (PAC) of neurophysiological signals plays a 104 

role in the shaping of local neuronal oscillations and in the communication between cortical areas 105 

(Canolty and Knight, 2010). PAC occurs when the phase of a low frequency oscillation modulates 106 

the amplitude of a higher frequency oscillation. A classic example of such phenomenon was 107 

demonstrated in the CA1 region of the hippocampus (Bragin et al., 1995), where the phase of the 108 

theta band modulates the power of the gamma-band. Computational models of the theta-gamma PAC 109 

generation in the hippocampus have been proposed (Kopell et al., 2010) and are based on two main 110 

types of models. The first model consists in a network of inhibitory neurons (I-I model) (White et al., 111 

2000) whereas the second model is based on the reciprocal connections between networks of 112 

excitatory pyramidal and inhibitory neurons (E-I model) (Kopell et al., 2010; Tort et al., 2007). In 113 

such models fast excitation and the delayed feedback inhibition alternate, and with appropriate 114 

strength of excitation and inhibition, oscillatory behavior may continue for a while. When the gamma 115 

activity produced by the E-I or I-I models is periodically modulated by a theta rhythm imposed by 116 

either an external source or theta resonant cells within the network (White et al., 2000), a theta-117 

gamma PAC is produced. Recently, the generation of theta-gamma PAC was studied (Onslow et al., 118 

2014) using a neural mass model (NMM) proposed by Wilson and Cowan (Wilson and Cowan, 119 

1972). In NMMs spatially averaged magnitudes are assumed to characterize the collective behavior 120 

of populations of neurons of a given type instead of modeling single cells and their interactions in a 121 

realistic network (Jansen and Rit, 1995; Wilson and Cowan, 1972). Specifically, the Wilson and 122 

Cowan model consists of an excitatory and inhibitory populations mutually connected.  123 

While the models mentioned above have improved our understanding of the physiological 124 

mechanism that give rise to theta-gamma PAC, we lack modeling insights into the generation of PAC 125 

involving other frequency pairs. This is critical since experimental studies have shown that the PAC 126 

phenomenon is restricted neither to the hippocampus nor to theta-gamma interactions. In fact, PAC 127 

has been detected in pairs involving all possible combinations of low and high frequencies: delta-128 

theta (Lakatos et al., 2005), delta-alpha (Cohen et al., 2009; Ito et al., 2013), delta-beta (Cohen et al., 129 

2009; Nakatani et al., 2014), delta-gamma (Florin and Baillet, 2015; Gross et al., 2013; Lee and 130 

Jeong, 2013; Nakatani et al., 2014; Szczepanski et al., 2014), theta-alpha (Cohen et al., 2009), theta-131 

beta (Cohen et al., 2009; Nakatani et al., 2014), theta-gamma (Demiralp et al., 2007; Durschmid et 132 

al., 2013; Florin and Baillet, 2015; Lakatos et al., 2005; Lee and Jeong, 2013; McGinn and Valiante, 133 

2014; Wang et al., 2011), alpha-beta (Sotero et al., 2013), alpha-gamma (Osipova et al., 2008; Spaak 134 

et al., 2012; Voytek et al., 2010; Wang et al., 2012), and beta-gamma (de Hemptinne et al., 2013; 135 

Wang et al., 2012).  Furthermore, although experimental studies usually focus in one or two PAC 136 

combinations, most of the combinations mentioned above can be detected in a single experiment 137 

(Sotero et al., 2013). This suggest a diversity and complexity of the PAC phenomenon that haven’t 138 

been grasped by current computational models.  139 

In this work we propose a neural mass model of a cortical column that comprises 4 cortical layer and 140 

14 neuronal populations, and study the simultaneous generation of all PAC combinations mentioned 141 

above. The neuronal populations modeled have natural frequencies in the theta, alpha and gamma 142 

bands. However, due to the effective connectivity between them, oscillations at the delta and beta 143 

bands appear and result in PAC involving these frequencies. We then focus on five combinations: 144 

delta-gamma, theta-gamma, alpha-gamma, delta-beta, and beta-gamma, and explore how changes in 145 

model parameters such as strength of the connections, time constants and external inputs, strengthen 146 

or weaken the PAC phenomenon.  147 

 148 

 149 
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2. Methods 150 

2.1. A neural mass model of a cortical column 151 

Figure 1 shows the proposed model obtained by distributing four cell classes in four cortical layers 152 

(L2/3, L4, L5, and L6). This produced 14 different neuronal populations, since not all cell classes are 153 

present in every layer (Neymotin et al., 2011). Excitatory neurons were either regular spiking (RS) or 154 

intrinsically bursting (IB), and inhibitory neurons were either fast-spiking (FS), or low-threshold 155 

spiking (LTS) neurons. Each population performs two operations. Post-synaptic potentials (PSP) are 156 

converted into an average density of action potentials (AP) using the sigmoid function:    157 ���� � ��

�����������
                                                                                    (1) 158 

where the variable x represents the PSP, and parameters e0, v0 and r, stand for maximal firing rate, the 159 

PSP corresponding to the maximal firing rate e0, and the steepness of the sigmoid function, 160 

respectively. The second operation is the conversion of AP into PSP, which is done by means of a 161 

linear convolution with an impulse response ���� given by: 162 

            ���� � 	
�����                                                                           (2) 163 

where G controls the maximum amplitude of PSP and k is the sum of the reciprocal of membrane 164 

average time constant and dendritic tree average time delay (Jansen and Rit, 1995). The convolution 165 

model with impulse response (2) can be transformed into a second order differential equation (Jansen 166 

and Rit, 1995; Sotero et al., 2007). Then, the temporal dynamics of the average PSP in each neuronal 167 

population �� can be obtained by solving a system of 14 second order differential equations: 168 

               �������
��� � 
2
��� ������

�� 
 
�� ����� � 	�
� ��� � � Γ	����	����
�


	��

�                   �3� 

where n = 1,…,14 and m = 1,…,14. The populations are numbered from 1 to 14 following the order: 169 

[L2RS, L2IB, L2LTS, L2FS, L4RS, L4LTS, L4FS, L5RS, L5IB, L5LTS, L5FS, L6RS, L6LTS, 170 

L6FS]. Notice we labeled layer 2/3 simply as L2. As can be seen in (3), neuronal populations interact 171 

via the connectivity matrix Γ	�. Inputs from neighboring columns are accounted via �� which can be 172 

any arbitrary function including white noise (Jansen and Rit, 1995). Thus, (3) represents a system of 173 

14 stochastic differential equations. The ‘damping’ parameter �� critically determines the behavior of 174 

the system. If we set to zero the connections between the populations �Γ	� � 0, � � �� then for 175 �� � 1 (overdamped oscillator) and �� � 1 (critically damped oscillator) each neuronal population 176 

returns to steady-state without oscillating. If ��  1 (underdamped oscillator) each population is 177 

capable of producing oscillations even if the inter-population coupling is set to zero.  178 

Note that the case  �� � 1 corresponds to the Jansen and Rit model (Jansen and Rit, 1995) which has 179 

been extensively used in the literature (David and Friston, 2003; Grimbert and Faugeras, 2006; 180 

Sotero and Trujillo-Barreto, 2008; Sotero et al., 2007; Ursino et al., 2010; Valdes-Sosa et al., 2009; 181 

Zavaglia et al., 2006). Thus, in those models an individual population is not capable of oscillating, 182 

and is the presence of inter-population connections (nonzero Γ	�, � � �) that produces oscillatory 183 

behavior that mimics observed Electroencephalography (EEG) signals. However, realistic models of 184 

only one population are able to produce oscillations (Wang and Buzsaki, 1996). To account for this 185 

possibility we introduced the parameter �� with values ��  1. Tables 1 and 2 presents the 186 

parameters of the model and their interpretation.  187 

 188 

 189 
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 194 

Table 1. Values and physiological interpretation of the parameters 195 

Parameter 
(units) 

Interpretation Value 

	��!� Gain 	� � 3.25, 	� � 3.25, 	� � 30, 	
 � 10, 	
 �3.25, 	� � 30, 	� � 10, 	� � 3.25, 	� � 3.25, 	�� � 30, 	�� � 10, 	�� � 3.25, 	�� � 30, 	�
 � 10 
�$��� Reciprocal of time 
constant 


� � 60, 
� � 70, 
� � 30, 

 � 350, 

 � 60, 
� � 30, 
� � 350, 
� � 60, 
� � 70, 
 � 30, 
�� � 350, 
�� � 60, 
�� � 30, 
�
 � 350 � External input �� � 0  for  ' � (5,7) , �
 � 500,  �� � 150 � Damping coefficient � � 0.001 for all populations ���$��� Maximum firing rate �� � 5 for all populations *���!� Position of the 
sigmoid function 

*� � 6 for all populations 

+��!��� Steepness of the 
sigmoid function 

+ � 0.56 for all populations 

 196 

 197 

Table 2. Standard values of the connectivity matrix ,��.  198 

 L2/3 L4 L5 L6 
RS IB LTS FS RS LTS FS RS IB LT

S 
FS RS LTS FS 

 
L2/3 

RS 25 10 10 15 0 25 30 0 0 0 0 0 0 0 
IB 10 25 5 5 0 0 0 0 0 0 0 0 0 0 

LTS -10 -8 -15 -10 0 0 0 -20 -25 0 0 0 0 0 
FS -15 -10 0 -15 0 0 0 -20 -25 0 0 0 0 0 

 
L4 

RS 12 10 0 0 15 30 25 8 18 0 0 0 0 0 
LTS -20 0 0 0 -20 -25 -10 0 0 0 0 0 0 0 

FS -42 0 0 0 -22 0 25 0 0 0 0 0 0 0 
 

L5 
RS 0 0 0 0 0 0 0 12 0 22 18 25 0 0 
IB 0 0 0 0 0 0 0 10 10 22 18 25 0 0 

LTS 0 0 0 0 0 0 0 -10 -10 -10 -20 -25 0 -30 
FS 0 0 0 0 0 0 0 -19 -19 -17 -15 0 0 0 

 
L6 

RS 0 0 0 0 45 0 10 0 0 0 0 15 10 10 
LTS 0 0 0 0 0 0 0 0 0 0 0 -11 -10 -8 

FS 0 0 0 0 0 0 0 0 0 0 0 -20 0 -15 
2.2. Computation of phase-amplitude coupling 199 

The analytic representation y��� of a filtered signal x��� can be obtained by means of the Hilbert 200 

transform /�x����: 201 0��� � ���� � '/������ � 1���������                                              (4) 202 

where a��� and φ��� are the instantaneous amplitude and phase, respectively. As a measure of PAC 203 

we will use the flow of information from the phase to the amplitude. Recently it was shown (Liang, 204 

2014) that the information flow from a time series to another one (in our case from φ��� to a���) can 205 

be calculated as: 206 

4��� � �����	�	,�����	
� ��,��

���
� �		������	

�                                                        (5) 207 
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where 5�� is the sample covariance between a��� and φ���, 5�,��  is the covariance between a��� and 208 �a���/��, 5�,�� is the covariance between φ��� and �a���/��, and 5�� and 5�� are the variances of 209 

the instantaneous amplitudes and phases, respectively. The units of 4��� given by equation (5) are in 210 

nats/s. A nonzero value of the information flow 4���  indicates PAC. A positive 4��� means that 211 φ��� functions to make a��� more uncertain, whereas a negative 4��� indicates that φ��� tends to 212 

stabilize a��� (Liang, 2014). 213 

A significance value can be attached to 4��� using a surrogate data approach (Penny et al., 2009), 214 

where we shuffle the amplitude time series a��� and calculate (using (5)), 1000 surrogate values. From 215 

this surrogate dataset we first compute the mean μ and standard deviation 8, and then compute a z-216 

score as: 217 9 � �	
���

 
                                                               (6) 218 

Values satisfying |9| � 1.96, are significant with < � 0.05. Significant Z values are set to 1 and non-219 

significant ones to zero. Then, Z values are multiplied to 4���.  220 

 221 

 222 

3. Results 223 

Simulated data were generated by the numerical integration of the system (3). For this, the local 224 

linearization method (Jimenez and Biscay, 2002; Jimenez et al., 1999) was used with an integration 225 

step of 10-4 s. The values of the parameters are shown in tables 1 and 2. Five seconds of data were 226 

simulated and the first two seconds were discarded to avoid transient behavior. Thus, subsequent 227 

steps were carried out with the remaining three seconds.  228 

Figure 2 presents the temporal evolution of the average PSP in each neuronal population. Time series 229 

colored in red correspond to excitatory populations (L2RS, L2IB, L4RS, L5RS, L5IB, L6RS) 230 

whereas inhibitory populations (L2LTS, L4LTS, L5LTS, L6LTS) are presented in green. As seen in 231 

the figure, the generated signals present the characteristic ‘waxing and waning’ (i.e, amplitude 232 

modulation) observed in real EEG signals.  233 

Figure 3 shows the spectrum of the signals presented in Figure 2. The six excitatory populations have 234 

their main spectrum peak in the alpha band, but they also present energy in the delta and theta band. 235 

Slow inhibitory populations have the highest peak in the theta band, but also have energy in delta, 236 

alpha and beta bands. Fast inhibitory populations were set to present a peak in the gamma band but 237 

due to the interaction with other populations, they present significant peaks in other frequencies as 238 

well, especially in the theta and alpha bands. This is evident from Figure 4 where we show the 239 

spectrum of the population when all values in the connectivity matrix are set to zero: Γ	� � 0. Peaks 240 

in Figure 4 correspond to the natural frequency of oscillation of the populations: L2RS (9.5 Hz), L2IB 241 

(11.1 Hz), L2LTS (4.8 Hz), L2FS (55.6 Hz), L4RS (9.5 Hz), L4LTS (4.8 Hz), L4FS (55.6 Hz), L5RS 242 

(9.5 Hz), L5IB (11.1 Hz), L5LTS (4.8 Hz), L5FS (55.6 Hz), L6RS (9.5 Hz), L6LTS (4.8 Hz), L6FS 243 

(55.6 Hz). 244 

To test the existence of PAC, we filtered each PSP in Figure 2 into six frequency bands: delta (0.1-4 245 

Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and gamma (30-80 Hz). To this end, we 246 

designed finite impulse response (FIR) filters using Matlab’s signal processing toolbox function 247 

firls.m. To remove any phase distortion, the filters were applied to the original time series in the 248 

forward and then the reverse direction using Matlab’s function filtfilt.m. The Hilbert transform was 249 

then applied and instantaneous phases and amplitudes for each frequency band and each neuronal 250 

population were obtained. Ten different PAC combinations between a low-frequency phase and a 251 

higher-frequency amplitude were computed: delta-theta, delta-alpha, delta-beta, delta-gamma, theta-252 

alpha, theta-beta, theta-gamma, alpha-beta, alpha-gamma, and beta-gamma. Each PAC combination 253 
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consisted of a matrix of 14x14 PAC values representing all possible interactions between the 14 254 

neuronal populations.  255 

Results shown in Figure 5 include nine out of the ten PAC combinations. The theta-alpha PAC 256 

combination was not included since no significant values were obtained for the set of parameters 257 

used. The strongest PAC values were found for the delta-theta, alpha-beta, and delta-beta 258 

combinations. Specifically, negative information flow from the phase of alpha in L5RS, L5LTS and 259 

L5FS to the amplitude of beta in L4FS. This means that the phase of alpha in those three populations 260 

stabilizes the amplitude of beta in L4FS. On the other hand, the strong positive information flow 261 

from the phase of delta in L4FS to the amplitude of theta in L5RS and L6RS means that L4FS tends 262 

to make the activity in L5RS and L6RS more uncertain. As seen in the figure, theta-gamma, alpha-263 

beta, and alpha-gamma PAC, presented only negative information flow from phases to amplitudes. 264 

Delta-gamma presented only positive flow and it was from L6RS to L2FS. Delta-theta, delta-alpha, 265 

delta-beta, and theta-beta, presented both positive and negative information flow.  266 

3.1. Generation of theta-gamma and alpha-gamma PAC 267 

Some of the parameters presented in Table 1 were taken from the neural mass literature (Jansen and 268 

Rit, 1995; Wendling et al., 2000), and the ones with no equivalent in the literature were assigned 269 

physiologically reasonable values. Thus, it is necessary to explore how the change in the parameters 270 

affect the PAC values. In this section, for the sake of simplicity, we focus on two PAC combinations 271 

which involve the gamma rhythm and have been of great interest in the literature: theta-gamma, and 272 

alpha gamma.  273 

Figure 6 shows results for the theta-gamma PAC combination when varying external input and time 274 

constant parameters values. Each panel present a different simulation, in which we varied one of the 275 

parameters while maintaining the others with the same values as in Table 1. Panels from A) to D) 276 

present PAC between the 14 populations for different values of the external input �
 to the L4RS 277 

population: 0, 150, 300, and 1000, respectively. Panels from E) to H) present PAC values when the 278 

external input �� to the L4FS population was changed to: 0, 300, 500, and 800, respectively. Finally, 279 

panels from I to L present PAC values when time constants for the L2/3RS and L4RS, 
�, 

, 280 

populations where changed to: 
� � 

 � 40, 100, 200, 300 $��, respectively.  281 

Figure 7 shows results for the theta-gamma PAC combination when connectivity parameters are 282 

varied. Panels from A) to C) show results when multiplying the entire connectivity matrix C with a 283 

factor of 1.5, 0.5 and 10, respectively. Panels from D) to I) present results when changing only one 284 

connection in the connectivity matrix: D) 5�� � 40, E) 5�� � 
40 , F) 5�� � 0, G) 5�
�
 � 
45 , 285 

H) 5��
 � 0, I) 5
� � 0. Figures 8 and 9 present the same simulations as in Figures 6 and 7, but for 286 

the alpha-gamma PAC. 287 

The strongest positive PAC of all the simulations explored was found in the theta-gamma 288 

combinations for: 
� � 

 � 200 $�� (Figure 6K) and it corresponded to the connection from L2FS 289 

to L2LTS.  The strongest negative PAC was also found in Figure 6K and corresponded to the 290 

connection from L4RS to L4LTS. Thus, layers 2/3 and 4 received the strongest information flow 291 

from the phases of all populations in the cortical column. Overall, changes in external input and time 292 

constants produced theta-gamma PAC higher than alpha-gamma PAC, whereas changes in 293 

connectivity produced higher alpha-gamma PAC values.  294 

3.2. Generation of delta-beta, delta-gamma, and beta-gamma PAC 295 

As shown in the figures 3 and 4, although the populations in the cortical columns were modeled as 296 

oscillators with natural frequencies in the theta, alpha and gamma band, due to connections between 297 

them, activity in the delta and beta band emerged. This produces PAC involving delta phases and 298 

beta phases and amplitudes as shown in Figure 5. In this section we focus on three PAC 299 

combinations: delta-beta, delta-gamma, and beta-gamma, and explore how their strength change as 300 
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function of the biophysical parameters of the model. The simulations are identical to the ones 301 

performed in the previous section. Figure 10 depicts the delta-beta PAC when changing the external 302 

inputs and time constants values, and figure 11 shows the case of varying the connectivity 303 

parameters. Figures 12 and 13 correspond to the same simulations for the delta-gamma PAC, and 304 

figures 14 and 15 shows the results for the beta-gamma PAC.  305 

The strongest PAC value was positive and was found between the phase of delta in L4RS and the 306 

amplitude of beta in L2LTS (Figure 11G). This was the strongest PAC across all the 10 PAC 307 

combinations computed in this paper for the range of parameters explored. Another interesting results 308 

was that for the beta-gamma combination, when varying the connectivity parameters all values were 309 

found to be negative (Figure 15), meaning that beta oscillations tended to stabilize the gamma 310 

oscillations.  311 

4. Discussion 312 

We have proposed a neural mass model that captures the phase-amplitude coupling between layers in 313 

a cortical column. The model comprises fourteen interconnected neuronal populations distributed 314 

across four cortical layers (L2/3, L4, L5 and L6). Excitation and inhibition that impinge on a 315 

population are represented by the average PSP that are elicited in dendrites belonging to a population. 316 

Phase-amplitude coupling between the neuronal populations was modeled using a measure of the 317 

information flow between two times series, proposed recently by (Liang, 2014).  318 

4.1. Simplifications and assumptions 319 

We omitted layer 1, because it does not include somas (Binzegger et al., 2004). Based on 320 

experimental reports on the strength of the inputs to each layer (Binzegger et al., 2004; Jellema et al., 321 

2004), we considered external inputs to the RS and FS populations in layer 4, thus neglecting 322 

possible external inputs to other layers.  323 

In this work, we used the information flow (or information transfer) to measure the causation 324 

between the phase of a low frequency rhythm and the amplitude of a higher frequency rhythm, and 325 

used it as an index of PAC. We chose this measure over transfer entropy (Schreiber, 2000) because 326 

the latter is difficult to evaluate, requiring long time series (Hlavackova-Schindler et al., 2007). 327 

Moreover, recent studies have shown that it is biased as its values depends on the autodependency 328 

coefficient in a dynamical system (Runge et al., 2012). On the other hand, the information flow 329 

(Liang, 2014) is calculated using a simple analytical expression, equation (5), that depends only on 330 

sample covariances, which is obtained under the assumption that the two time series are components 331 

of a general two dimensional linear system. Then, our use of equation (5) to measure PAC relies on 332 

the assumption that the relationship between phases and amplitudes of different frequencies is well 333 

described by a linear model. Although this seems restrictive at first glance, we should remember that 334 

a linear model (and in general any model) of cross-frequency coupling (CFC) is necessarily the result 335 

of a nonlinear model at the level of the neuronal activities (Chen et al., 2008).  336 

4.2. On the generation of PAC combinations involving delta and beta rhythms 337 

Our simulations suggest that the interconnection of neuronal populations can produce PAC 338 

combinations with frequencies different from the natural frequencies of the oscillators involved. For 339 

instance, our model of oscillators with natural frequencies in the theta, alpha and gamma bands, was 340 

able to produce significant PAC involving delta and beta rhythms: delta-theta, delta-alpha, delta-beta, 341 

delta-gamma, theta-beta, and alpha-beta. The strength of the coupling was affected by the strength of 342 

the connections between the populations, the inhibitory and excitatory time constants and the strength 343 

of the external input to the model. Interestingly, the strongest PAC value found over the range of the 344 

parameters explored in this paper, was not in the theta-gamma or alpha-gamma combination, but in 345 
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the delta-beta combination when varying the connectivity parameters. This demonstrates that 346 

effective connectivity values are critical in the emergence of the PAC phenomenon.  347 

4.3. Realistic vs neural mass models of PAC generation 348 

The first computational models of PAC generation were realistic models of the theta-gamma 349 

coupling in the hippocampus (Kopell et al., 2010). These models considered networks of hundreds of 350 

interconnected neurons which were individually modeled by either a single compartment (White et 351 

al., 2000) or realistically represented by multiple compartments for the soma, axon, and dendrites 352 

(Tort et al., 2007). A practical disadvantage of this approach is that it needs high computational 353 

power. But more important than that, the use of such realistic models produces hundreds or 354 

thousands of variables and parameters, making it difficult to determine their influence on the 355 

generated average network characteristics. This is especially critical if we are interested in analyzing 356 

the link of PAC and other mesoscopic phenomenon like functional magnetic resonance signals 357 

(Wang et al., 2012). The analysis of multiple PAC combinations as done in this paper would be even 358 

more difficult with realistic metworks. By comparison, our model of one cortical column comprised 359 

only 14 second-order (or 28 first-order) differential equations, which can be easily solved in any 360 

modern personal computer.   361 

4.4. The generated dynamics is not restricted to PAC 362 

The neural mass model presented in this paper is relatively simple but it can generate a rich temporal 363 

dynamics. Studies of the dynamics generated by the Jansen and Rit model, which is the basis for our 364 

model, can be found elsewhere (Faugeras et al., 2009; Grimbert and Faugeras, 2006; Spiegler et al., 365 

2010). In this paper we focused on PAC, which is only one type of the more general phenomenon of 366 

CFC which is the result of the nonlinearities in the brain dynamics. Then, it is not unexpected to find 367 

other types of CFC in the signals generated by our model (see for instance the temporal dynamics of 368 

L6RS in Figure 2 which corresponds to frequency modulation). Thus, in addition to PAC, other five 369 

types of CFC could be explored (Jirsa and Muller, 2013): amplitude-amplitude coupling (AAC), 370 

phase-phase coupling (PPC), frequency-frequency coupling (FFC), phase-frequency coupling (PFC), 371 

and frequency amplitude coupling (FAC). All these types of couplings can be easily calculated using 372 

equation (5) after replacing a��� and φ��� with the appropriate time series. This allows to compute 373 

all types of CFC with the same equation, and easily compare them since all results will be in the 374 

same unit of measurement (i.e. nats/s).  375 

 376 

 377 

 378 

 379 
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 541 

 542 

Figure Legends 543 

 544 

Figure 1. Proposed neural mass model of the cortical column. A) Layer distribution of the four 545 

neuronal types. The excitatory populations are the intrinsically bursting (IB), and the regulatory 546 

spiking (RS). The inhibitory population are the low-threshold spiking (LTS) and fast spiking (FS).  547 

B) Connectivity matrix values used for coupling the 14 populations modeled. Negative values 548 

correspond to inhibitory connections.  549 

 550 

Figure 2. Simulated temporal evolution of the postsynaptic potentials of all populations for one 551 

realization of the model. Excitatory populations are depicted in red and inhibitory ones in green.  552 

 553 

Figure 3. Frequency spectrum of the postsynaptic potentials shown in Figure 2. Excitatory 554 

populations are depicted in red and inhibitory ones in green.  555 

 556 

Figure 4. Frequency spectrum of the neuronal populations when the connectivity matrix is set to 557 

zero. Excitatory populations are depicted in red and inhibitory ones in green.  558 

 559 

Figure 5. Phase-amplitude coupling corresponding to the simulation presented in Figure 1. No-560 

significant values were set to zero and are depicted in white. A) delta-theta B) delta-alpha C) delta-561 

beta D) delta-gamma E) theta-alpha F) theta-beta G) theta-gamma H) alpha-beta I) alpha-gamma.  562 

 563 

Figure 6. Theta-gamma phase-amplitude coupling: changes in external input and time constants. No-564 

significant values were set to zero and are depicted in white. A) >� � 0, B) >� � 150,  C) >� � 300, 565 

D) >� � 1000, E) >� � 0, F) >� � 300, G) >� � 500, H) >� � 800, I) 
� � 

 � 40 $��, J)  
� �566 

 � 100 $��,  K) 
� � 

 � 200 $��, L) 
� � 

 � 300 $��. 567 

 568 

Figure 7. Theta-gamma phase-amplitude coupling: changes in the connectivity parameters. A) 569 5 � 1.55  , B) 5 � 0.55, C) 5 � 105 , D) 5�� � 40, E) 5�� � 
40 , F) 5�� � 0, G) 5�
�
 � 
45 , 570 

H) 5��
 � 0, I) 5
� � 0. 571 

 572 

Figure 8. Alpha-gamma phase-amplitude coupling: changes in external input and time constants. No-573 

significant values were set to zero and are depicted in white. A) >� � 0, B) >� � 150,  C) >� � 300, 574 

D) >� � 1000, E) >� � 0, F) >� � 300, G) >� � 500, H) >� � 800, I) 
� � 

 � 40 $��, J)  
� �575 

 � 100 $��,  K) 
� � 

 � 200 $��, L) 
� � 

 � 300 $��. 576 

 577 

Figure 9. Alpha-gamma phase-amplitude coupling: changes in the connectivity parameters. A) 578 5 � 1.55  , B) 5 � 0.55, C) 5 � 105 , D) 5�� � 40, E) 5�� � 
40 , F) 5�� � 0, G) 5�
�
 � 
45 , 579 

H) 5��
 � 0, I) 5
� � 0. 580 

 581 

Figure 10. Delta-beta phase-amplitude coupling: changes in external input and time constants. No-582 

significant values were set to zero and are depicted in white. A) >� � 0, B) >� � 150,  C) >� � 300, 583 
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D) >� � 1000, E) >� � 0, F) >� � 300, G) >� � 500, H) >� � 800, I) 
� � 

 � 40 $��, J)  
� �584 

 � 100 $��,  K) 
� � 

 � 200 $��, L) 
� � 

 � 300 $��. 585 

 586 

Figure 11. Delta-beta phase-amplitude coupling: changes in the connectivity parameters. A) 587 5 � 1.55  , B) 5 � 0.55, C) 5 � 105 , D) 5�� � 40, E) 5�� � 
40 , F) 5�� � 0, G) 5�
�
 � 
45 , 588 

H) 5��
 � 0, I) 5
� � 0. 589 

 590 

Figure 12. Delta-gamma phase-amplitude coupling: changes in external input and time constants. 591 

No-significant values were set to zero and are depicted in white. A) >� � 0, B) >� � 150,  C) 592 >� � 300, D) >� � 1000, E) >� � 0, F) >� � 300, G) >� � 500, H) >� � 800, I) 
� � 

 � 40 $��, 593 

J)  
� � 

 � 100 $��,  K) 
� � 

 � 200 $��, L) 
� � 

 � 300 $��. 594 

 595 

Figure 13. Delta-gamma phase-amplitude coupling: changes in the connectivity parameters. A) 596 5 � 1.55  , B) 5 � 0.55, C) 5 � 105 , D) 5�� � 40, E) 5�� � 
40 , F) 5�� � 0, G) 5�
�
 � 
45 , 597 

H) 5��
 � 0, I) 5
� � 0. 598 

 599 

Figure 14. Beta-gamma phase-amplitude coupling: changes in external inputs and time constants. 600 

No-significant values were set to zero and are depicted in white. A) >� � 0, B) >� � 150,  C) 601 >� � 300, D) >� � 1000, E) >� � 0, F) >� � 300, G) >� � 500, H) >� � 800, I) 
� � 

 � 40 $��, 602 

J)  
� � 

 � 100 $��,  K) 
� � 

 � 200 $��, L) 
� � 

 � 300 $��. 603 

 604 

Figure 15. Beta-gamma phase-amplitude coupling: changes in the connectivity parameters. A) 605 5 � 1.55  , B) 5 � 0.55, C) 5 � 105 , D) 5�� � 40, E) 5�� � 
40 , F) 5�� � 0, G) 5�
�
 � 
45 , 606 

H) 5��
 � 0, I) 5
� � 0. 607 

 608 
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 611 
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