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1 Abstract

The inference of biological relatedness from DNA sequence data has a wide array of appli-
cations, such as in the study of human disease, anthropology and ecology. One of the most
common analytical frameworks for performing this inference is to genotype individuals for
large numbers of independent genomewide markers and use population allele frequencies to
infer the probability of identity-by-descent (IBD) given observed genotypes. Current imple-
mentations of this class of methods assume genotypes are known without error. However,
with the advent of 2" generation sequencing data there are now an increasing number of
situations where the confidence attached to a particular genotype may be poor because of
low coverage. Such scenarios may lead to biased estimates of the kinship coefficient, ¢.
We describe an approach that utilizes genotype likelihoods rather than a single observed
best genotype to estimate ¢ and demonstrate that we can accurately infer relatedness in
both simulated and real 2" generation sequencing data from a wide variety of human
populations down to at least the third degree when coverage is as low as 2x for both indi-
viduals, while other commonly used methods such as PLINK exhibit large biases in such
situations. In addition the method appears to be robust when the assumed population
allele frequencies are diverged from the true frequencies for realistic levels of genetic drift.
This approach has been implemented in the C++ software lcMLkin.
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2 Introduction

Biological relatedness can be quantified by a kinship coefficient (also known as the coances-
try coefficient) [14], ¢, that essentially quantifies the number of generations that separate
a pair of individuals. More strictly, ¢ is the probability that two random alleles each
selected from one in a pair of individuals are identical by descent (IBD). For example,
parent-offspring and sibling-sibling pairs should possess ¢ of %, while for first cousins the
value is expected to be %6. Being the observed result of multi-generation geneaological
process in a population, the extent of DNA sequence differences between two individuals is
ideal data for inferring relatedness without any prior knowledge of the underlying pedigree,
or when such knowledge is uncertain (see reviews [42] 38]). Such data is commonly used
in a diverse array of fields such as the identification of disease-causing loci [10], forensics
[4], anthropology [41], archaeology [12], genealogy [I7] and ecology [36]. The higher ¢,
the more DNA sequence two individuals should share that is IBD. In a diploid population
assumed to be outbred ¢ can be related to IBD through 2¢ = % + ko, where 2¢ is the
coefficient of relatedness, r, and k1 and ks are defined as the probabilities that two diploid
individuals share 1 or 2 alleles that are identical by descent (IBD). In addition, one may
also define kg — the probability of two diploid individuals sharing 0 alleles that are IBD
— such that kg + k1 + k2 = 1. In the presence of inbreeding, additional k terms can be
added [26] [42], though for sake of simplicity we ignore such scenarios. Thus, if the three
k terms can be determined, it is possible to obtain an estimate of relatedness between two
pairs of individuals.

Though the extent of IBD cannot be directly observed, it can be inferred from how much
DNA is shown to be identical-by-state (IBS). The challenge, therefore, is to determine
Pr(IBD|IBS). Other methods exist that model the transition of IBD along the genome
[23, 18, 111, 16l 28], 18, 23], and the most common approaches use population allele frequencies
to determine the likelihood of observing a particular genotype given a certain level of IBD
at multiple loci and assume linkage equilibrium (i.e. independence) between individual
sites [26, B8]. This framework has been applied to microsatellite loci with multiple alleles
[15], and, with the advent of SNP microarrays, single base loci with two alleles (i.e. SNPs).
The latter type of data, in particular, has power to infer relatedness down to at least
fourth-degree relatives because of the large numbers of loci available. Method of moment
estimators (e.g. PLINK [33], KING [25], REAP [39]) tend to be the most frequently used
due to their ability to deal with large datasets at reasonable speeds (tens to hundreds of
thousands of loci), though a maximum likelihood (ML) estimator was recently described
for dealing with populations of mixed ancestry (RelateAdmix) [27].

In all of these current methods, genotype calls are assumed to be correct (or at least
contain negligible error). However 2°¢ generation sequencing is now emerging as the method
of choice for obtaining genome-wide markers, either via whole genome shotgun or targeted
capture. With 2" generation sequencing data, genotype quality is a function of sequencing
coverage [13], [30]. While the ideal scenario is to obtain high genome coverage (>20X) for
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multiple individuals, this is not always feasible. Given a budget it may be preferable to
sequence large numbers of individuals at low coverage, or samples may simply lack sufficient
DNA material (for example in paleogenomic or forensic scenarios). Low coverage will lead
to an underestimation of the true number heterozygotes, which may have the downstream
affect of biasing subsequent estimates of the kinship coefficient.

In this paper, we describe a new method for inferring relatedness between pairs of in-
dividuals when the true genotypes are uncertain as a result of low-coverage 2"¢ generation
sequencing. Our approach is similar to other recent methods that attempt to infer popu-
lation genetic parameters from low coverage data by utilizing genotype likelihoods rather
than assuming a single best genotype [29] 20} 37, 19]. We show our method, implemented
in the software lcMLkin, can accurately infer biological relatedness down to 5" degree
relatives from simulated data even when coverage is as low as 2x in both individuals exam-
ined. We then apply our method to real low-coverage 2" generation sequencing data and
demonstrate that lcMLkin correctly estimates relatedness coefficients between individuals
of known biological relatedness.

3 Materials and Methods

3.1 Model

Consider a single, non-inbred, non-admixed population for which there exist a biallelic
locus with possible allelic states B and C' and where the population allele frequencies are
known. 24 generation sequencing data is generated at this locus (represented for example
by an alignment of bases at this locus from sequence read data) for two individuals from
this population with some degree of biological relatedness. Our goal is to use the sequence
read data to estimate the relatedness coefficients for these individuals.

3.1.1 Genotype Likelihoods

The (unknown) genotypes of the two individuals are designated by G' and G? and the
three possible genotype values, BB, BC' and CC, by go, g1 and g2. The aligned sequence
read data for individuals 1 and 2 at this locus are designated N' and N2. The likelihood
for each possible genotype for these two individuals given the read data can be expressed
as:

(G =g | N') = Pr(N'| G = g;) ¥(i.j) € {1.2} x {0,1,2}. &

There are a number of different methods for calculating this likelihood that can account
for factors such as independence or non-independence of reads, base and mapping quality
or position of base call along the sequence read [24] 22, 9] 21} [16]. Unless stated, we use
the method described by Depristo et al. [9], though ultimately this choice is up to the
individual user.
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3.1.2 IBD/IBS Probabilities

Define Z as the number of alleles IBD between the two individuals at the biallelic locus
— this is a latent variable in our model — and designate our estimate of the frequency
of allelic states B and C' in the source population by p and ¢ = 1 — p. The probabilities
of Z for 0, 1 or 2 given the observed pair of genotypes (i.e. given IBS) are well known
[26]. Table |1 provides a relevant subset of these probabilities given the assumptions of our
model (i.e. no inbreeding, no admixture, biallelic locus).

Table 1: IBD probabilities for observed genotype pairs for individuals from the same
unadmixed, non-inbred population

i,j Genotype Pair Z=0 Z=1 Z=2

1,1 BB BB p* p3 p?
1,2 BB BC 2p3q p2q 0
1,3 BB CC p2q? 0 0
2,2 BCBC 4p?q? pq 2pq

The probability of a particular genotype combination does not change when we switch
the individuals. Additionally, exchanging the identities of the two allelic states in a geno-
type combination amounts to exchanging p with ¢ in the corresponding probability expres-
sion.

3.1.3 Estimating the Kinship Coefficient

We define K as the 3-tuple of k coefficients, (ko, k1, k2). Note that 0 < k, <1 Vz € {0,1,2}
and that ko + k1 + ko = 1. Also note that k, = Pr(Z =2 | K) Vz € {0,1,2}. We also
define the combined kinship coefficient, r = ]“2—1 + ka.

Our approach for accounting for potential uncertainty in genotype calls because of low
coverage 2" generation sequencing data when estimating K is to sum over all possible
genotypes weighted by their likelihoods (i.e. we treat sequence reads as the observed data
and genotypes as latent variables, which for the purposes of inference are effectively nui-
sance parameters) as in other recent methods attempting to estimate different parameters
from such data. We can now write down a likelihood function for K, given N, N? and p
for a given locus:
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2 2
L(KIN',N?,p) =) Pr(N'|G" = g;) ) _Pr(N?|G* = g)
=0 =0
) ’ (2)
X E:Pr(G1 = 9;,G* = gj|Z = 2,p) Pr(Z = 2|K).
2=0

In our approach, we assume that all loci are in linkage equilibrium. Therefore, the total
likelihood for a given K can be obtained from the product across loci (we take the sum of log
likelihoods instead to avoid issues related to numerical precision). To obtain a maximum
likelihood estimate of K (and thus also ¢ and r) we use an Expectation-Maximization (EM)
algorithm. We also restrict the search space such that 4koko < k? [2]. This method has been
implemented in the C++ software leMLkin (https://github.com/COMBINE-lab/maximum-
likelihood-relatedness-estimation)).

3.2 Data
3.2.1 Simulated Pedigrees

Our aim was to simulate multiple pedigrees with the structure shown in Figure This
pedigree contains an array of relationships ranging from first degree (¢ = %) to fifth degree
(¢ = 6—14) as well as unrelated or founder individuals. All population allele frequencies
were obtained from samples genotyped at autosomal SNPs as part of the Human Origins
Array [32]. To simulate a non-admixed population, allele frequencies were estimated from
100, 000 randomly chosen SNPs that were shown to have a minor allele frequency greater
than 5% amongst 28 unrelated French individuals. Genotypes for each simulated locus
for the 8 founders from each pedigree were binomially sampled given p. Genotypes in
the other pedigree members were then sampled conditioned on these founder genotypes
assuming Mendelian inheritance and independence between loci.
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Figure 1: Topology of our simulated pedigrees. Individuals colored in blue are the unrelated
founder individuals.

15 16

To simulate 2°4 generation sequencing data for an individual at a given mean coverage

x, the number of reads for each locus is drawn from a poisson distribution with A = z, and
base calls for each read are randomly drawn given the individual’s true genotypes. Each
base call is assigned a Phred quality score of 20 [35] and is changed to the opposite allele
given this probability of an error (i.e. 1%). Thus, in our simulations, we only assume two
possible alleles, rather than four. We experimented with more complicated quality score
distributions, but found they did not change the results. We do not take into account
mapping error for a read. A similar scheme is described in Veeramah et al. [40]. For each
individual, we simulate 2" generation sequencing data at 2x-20x coverage in 2x intervals.
Genotype likelihoods for each of the three possible genotypes are then calculated using the
formula from Depristo et al. [9], accounting for the fact we only use two possible alleles.

3.2.2 CEPH pedigree 1463

All 17 members of CEPH pedigree 1463 have been sequenced to high coverage (~ 50x)
as part of Illumina’s Platinum Genomes dataset. BAM files were obtained for five of these
individuals (NA12877, NA12883, NA12885, NA12889 and NA12890) such that there were
pairs of known parent-offspring, sibling-sibling and grandparent-grandchildren relation-
ships (http://www.ebi.ac.uk/ena/data/view/ERP001960). Approximately 10,000 SNPs
were randomly selected from the Human Origins array subject to the requirement they
were at least 250kb apart. For each of the five individuals, sequence reads at these SNPs
were down-sampled into 10 new BAM files such that the mean coverage for each individual
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ranged from 2x-20x in 2x intervals. Genotype likelihoods for the three possible genotypes
given the two alleles identified by the Human Origins array for each locus were then calcu-
lated for each individual at each different mean coverage using the formula from Depristo et
al. [9]. For running lcMLkin, the underlying allele frequencies at each locus were estimated
from CEU 1000 Genomes Phase 1 genotype calls [1].

3.2.3 1000 Genomes Phase 3

We obtained previously estimated genotype likelihoods for 2,535 individuals from 27 dif-
ferent populations sequenced as part of the 1000 Genomes project Phase 3 (http://ftp.1000-
genomes.ebi.ac.uk/voll/ftp /release/20130502 /supporting /genotype_likelihoods/shapeit2/).
This includes a number of individuals who are known to be related as inferred from previ-
ous SNP array genotyping. In general, sequence coverage for this data is likely to be low,
though exact mean coverage values were still being compiled during this study.

We sub-sampled 13 putatively non-admixed populations for which there are 48 known
pairs of related individuals: Dai (CDX), Southern Han (CHS), Esan (ESN), British (GBR),
Gujarati (GIH), Gambian (GWD), Indian (ITU), Kinh (KHV), Luhya (LWK), Mende
(MSL), Punjabi (PJL), Tuscan (TSI), Yoruba (YRI). lcMLkin was applied to each pop-
ulation separately. Allele frequencies were estimated by applying the Bayesian algorithm
described by Depristo et al.[9] and counting the number of variant alleles for the combina-
tion of genotypes in the population with the highest posterior probability. Note that there
are three pairs of related individuals that are not described in the 1000 Genomes pedigree
files [NA19331/NA19334 sibling-sibling in LWK, NA20882/NA20900 parent-offspring in GIH,
NA20891/NA20900 parent-offspring in GIH| but have been found elsewhere (http://blog-
goldenhelix.com /bchristensen /svs-population-genetics-and-1000-genomes-phase-3) and are
confirmed in our study.

In addition to inferring relatedness with lcMLkin, it was also inferred for each popula-
tion with PLINK [33], which was given either the highest likelihood (best) genotypes from
single-sample calling, or genotypes obtained through multisample calling that had been
conducted as part of the 1000 Genomes project.

4 Results

4.1 Simulated Pedigrees

We first tested our approach to infer K, ¢ and r under different genome coverage conditions
using simulated data consisting of 100,000 independent loci for pedigrees with founders
from a non-admixed, non-inbred population, where mean genome coverage ranged 2-20x.
When utilizing only the most likely genotype, the estimated 2¢ = r is approximately half
the true value when mean coverage is 2x in both pairs of samples, and is still slightly
underestimated even at 10x (Figure . Only at ~ 20x is r correctly estimated. However,
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when summing over all possible genotypes using lcMLkin our estimates of r are essentially
unbiased even when at 2x, and it appears to be possible to discriminate between 5" degree
relatives and unrelated pairs of individuals using this number of loci.

Figure 2: Coeflicient of relatedness, r, estimated by our method from simulated 2,10 and
20X coverage data versus the known r. Blue dots are estimates using only the genotype
with the highest likelihood, and red dots are estimates from summing over all possible
genotypes in lcMLkin
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In addition, when we look not only at the estimate of 2¢ = r but also K (via k), we
see that the approach of lcMLkin clearly distinguishes between sibling-sibling and parent-
offspring relationships at 2x coverage, while using only the best genotype results in con-
founding estimates of ko (Figure [3)).
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Figure 3: r versus kinship coefficient kg estimated from simulated 2x coverage data using the
sum over all genotypes (A) and just the best genotypes (B). Blue=full siblings, red=parent-

offspring, green=2"1 degree, orange=3' degree, sky blue=3"1 degree, pale orange=>5"
degree, pink=unrelated
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4.2 CEPH pedigree 1463

In order to examine how lcMLkin would perform with a more realistic error structure (in-
cluding mapping error) we examined five individuals from CEPH pedigree 1463 for which
high coverage (~ 50x) 2"¢ generation sequencing data has already been generated, and
down-sampled sequence reads from each individual at 10, 000 independent SNPs to various
mean coverage values ranging from 2-20x. Population allele frequencies were estimated
from CEU 1000 Genomes Phase 1 data.

Figures[d and[5]show a similar pattern to the simulated data described above, with using
the best genotype resulting in an underestimate of 2¢p = r and an inability to distinguish
parent-offspring and sibling-sibling relationships with low coverage, while summing over
all genotype likelihoods using lcMLkin results in largely unbiased estimates regardless of
coverage, indicating our method works well, even when the structure of errors is potentially
more complex than what is represented in our simulated data.

11
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Figure 4: r versus kinship coefficient kg estimated for pairs of CEPH pedigree 1463 individ-
uals down-sampled to 2x,6x, and 10x mean coverage using the most likely genotype at each
SNP. Blue=full siblings, red=parent-offspring, green=grand parental, pink=unrelated
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Figure 5: r versus kinship coefficient kg estimated for pairs of CEPH pedigree 1463 individ-
uals down-sampled to 2x,6x, and 10x mean coverage summing over all possible genotypes at
each SNP. Blue=full siblings, red=parent-offspring, green=grand parental, pink=unrelated
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In order to examine how incorrect allele frequencies may affect inference by lcMLkin, we
used the Balding-Nichols model [5] to perturb the population allele frequencies at each SNP
with Fgr = 0.01,0.05 and 0.1. We then re-ran our analysis for the data down-sampled to
2x coverage (Figure @ For Fsr = 0.01 the estimates of 2¢p = r and kg are still close to the
expected value. Increasing Figr to 0.05 and then 0.1 results in an increasing overestimation
of 2¢ = r and underestimation of kg, though interestingly it seems that it would still be
possible to identify parent-offspring and sibling-sibling relationships at 2x coverage even
when using populations allele frequencies that are highly diverged from the true values.

12
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Figure 6: r versus kinship coefficient kg estimated for pairs of CEPH pedigree 1463 individ-
uals down-sampled to 2x coverage summing over all possible genotypes at each SNP, with
underlying population allele frequencies peturbed with Fgr = 0.01,0.05 and 0.1. Blue=full
siblings, red=parent-offspring, green=grand parental, pink=unrelated
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4.3 1000 Genomes Data

As a final examination of the performance of leMLkin, we analyzed sequence data gener-
ated as part of the 1000 Genomes Phase 3 dataset. This dataset contains low coverage
sequence data (though the exact coverage for each sample was still being calculated dur-
ing the writing of this paper) from 48 pairs individuals across 13 putatively non-admixed
populations for which there is a know degree of biological relatedness ranging from first to
third degree. We applied lcMLkin using previously inferred genotype likelihoods to all pairs
of individuals within each of the 13 populations at 100,000 independent SNPs. We also
applied PLINK [33], a commonly used method of moments estimator to a) the genotype
with the highest likelihood for each individual at each SNP and b) the genotype inferred
by multisample calling employed by the 1000 Genomes consortium (Figure (7).

13
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Figure 7: r versus kinship coefficient ky estimated using lcMLkin, PLINK using the
genotype with the highest likelihood and PLINK using the genotype inferred by mul-
tisample calling for pairs of individuals of known biological relatedness as well as 1000
random individuals of unknown biological relatedness from the 1000 Genomes Phase 3
Project. Blue=full siblings, red=parent-offspring, green=2"4 degree, orange=3"" degree,
purple=unknown
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leMLkin is able to recover all known relationships down to the 2"4 degree and most 3
degree relationships (though a few are estimated to be more unrelated than expected (i.e.
lower 2¢ = r values)). Pairs of individuals of unknown relationship also generally cluster
such that they are inferred to be unrelated (as there are many such pairwise comparisons,
only 1,000 random unknown pairwise relationships are plotted in Figure [7] for easy visu-
alization). However, PLINK produces highly inconsistent results, both with single sample
and multisample calling, often underestimating 2¢ = r and overestimating kg for known
first to third degree relatives, while a large number of known pairs are inferred to have
2¢ = r values indicating they are close to 2" degree relatives.

5 Discussion

We have demonstrated that it is possible to make accurate inference of biological relat-
edness down to at least three degrees of genealogical separation from 2°d generation se-
quencing data even when mean coverage is as low as 2x. While our simulations reflect
a relatively simple error model, the performance of lcMLkin on real data, both under
controlled (CEPH pedigree 1463 data) and uncontrolled (1000 Genomes Phase 3 data)
conditions, is similar. While being more computationally expensive, lcMLkin also vastly
outperforms existing methods-of-moment estimators such as PLINK [33]. Further, an ef-
ficient and highly-parallel implementation of the EM procedure makes it feasible to apply
lcMLkin, even to relatively large datasets.

Our approach utilizes information about all possible genotype likelihoods at indepen-
dent SNPs, rather than assuming a single true genotype. Currently, it is common practice
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to perform some form of Bayesian multisample calling for large 2"4 generation sequenc-
ing datasets to infer genotypes [9]. Such approaches inherently assume that each allele
sampled from the dataset is randomly drawn from the population. However, this will not
be true if related individuals are present. Therefore, when a low-to-medium coverage 2"¢
generation sequencing dataset is collected for which some form of disease variant discovery
or population genetic analysis is to be performed, it may be preferable to apply lcMLkin
to identify such relationships before calling variants.

When large numbers of samples are available from a population of interest, the es-
timation of population allele frequencies should be fairly robust even with low coverage.
Encouragingly, it still appears to be possible to infer first and second degree relatives (data
was not available to test further degrees of relatedness) even when the assumed population
allele frequencies were highly divergent from the true frequencies. We found no noticeable
effect in the estimation of 2¢p = r when using allele frequencies from a population that
experiences genetic drift with an Fgp of 0.01 from the true frequencies. To put this value
in context for humans, average Fgp amongst European countries is 0.004 [31] and Indian
ethnicities 0.01 [34]. Thus, our approach may be particularly useful when there are only a
few samples to be examined and for which the underlying population allele frequencies are
uncertain but for which another population may be a close surrogate (for example modern
European frequencies could be used for DNA collected from ancient European specimens).
Only with larger Fgr values of 0.1 do estimates of 2¢ = r start to show serious biases
(though first and second degree relationships still appear as distinct from other possible
relationships). At least within humans, such an Fsp would be the equivalent to using allele
frequencies from populations of African origin for individuals that are actually of European
or Asian origin, and thus is at the extreme end of human population divergence [7].

We also note that as well as only requiring low coverage data, inference appears to also
be possible with a relatively modest number of targeted SNPs. Though the variances for
estimates for 2¢ = r and K are higher, we found that lcMLkin could distinguish first to
third degree relatives from unrelated individuals in simulated data with as little as 1000
SNPs (data not shown). Thus, our approach may be useful for researchers that utilize
methods that target smaller amounts of sequence data, such as RAD tag sequencing [3].

While our approach appears to be effective for many realistic situations, there are two
situations that may cause biases. If the individuals being examined have ancestry from
multiple source populations (i.e. are admixed) this may lead to unrelated pairs of individ-
uals with 2¢ = r that are significantly larger than the expected value of 0 (i.e. incorrectly
inferred to be related to some degree) [39]. Moltke and Albrechtsen [27] recently described
a likelihood-based approach for accounting for such admixed individuals. A natural ex-
tension, therefore, would be to extend lcMLkin to incorporate this model. However, this
will require the exploration of a large number of parameters, which may reduce power to
accurately infer 2¢ = r and K in lower coverage data, especially when individuals are
highly (~ 50%) admixed.

A second situation that may result in incorrect inference of 2¢ = r would be populations
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or specific target individuals that are inbred. Extending the number of k coefficients to
account for inbreeding [26], [42] could provide more realistic estimates of 2¢ = r. However,
as with the case of incorporating admixture, this will again increase the parameterization
of the model, which may reduce power. In such cases, it may be possible, with some extra
computational effort, to provide e.g. credible intervals for parameter estimates by adopting
a Gibbs sampling approach in lieu of the existing EM algorithm. This would, at least, allow
quantification of uncertainty in the parameters being estimated.

The challenge going forward, therefore, will be to increase statistical power through
better resolution of IBD by incorporating information about SNPs in linkage disequilibrium
(for example by identifing IBD blocks and thus the distribution of IBD tract length) while
accounting for genotyping uncertainty. This would require not only accounting for genotype
likelihoods, but also the likelihoods of the haplotypes made up of the individual alleles.
Whether this is achievable will determine whether the general approach described here for
leMLkin could be extended to allow the inference of more complex biological relationships
using low coverage 2" generation sequencing data.
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