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Abstract 
Although genome-wide association studies (GWAS) have found more than a hundred common 

susceptibility alleles for prostate cancer, the GWAS reported variants jointly explain only 33% of 

risk to siblings, leaving the majority of the familial risk unexplained. We use targeted sequencing 

of 63 known GWAS risk regions in 9,237 men from four ancestries (African, Latino, Japanese, 

and European) to explore the role of low-frequency variation in risk for prostate cancer. We find 

that the sequenced variants explain significantly more of the variance in the trait than the known 

GWAS variants, thus showing that part of the missing familial risk lies in poorly tagged causal 

variants at known risk regions. We report evidence for genetic heterogeneity in SNP effect sizes 

across different ancestries. We also partition heritability by minor allele frequency (MAF) 

spectrum using variance components methods, and find that a large fraction of heritability (0.12, 

s.e. 0.05; 95% CI [0.03, 0.21]) is explained by rare variants (MAF<0.01) in men of African 

ancestry. We use the heritability attributable to rare variants to estimate the coupling between 

selection and allelic effects at 0.48 (95% CI of [0.19, 0.78]) under the Eyre-Walker model.  These 

results imply that natural selection has driven down the frequency of many prostate cancer risk 

alleles over evolutionary history. Overall our results show that a substantial fraction of the risk for 

prostate cancer in men of African ancestry lies in rare variants at known risk loci and suggests 

that rare variants make a significant contribution to heritability of common traits.  

 

Introduction 

More than 220,000 men are expected to be diagnosed with prostate cancer (PrCa) and more than 

27,000 are expected to die of the disease in the United States alone in 20151. Approximately 58% 

of risk for PrCa is estimated to be due to genetic inherited factors2-6. To date, genome-wide 
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association studies (GWAS) have revealed more than 100 common risk variants for PrCa that 

explain ~33% of the familial risk7-25 leaving the majority of risk unexplained (the “missing 

heritability” problem). Since GWAS have primarily investigated common variants (MAF>1-5%) 

for association to PrCa risk, an unexplored hypothesis is that part of the “missing heritability” of 

PrCa risk is attributable to rare (MAF<0.01) variants. To address this hypothesis we focused on 

examining rare variation at known susceptibility regions that are only partially tagged by GWAS 

arrays. The rationale for investigating known risk regions is that a) unlike the rest of the genome, 

genetic variation in these regions has been established to confer risk and b) there are examples of 

rare and low-frequency variation at known GWAS-identified risk regions being important for a 

number common diseases, including prostate cancer (i.e. 8q24)26-29.   

 

We conducted targeted sequencing of known PrCa GWAS loci to investigate the contribution of 

low frequency and rare variation to PrCa risk. We targeted all 63 autosomal PrCa risk regions that 

were known to us at the time of study design (since then, an additional 29 loci have been 

discovered and we did not interrogate them for this study). For each region, we started with the 

index SNP previously associated to PrCa by GWAS, and then attempted to tile Agilent SureSelect 

baits covering all nucleotides within a block of strong linkage disequilibrium around the SNP 

(plus exons and conserved elements within 200kb of the SNP). We made individually barcoded 

next-generation sequencing libraries for all of the samples, pooled these libraries in sets of typical 

size 24, and then performed an in-solution hybrid enrichment. After removal of duplicated 

molecules, we achieved an average depth of 9.3x coverage in 9,237 cases and controls across four 

ancestry groups (4,006 African, 1,753 European, 1,770 Japanese and 1,708 Latino). We identified 
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197,786 variants across all ancestries, imputed genotypes in all individuals, and then correlated 

them to PrCa risk.  

 

First, our analysis shows that sequencing of a large set of individuals interrogates substantially 

more of the genetic variance for the trait than studies of GWAS variants alone, as the variance 

explained in the trait by all the sequenced variants is significantly larger than variance explained 

by known GWAS variants at the same loci. Second, we find evidence of genetic heterogeneity by 

ancestry in risk for prostate cancer. Third, we use variance component methods to partition the 

SNP-heritability across different frequency classes and find a large amount of SNP-heritability 

coming from the rare variant class in men of African ancestry (e.g. variants with 0.1%≤MAF<1% 

explained 0.12 of variance in the trait as compared to 0.17 for MAF≥1% variants). We used the 

SNP-heritability assigned to the rare variant class to make the first relatively precise estimate of 

the strength of coupling between selection and allelic effect for a common trait. Finally, we 

replicated association signals at known GWAS loci and utilized an approach that combines 

epigenetic annotation data (e.g. localization of androgen receptor sites in a prostate 

adenocarcinoma cell line) with the association signal to identify plausible causal variants at some 

of these loci.  

 

Results 

Experimental strategy 

To explore the contribution of rare and low frequency variation to risk of PrCa, we targeted 90 

index SNPs at 63 autosomal risk regions that had been associated to PrCa risk by GWAS at the 

time that this study was designed (October 2011). For each index SNP, we used Haploview30 
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(HapMap release 24) to visualize the surrounding block of linkage disequilibrium (LD) in 

European ancestry individuals. We then manually identified boundaries for target capture based 

on the region where |D′| values fell precipitously (see Supplementary Figure 1 and Supplementary 

Note 2). We also targeted all exons (defined based on RefSeq) within 200kb of each index SNP 

and all conserved non-coding sequences (defined based on the 29 mammals project31) within 5kb 

of each exon, and elements > 100bp in length or with conservation scores >75 within the 200kb 

window around each index SNP. Outside of the targeted GWAS loci, we also included exons and 

conserved elements of MYC and PVT1 because of their potential importance to PrCa. We 

designed and ordered Agilent SureSelect32 in-solution enrichment probes to target a total of 12 

Mb in the regions after two rounds of target design which was restricted to 11.1Mb in the 

analyses after QC. The total span of regions we wished to target was 16.7 Mb, but we were not 

able to design probes for 4.7 Mb due to repetitive elements that needed to be masked during probe 

design (Supplementary Note 2). 

 

We produced a total of 9,237 next-generation Illumina sequencing libraries from four ethnic 

groups (4,006 African, 1,753 European, 1,770 Japanese and 1,708 Latino) using a high 

throughput library construction strategy that we previously described in ref33(see Methods). 

Results of the sequencing are presented in Table 1, where the mean coverage and the total number 

of variants discovered is provided for each ancestry group. The total number of mega-bases 

targeted, the mean coverage, the number of sites discovered, and other metrics for each region is 

provided in Supplementary Table 1. The average coverage across samples was 9.3x, with a 

standard deviation of 2.7 across individuals and 2.7 across targeted nucleotides. Altogether, we 

found a total of 197,786 variants out of which 44% were not identified in the 1000 Genomes 
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project (see Supplementary Table 2). The coverage we obtained for the great majority of samples 

was high enough in theory to obtain reliable diploid genotype calls after imputation at most 

targeted bases34. To assess accuracy of sequencing, we measured the Pearson correlation between 

the genotyping calls made with arrays (roughly half of the samples also had been assayed using 

GWAS arrays). The correlation between sequencing and arrays was r2 > 0.82 for common SNPs 

across all populations with lower correlation towards rare variants (as expected, see 

Supplementary Figure 2). 

 

Sequencing explains additional variance beyond the GWAS associated SNPs  

To explore the value of sequencing in explaining additional variance in PrCa risk, we fit the 

genetic data to variance components models to estimate the contribution of all genetic variants at 

the sequenced risk loci to the underlying liability of PrCa. First, we used simulations starting from 

the real genotype data to quantify potential biases in variance components estimation. Consistent 

with findings of previous studies35, our simulations show that the approach of utilizing two 

variance components, one for the rare variants (0.1%≤MAF<1%) and one for common variants 

(MAF ≥1%), estimated from dosage data and fitted jointly using REML as implemented in 

GCTA36 produces the least amount of bias when estimating SNP-heritability (see Supplementary 

Table 40; Supplementary Figures 3-10). We also investigated the performance of AI-REML 

versus EM-REML as implemented in GCTA with AI-REML attaining the least amount of bias in 

our data (see Supplementary Note 1; Supplementary Tables 17-18; Supplementary Figure 17). We 

considered the effect of estimating SNP-heritability from best-guess calls rather than imputed 

dosages and found that both approaches give statistically indistinguishable results. Lastly, we 

explored the role of linkage-disequilibrium adjustment in estimating the GRM and observed 
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upward bias for LD adjusted GRMs when the underlying ℎ௚,௥௔௥௘ଶ  was set to 0 in our simulations. 

This upward bias was also reflected on estimates using real phenotype data (see Supplementary 

Table 38). Similar results were obtained over a variety of simulated disease architectures with 

various amounts of rare variation contribution and total number of underlying causal variants (see 

Supplementary Note 1).  

 

Motivated by our simulation findings, we estimated the contribution of rare and common 

variation to risk of prostate cancer by fitting two variance components in GCTA while correcting 

for the top 10 PCs and age; we report heritability estimates on the liability scale (see Methods; see 

Supplementary Figure 16 for PCA plot). We find that the total variance explained by all variants 

at these loci (SNP-heritability ℎ௚ ଶ =  ℎ௚,௥௔௥௘ଶ + ℎ௚,௖௢௠௠௢௡ଶ ) is significantly larger that what is 

explained by the index variants alone (see Table 2). For example, we estimate the variance 

explained by all variants in the African ancestry sample at 0.30 (s.e. 0.06), which is significantly 

larger than the variance explained by all the 84 index variants present in these data (0.05, s.e. 

0.01) (6 of the targeted 90 SNPs were not covered by reads passing our analysis filters). This 

finding is consistent across all ethnicities, thus emphasizing the utility of sequencing in 

recovering additional signal beyond the index GWAS variants37.  

 

Next, we searched for genetic heterogeneity by ancestry in prostate cancer risk using a bivariate 

REML analysis38. Briefly, we computed a single GRM for each unique pair of ancestry groups 

over the set of SNPs common to both ancestry groups (see Methods) and estimated the genetic 

correlation using the software GCTA36. We then tested the hypotheses that there is no shared 

genetic liability (SNP-rg=0) or that liability is completely shared (SNP-rg=1) (see Methods). We 
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find significant heterogeneity (after accounting for the 6 pairs tested) for the African and 

European ancestries  (SNP-rg=0.56, s.e. 0.15; p-valueSNP-rg=1=2.42E-03; see Table 3) and only 

nominally significant (p-value=0.04) for the Latino and African groups (see Table 3).  

 

Having established evidence of heterogeneity, we quantified the contribution to SNP-heritability 

across the minor allele frequency spectrum in each ancestry group independently. Rare variants 

explained a significant amount of SNP-heritability (ℎ௚ ଶ ) in African ancestry individuals (ℎ௚,௥௔௥௘ଶ =0.12, s.e. 0.05, p=2.29E-03), and indeed the proportion of heritability explained by these rare 

variants is comparable to the heritability explained by common variants at these loci 

(ℎ௚,௖௢௠௠௢௡ଶ = 0.17, s.e. 0.03, p=7.08E-13). We did not observe significant contribution of rare 

variation to heritability in the other ethnic groups, although given the limited sample sizes for the 

other groups, we could not exclude the possibility that the fraction of prostate cancer heritability 

attributable to rare variants was the same in the other groups. In most of the analyses of 

heritability stratified by frequency that follow, we focus on people of African ancestry, where we 

have the highest power to carry out these studies. 

 

We investigated whether the large contribution from rare variants in men of African ancestry is an 

artifact of data quality (see Supplementary Note 1). We estimated ℎ௚,௥௔௥௘ଶ = 0.13 (s.e. 0.06) for 

the African American ancestry group after removal of any SNPs whose missing-ness before 

imputation was associated with the trait (p≤0.01) (see Supplementary Table 19). Similar results 

were obtained when estimating SNP-heritability directly from the hard-calls before imputation 

both with and without the differentially missing SNPs for the African American group (ℎ௚,௥௔௥௘ଶ =0.11, s.e. 0.05; see Supplementary Table 20). To quantify whether hidden relatedness impacts our 
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results, we estimated heritability at various relatedness thresholds; this did not significantly 

impact the SNP-heritability coming from the rare variants (ℎ௚,௥௔௥௘ଶ = 0.13, s.e. 0.06; GRM < 0.05; 

see Supplementary Table 19, see Supplementary Figure 18 and Supplementary Table 41 for 

distribution of pairwise relatedness values; see Supplementary Tables 21-28 for other ancestry 

groups). We also explored the role of sequencing coverage and estimated SNP-heritability from 

GRMs computed after removing SNPs at various levels of coverage. Overall, we found no 

significant decrease in ℎ௚,௥௔௥௘ଶ  until a large fraction of the SNPs were discarded (coverage ≥7x; 

see Supplementary Table 43). To rule out potential tagging of signal from other loci in the 

genome, we repeated the SNP-heritability estimation including a third variance component that 

includes genotype calls from arrays from the rest of the genome; this yielded similar results for ℎ௚,௥௔௥௘ଶ  (see Supplementary Tables 29-30; Supplementary Tables 31-36 for other ancestry 

groups). To account for possible confounding from population substructure, we re-estimated the 

variance attributable to the rare-frequency class in the African ancestry sample separating 

Ugandan and non-Ugandan ancestry as well as the 8q24 locus which is known to have a high 

contribution to risk of PrCa. Overall we find no significant change in ℎ௚,௥௔௥௘ଶ  for the African 

American subset with and without the 8q24 region (see Supplementary Table 4). We also 

considered bias in our initial estimates of ℎ௚ଶ resulting from potential misspecification of the 

genetic relationship matrix (GRM). Specifically, we estimated variance components using non-

standardized genotype data35 (which reduces the impact of rare variants in the GRM computation) 

and found a similar contribution from the rare variants spectrum (see Methods). We also 

standardized the GRM based on the expected variance rather than the sample estimate and found 

no significant change (ℎ௚,௥௔௥௘ଶ = 0.12, s.e. 0.05). We investigated potential bias in GCTA 

estimates from linkage across variants of various frequencies by repeating the analysis with 3 
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variance components corresponding to rare (0.1%≤MAF<1%), low-frequency (1%≤MAF<5%), 

and common (MAF≥5%) variants; we observed no significant difference in the amount of 

variance attributable to the rare variant class (Supplementary Table 9). As the standard errors 

reported by GCTA are asymptotic, we employed a leave-one-out Jack-knife to estimate ℎ௚,௥௔௥௘ଶ =0.13 with s.e=0.06 in the African ancestry group (Supplementary Table 37). To further investigate 

the significance of ℎ௚,௥௔௥௘ଶ  in African data, we estimated ℎ௚,௥௔௥௘ଶ  in 1000 simulated phenotypes 

starting from the real dosage data where the true ℎ௚,௥௔௥௘ଶ was set to 0 (i.e. all causal variants were 

set to have MAF ≥ 1%). In none of the 1000 runs did we observe an estimated ℎ௚,௥௔௥௘ଶ  ≥ 0.12, 

giving an empirical p-value <1/1000. Finally, we performed variance-components analyses using 

genotypes obtained from best-guess calls, as well as standard unconstrained REML analyses. 

Overall we found that most of these potential sources of bias are unlikely to significantly change 

our results (Supplementary Tables 5-8, Supplementary Figures 3-10, see Supplementary Note 1). 

 

Variance partitioning yields insights into the coupling of selection and allelic effect size  

In the case of neutral genetic variation, alleles that have a MAF<1% account for only a few 

percent of genetic variation in the population. However, our empirical results from this study 

show that at loci known to harbor common variants conferring risk for prostate cancer, variants 

with MAF<1% account for an order of magnitude larger heritability for the disease. The only 

plausible explanation for this observation is that newly arising mutations that confer risk for 

prostate cancer—especially mutations of strong effect—are often subject to strong selection, 

which prevents them from ever becoming too common.  
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To quantify the extent to which selection is driving down the frequency of alleles that confer risk 

for prostate cancer, we derived a simulation-based pipeline that uses estimates of ℎ௚,௥௔௥௘ଶ  to 

constrain the value of a parameter τ that Eyre-Walker proposed to measure the coupling between 

selection coefficients and allelic effect sizes39 (see Methods).  Briefly, starting from the real 

genotype data we simulated phenotypes under Eyre-Walker’s model at various values of τ and 

estimated ℎ௚,௥௔௥௘ଶ  in the simulated trait. We then compared the observed heritability in the real 

data to the simulations while accounting for sampling noise (see Methods). We estimated τ =0.48 

with a 95% confidence interval of [0.19, 0.78] for the African ancestry sample under our mapping 

procedure (see Figure 1). Similar results were obtained using a 5% MAF cutoff in assigning 

variants to the rare versus common class (see Supplementary Figure 11). We found that our 

procedure was relatively robust to changes in parameters. For example, when adjusting the 

effective population size for African ancestry to 7,500 we re-estimated τ =0.46 with a 95% 

confidence interval of [0.21, 0.78] (see Supplementary Table 39). Although the small contribution 

from rare variants joint with small sample sizes for European, Japanese, and Latino data sets 

prohibit us from estimating a tight confidence interval for the Eyre-Walker’s τ in those 

populations, the results were roughly consistent across populations (Supplementary Figure 22, 

Table 4). For example, the estimated mean value of τ for the Japanese cohort is 0.38 with a 95% 

confidence interval of [-0.07, 0.32]. In a meta-analysis over all ancestry groups we estimated 

τ=0.42 [0.22, 0.62], which is similar to the African ancestry estimates (unsurprisingly, since the 

African ancestry data contributes the most to this analysis). 

 

Single Variant Association  
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An advantage of full sequencing data—even with a 10-times lower sample size than the largest 

current GWAS—is that it interrogates all variants in the analyzed samples, and thus has the 

potential to detect causal variants that are not genotyped/imputed in GWAS studies. We 

performed marginal association testing at all sequenced variants (n=197,786), and replicated most 

of the GWAS loci (Supplementary Tables 10-15).  We observed a marginal increase in the 

association signal when including rare variants 0.1%≤MAF<1% across all populations as 

evidenced by a decrease in the top –log10 p-value (Supplementary Tables 10-15) and a slight 

enrichment of low p-values in a burden test (Supplementary Figure 24). However, a limitation of 

the present study is its modest sample size compared to the sample size of 87,040 individuals in 

the most recent GWAS meta-analyses24. For example, of the 84 recovered index variants (6 of the 

targeted 90 SNPs were not covered by reads passing our analysis filters), only 7 had p-value<10-8 

(most at 8q24) and 13 had a p-value<10-4. Intuitively, this makes sense. Even though we can 

directly access alleles not on SNP arrays through our targeted sequencing, the advantage we 

obtain by directly genotyping the SNPs is more than counterbalanced by the 10-fold larger 

GWAS meta-analysis that has conducted imputation for fine-mapping of common alleles at these 

regions. To explore additional signal beyond the known index variants, we performed a 

conditioning analysis (see Methods) on the index variants and observed no variants with p-

value<10-8 after conditioning; QQ-plots showed residual signal only in the African ancestry 

sample, consistent with the hypothesis that there is an additional signal beyond the known 

variants (either due to better tagging of a single causal variant or multiple causal alleles37) at these 

loci (see Supplementary Figures 19-20).  
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To investigate sequenced SNPs as plausible causal alleles, we integrated epigenetic and genetic 

data using PAINTOR40 to estimate posterior probabilities for causality at each SNP. We used the 

meta-analysis results for SNPs with MAF ≥ 1.0% (as the Wald statistic is unreliable at MAF<1% 

and therefore not well-suited to estimation within the PAINTOR framework). First, we ran 

PAINTOR independently for each of the 20 functional categories that have previously been 

implicated in PrCa41 and found a significant enrichment for causal variants in FOXA1 sites 

assayed in LNCaP cell lines as well as in the Androgen Receptor binding sites41 (Supplementary 

Figure 23). Second, we selected the functional categories with significant enrichment (at a 

nominal level of p-value ≤ 0.05) for a joint PAINTOR model to estimate posterior probabilities 

for each SNP to be causal. Of the 24,840 common variants found in all ethnicities, we observed 9 

variants with PAINTOR posterior probability > 0.90 to be causal. In particular, two variants 

(rs78416326 and rs10486567) exhibited values > 0.99 due to a combination of strong association 

signal and overlap with functional elements (see Supplementary Table 16, Supplementary Figure 

12). Although biological causality cannot be proven on the basis of statistical association alone, 

we highlight the variants with high posterior probability for follow-up validation. 

 

Discussion 

We have used large-scale targeted sequencing to study the contribution of rare variants to the 

heritability of PrCa for individuals of diverse ancestry. We find that the total variance in the trait 

contributed from these regions is significantly greater than the variance localized to known 

GWAS variants, thus showing that large-scale sequencing can uncover missing heritability. We 

also provide evidence of heterogeneity by ancestry as well as the first direct evidence of which we 

are aware of rare variants contributing a substantial fraction of the genetic heritability for a 
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common disease in people of African ancestry. On first principles, there are reasons to think that 

our results actually underestimate the fraction of heritability due to rare variants. Firstly, our study 

does not have a sample size sufficient to interrogate extremely rare variants (frequency << 0.1%). 

Secondly, we focused on known GWAS regions that were ascertained based on harboring an 

association to a common variant, thus guaranteeing that common variants will be responsible for a 

substantial fraction of prostate cancer risk at these locations. Prostate cancer is a late-onset disease 

that primarily affects people after reproductive age. For diseases with younger onset it is plausible 

that the coupling of selection to disease risk could be even higher; the situation for other diseases 

can be investigated by large sample size sequencing studies similar to this one. These results 

motivate additional large sequencing efforts in diverse populations to fully explore the abundance 

of rare variants that might contribute a substantial fraction of the heritability for at least some 

important human phenotypes.  

 

We conclude with several caveats of our study. Although we captured the majority of variants at 

the risk regions through sequencing, a small fraction of the variation is not interrogated in this 

study due to technological constraints or limited coverage. Second, assaying SNP heritability 

using variance components makes inherent assumptions often invalidated in empirical data; 

although we ruled out most types of biases estimation through simulations and real data analysis, 

other biases could still occur. 

 

Methods 

Datasets 
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The Multiethnic Cohort. The Multiethnic Cohort (MEC) consists of over 215,000 men and 

women enrolled from Hawaii and the Los Angeles region between 1993 and 199642. Participants 

are primarily of Native Hawaiian, Japanese, European American, African American, or Latino 

ancestry, and were between the ages of 45 and 75 at baseline when they completed a detailed 

questionnaire to collect information on demographics and lifestyle factors, including diet and 

medical conditions. Over 65,000 blood samples were collected from study participants for genetic 

analysis between 1995 and 1996. To obtain information on cancer status, stage and severity of 

disease, MEC participants were referenced against population-based Surveillance, Epidemiology 

and End Results (SEER) registries in California and Hawaii. Unaffected cohort participants with 

blood samples were selected as controls (for case-control sample sizes see Table 1; for stage and 

grade of cases see Supplementary Table 44). 

 

Uganda Prostate Cancer Study (UGPCS). UGPCS is a case-control study of prostate cancer in 

Kampala Uganda that was initiated in 2011. Patients diagnosed with prostate cancer were enrolled 

from the Urology unit at Mulago Hospital, while undiagnosed men (i.e., controls) were enrolled 

from other clinics (e.g., surgery) within the hospital. All consenting patients who satisfied strict 

inclusion criteria (cases: > 39 years of age; controls: > 39 years of age, PSA level < 4 ng/ml to 

dismiss possible undiagnosed prostate cancer) were recruited into the study. Written consent was 

obtained and two identical informed-consent forms translated into Luganda were provided to each 

participant for them to read or to be read to them, sign or thumb print. Descriptive and prostate 

cancer risk-factor information was collected from interviews conducted with patients using a 

standardized questionnaire. Biospecimens were collected using Oragene saliva collection kits.  
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Library preparation and target enrichment.  

We prepared NGS libraries from all DNA samples following a cost-effective library preparation 

protocol developed for this study, which makes it possible to perform multiplexed hybridization 

enrichment33. DNA samples from cases and controls were randomly distributed over 96-well 

plates to avoid plate effects confounding the results. Each sample was molecularly barcoded 

during the library preparation stage in 96-well plates to allows us to pool many samples for hybrid 

capture enrichment and subsequent sequencing. We pooled typically 24 samples in equimolar 

ratio per capture reaction using the custom SureSelect capture reagent described above. In short, 

we defined the target region to consist of linkage disequilibrium blocks surrounding all PrCa risk 

variants known at the time of design (October 2011), all coding sequences surrounding the 

variants within a 200kb window on either side, and evolutionary conserved elements defined by a 

29 mammal alignment31. This resulted in a total target size of 16.7Mb, of which probes could be 

designed for 12Mb. The missing 4.7Mb were non-unique regions of the genome that were filtered 

out according to Agilent design recommendations. An overview table of targeted genes, the 

variants, the size of the targeted region per variant, and the size of the baited region is given in 

Supplementary Note 2. Sequencing was performed at Illumina (San Diego, CA, USA) using 

HiSeq 2000 instruments for 100 cycles paired end sequencing. Using this approach we covered 

78% of the targeted regions (see Supplementary Table 1) of which, 26 regions (41%) expressed 

mean coverage ≥ 10x. 

 

Alignment and genotype calling  

Sequences were aligned to the human genome reference sequence (hg19) using BWA version 

0.6.143. Variants were called using the GATK best practices workflow44, including mapping the 
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raw reads to the reference genome, base recalibration and compression, and joint calling and 

variant recalibration. After QC, 11.3Mb of autosomal sequence was considered; due to 

complexities in the analysis we disregarded data on the X chromosome. Starting from the GATK 

likelihoods, we applied LD-aware genotype calling using Beagle45; 46 version 3.3.2 using the 1000 

Genomes v3 data as reference. Variants that displayed low-quality calling (r2 < 0.6) or MAF < 

0.1% were dropped from the analysis (n= 588,410) resulting in 197,786 SNPs across all ancestry 

groups. To take advantage of the lower error rate of the GWAS arrays, prior to LD-aware calling, 

overlapping sequenced SNPs were replaced with their array counterpart. This resulted in 6,028 

replaced calls for the African group, 5,395 for the European, 2,642 for the Japanese, and 2,805 for 

Latinos. The first 10 principal components for each ancestry group were computed using GCTA36 

from the sequenced common variants (MAF ≥ 1.0%) after LD pruning (r2 < 0.2)47  

  

Genotype Array design 

To capture SNP-heritability tagged outside of the targeted regions we assayed individuals using 

the Illumina 1M-Duo for the African ancestry group, Illumina 660W-Quad for Latino and 

Japanese groups, and Illumina Human610 for Europeans. The number of samples genotyped by 

array is n=3,078 for the African group, 1,627 for the European, 1,674 for the Japanese, and 1,642 

for the Latinos. For quality control we removed any SNP with missing-ness > 0.10. To remove 

any confounding from tagged variants within the targeted sequenced regions, we removed any 

SNP within 0.5 Megabases of any region and any SNP with LD > 0.2 of index variants. We 

further pruned the set to remove any variants with pair-wise LD > 0.3. This resulted in n=251919, 

182983, 96711, and 109118 array-based SNPs for the Africans, Europeans, Japanese, and Latinos 

respectively (see Supplementary Table 21). 
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Association analyses 

Each variant was subjected to an unconditional marginal case-control association test adjusting 

for age, Ugandan ancestry for the African group, and the top 10 principal components under a 

log-additive model performed by PLINK 1.948. All reported p-values are asymptotic estimates 

from the Wald statistic. We extended the unconditional association test by incorporating the 

known associated variants (index SNPs) as covariates for each SNP at a given locus. Conditional 

association tests were implemented in Python 2.7 with the package statsmodels version 0.5. A 

meta-analysis combining individual population results was performed using METAL49 version 

2011-03-25. Of the 197,786 analyzed SNPs, 183 were removed from the meta-analysis due to 

having multi-allelic values when compared across all populations. To perform SKAT-O tests for 

the African ancestry group, we used a non-overlapping sliding window approach to group rare 

SNPs into bins containing at most 100 variants across each targeted region resulting in a total of 

601 bins. Tests were performed using the software PLINKSEQ version 0.10. To predict the total 

risk from sequenced variants we performed BLUP prediction in GCTA version 1.24 over a single 

variance component. Predicted effects were partitioned into rare and common variants and risk-

scores computed using the predicted allelic effects with PLINK. Training and prediction was 

performed using 10-fold cross-validation over samples for each ancestry group (see 

Supplementary Note 1). 

 

Heritability analyses  

We estimated the genetic relationship matrix (GRM) as ܣ = ଵ௠ ܼܼ௧, where ܼ is the standardized 

genotype matrix and ݉ is the number of SNPs. For each sample, two GRMs corresponding to 
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rare (0.1% ≤ MAF < 1%) and common (MAF ≥ 1%) SNPs were created using GCTA version 

1.24. GCTA assumes a linear mixed model where the contribution from each SNP is the result of 

a random effect given by ݕ = ߚܺ + ∑ ݃௜ + ߳௜  where ݕ is a vector of phenotypes, ܺ is a covariate 

matrix (e.g. age), ߚ is a vector of fixed effects, and ݃௜ is a vector of random genetic effects for the ݅௧௛ component (we partition into ݃௥௔௥௘, ݃௖௢௠௠௢௡). The variance of ݕ is given by, (ݕ)ݎܽݒ ௥௔௥௘ଶߪ௥௔௥௘ܣ = + ௖௢௠௠௢௡ଶߪ௖௢௠௠௢௡ܣ +  ௖௢௠௠௢௡ correspond to the GRMs forܣ ௥௔௥௘ andܣ ఢଶ, whereߪܫ 

rare and common SNPs. Creation of the GRMs was done directly from the dosage data (similar 

results were obtained using best-guess calls, see Supplementary Tables 6, 7). We estimate the 

SNP-heritability contributed from rare variants as, ℎ௚,௥௔௥௘ ଶ = ఙೝೌೝ೐మఙೝೌೝ೐మ ା ఙ೎೚೘೘೚೙మ ା ఙചమ. The SNP-

heritability analysis was performed on the dichotomous case-control phenotype using constrained 

REML in GCTA with a prevalence of 0.19 for the African ancestry group, 0.14 for European and 

Latino, and 0.10 for Japanese (seer.cancer.gov). Hence, all reported values of ℎ௚ଶ are on the 

underlying liability scale. To estimate the contribution of the known index variants to SNP-

heritability, we computed a GRM restricted to the 84 known variants. The covariate matrix for 

each ancestry group consisted of age and first 10 principal components (with an additional binary 

variable indicating Ugandan ancestry for the African ancestry group). LD adjusted GRMs were 

computed using LDAK50 version 4.2. P-values were estimated from a likelihood ratio test by 

dropping one component and comparing against the reduced model (as implemented in GCTA). 

To estimate GRMs from array data, we removed any SNP within 0.5 Megabases of the targeted 

regions and further pruned for pair-wise LD > 0.2 in addition to any remaining variants in LD 

with index SNPs (see Supplementary Figure 21). For bivariate REML analysis we define the 
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GRM for samples over two ancestry groups as ܣ = ଵ௠ ൤ ܼଵܼଶ ൨ ⋅ ൤ ܼଵܼଶ ൨௧
 where ܼ௜ is the standardized 

genotype matrix for ancestry group ݅ and ݉ is the number of SNPs shared between both groups51. 

 

Coupling selection with allelic effect size. 

We investigated the relationship between selection and marginal effect sizes on PrCa risk using 

the Eyre-Walker model39, that sets allelic effect sizes ߚ = (4 ௘ܰ|ݏ|)ఛ(1 +  ߳). Here, ௘ܰ is the 

effective population size (set to 10,000 for our analyses52), ݏ is the selection coefficient of the 

allele, and ߳ is normally distributed noise (ߪఢ = 0.5; varying this parameter does not significantly 

affect underlying rare/common variation39). As τ increases we expect the allelic effects, and thus, 

the contribution to ℎ௚ ଶ from rare variants, to increase due to rare SNPs experiencing stronger 

selective pressure than common SNPs (Supplementary Figures 13-15).  In order to determine how 

τ plays a possible role in the underlying architecture for PrCa, we followed a five-step simulation 

procedure: 1) randomly select a set of 10,000 SNPs to be causal; 2) assign selection coefficients 

to each causal variant by mapping their allele frequency to selection coefficients53; 3) simulate 

allelic effects under the Eyre-Walker model given selection coefficients, τ and ߪఢ = 0.5; 4) 

simulate a continuous trait starting from the real genotype data with total SNP-heritability 

matching the SNP-heritability estimated from real data; 5) perform joint REML analysis in GCTA 

to estimate rare and common SNP-heritability for the simulated trait. This procedure was repeated 

for 5,000 values of τ uniformly distributed over the interval [-0.1, 1.1]. To match the observed 

results in real data to the results from the simulations, we sampled 10,000 values from N(ℎ௚,௥௔௥௘ଶ , ෢ܧܵ ) and identified the closest estimate observed under the simulation pipeline results 

and recorded its simulated value for τ. This enabled us to convert the statistical noise around the 
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estimate of the proportion as obtained by GCTA into a variance around τ for each of the ancestry 

samples. 
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Figure Legends: 

Figure 1. Relationship between strength of selection, coupling parameter τ, and allelic effect sizes 

in PrCa using heritability partitioning for the African ancestry sample. Figure a) shows the density 

estimate for ℎ௚,௥௔௥௘ଶ  obtained from real data. Figure b) depicts the influence of τ on ℎ௚,௥௔௥௘ଶ . Each 

point represents an estimate of ℎ௚,௥௔௥௘ଶ  given phenotypes simulated from real genotype under the 

Eyre-Walker model. Figure c) displays the estimated empirical density of τ. Estimates were 

obtained by matching a sampled value of ℎ௚,௥௔௥௘ଶ from Figure a) with the closest point-estimate 

from Figure b). 
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Table Legends: 

Table 1. Sizes for each cohort and the coverage and standard deviations in coverage achieved.  

 

Table 2. Estimates of ℎ௚ ଶ  (standard errors) using sequencing data. The results for index SNPs 

correspond to ℎ௚ ଶ contributed solely from the targeted index variants. Estimates for ℎ௚ ଶ attributable 

to rare and common components were obtained from joint REML analysis on the underlying 

liability scale. 

 

Table 3. Bivariate REML analysis for each pair of ancestry groups. Estimates of ℎ௚ ଶ  describe the 

SNP-heritability for each ancestry group over a set of SNPs in common for each pair. Estimates 

of shared genetic variation in tagged SNPs, or SNP-correlation (SNP-rg). The last two columns 

give the p-value for the model under the null hypotheses that no correlation exists (SNP-rg =0) 

and that perfect correlation is present (SNP-rg=1). 

 

Table 4. Estimates of τ for each ancestry group under our simulation-based pipeline with MAF 

partitioning at 1%. Meta-analysis results were computed using an inverse-weighted variance 

approach. Similar results were obtained with a 5% partitioning on MAF (see Supplementary 

Figure 11). 
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Figure 1: 
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Table 1:  

Ancestry 

Number of Samples 
Average 

coverage per 
sample (std) 

Average 
coverage per 

locus (std) 

Variants 

Cases Controls 

Rare Common  

Total 
0.1% ≤ MAF < 1% MAF ≥ 1% 

African 2,054 1,952 8.3 (5.1) 8.4 (5.2) 58,699 63,972 122,671 

European 900 853 8.8 (6.0)  8.8 (6.0) 33,606 53,164 86,770 

Japanese 914 856 11.8 (5.2) 11.9 (5.2) 29,121 40,742 69,863 

Latino 864 844 8.0 (5.7)  8.1 (5.7)  46,374 45,932 92,306 

Overall 4,732 4,505 9.3 (2.7) 9.4 (2.7)  - - - 
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Table 2. 

Ancestry Sample Size ℎ௚ ଶ  Index SNPs 
ℎ௚,௥௔௥௘ଶ   

(0.1%≤ MAF < 1%) 
P-value 

ℎ௚,௖௢௠௠௢௡ଶ   

(MAF ≥ 1%) 
P-value 

African 4006 0.06 (0.01) 0.12 (0.05) 2.29E-03 0.17 (0.03) 7.08E-13 

European 1753 0.10 (0.01) 0.00 (0.06) 5.00E-01 0.27 (0.06) 5.83E-11 

Japanese 1770 0.08 (0.01) 0.05 (0.07) 2.68E-01 0.13 (0.04) 3.09E-05 

Latino 1708 0.06 (0.01) 0.00 (0.06) 5.00E-01 0.14 (0.05) 2.38E-05 
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Table 3. 

Ancestry 
pair  

Sample 
Sizes 

# SNPs 
in 

common 
૛ࢍࢎ  (SE) Covariance SNP-rg (SE) 

P-value  
(SNP-rg = 0) 

P-value  
(SNP-rg = 1) 

African 4006 
46332 

0.20 (0.03) 
0.17 0.56 (0.15) 2.10E-04 2.42E-03 

European 1753 0.25 (0.05) 
African 4006 

31954 
0.18 (0.03) 

0.13 0.99 (0.16) 9.86E-08 0.48 
Japanese 1770 0.13 (0.03) 
African 4006 

61894 
0.21 (0.03) 

0.10 0.61 (0.20) 7.65E-04 0.04 
Latino 1708 0.15 (0.05) 
European 1753 

37871 
0.26 (0.05) 

0.15 0.88 (0.18) 3.18E-06 0.27 
Japanese 1770 0.13 (0.04) 
European 1753 

58708 
0.27 (0.06) 

0.22 0.94 (0.19) 2.56E-07 0.38 
Latino 1708 0.18 (0.05) 
Japanese 1770 

39485 
0.13 (0.04) 

0.11 1.00 (0.20) 3.12E-06 0.50 
Latino 1708 0.18 (0.04) 
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Table 4. 

Ancestry Sample Size Mean τ 95% Confidence Interval ℎ௚,௥௔௥௘ଶ  

African  4006 0.48 0.19 0.78 0.12 (0.05) 

European 1753 0.28 -0.08 0.90 0.00 (0.06) 

Japanese 1770 0.38 -0.07 0.92 0.05 (0.07) 

Latino 1708 0.39 -0.08 1.05 0.00 (0.06) 

Meta-analysis 9,237 0.42 0.22 0.62 0.05 (0.03) 
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