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Abstract 28 

We apply the statistical framework for genome-wide association studies (GWAS) to 29 

eigenvector decomposition (EigenGWAS), which is commonly used in population genetics to 30 

characterise the structure of genetic data. The approach does not require discrete sub-31 

populations and thus it can be utilized in any genetic data where the underlying population 32 

structure is unknown, or where the interest is assessing divergence along a gradient. Through 33 

theory and simulation study we show that our approach can identify regions under selection 34 

along gradients of ancestry. In real data, we confirm this by demonstrating LCT to be under 35 

selection between HapMap CEU-TSI cohorts, and validated this selection signal across 36 

European countries in the POPRES samples. HERC2 was also found to be differentiated 37 

between both the CEU-TSI cohort and within the POPRES sample, reflecting the likely 38 

anthropological differences in skin and hair colour between northern and southern European 39 

populations. Controlling for population stratification is of great importance in any 40 

quantitative genetic study and our approach also provides a simple, fast, and accurate way of 41 

predicting principal components in independent samples. With ever increasing sample sizes 42 

across many fields, this approach is likely to be greatly utilized to gain individual-level 43 

eigenvectors avoiding the computational challenges associated with conducting singular 44 

value decomposition in large datasets. We have developed freely available software to 45 

facilitate the application of the methods. 46 

  47 
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Introduction 48 

In population genetics, eigenvectors have been routinely used to quantify genetic 49 

differentiation across populations and to infer demographic history (Cavalli-Sforza et al., 50 

1996; Novembre et al., 2008; Reich et al., 2009). More recently, eigenvectors are commonly 51 

used as covariates in genome-wide association studies (GWAS) to adjust for population 52 

stratification (Price et al., 2006). Eigenvectors are usually estimated for each individual 53 

(individual-level eigenvectors, involving the inversion of a � � � matrix, where � is sample 54 

size). Theoretical studies have suggested that individual-level primary eigenvectors are 55 

measures of population differentiation reflecting ���  among subpopulations (Patterson et al., 56 

2006; McVean, 2009; Bryc et al., 2013) and can be interpreted as the divergence of 57 

individuals from their most recent common ancestor. Eigenvectors can also be estimated for 58 

each SNP (SNP-level eigenvectors, which involve inversion of a � � � matrix, � is the 59 

number of SNPs) and these SNP-level eigenvectors can be interpreted as ���  metrics of each 60 

SNP (Weir, 1996). SNP-level eigenvectors from a reference population are useful for 61 

revealing the population structure of independent samples (Zhu et al., 2008) as they can be 62 

used to project, or predict, the eigenvector values of individuals. However, due to high-63 

dimensional nature of GWAS data (commonly expressed as � � �), direct estimation of 64 

SNP-level eigenvectors is nearly impossible when using millions of single nucleotide 65 

polymorphisms (SNPs). 66 

 67 

Singular value decomposition (SVD) enables SNP-level eigenvalues to be obtained in a 68 

computationally efficient manner for any set of genotype data (Chen et al., 2013), however, it 69 

is not possible to determine the SNPs that contribute most to the leading eigenvector, or to 70 

test whether specific SNPs are differentiated along the genetic gradient described by the 71 

eigenvector. Here, we propose an alternative simple, fast approach for the estimation of SNP-72 

level eigenvectors. By using individual-level eigenvectors as phenotypes in a linear 73 

regression, we demonstrate that the regression coefficients generated by single-SNP 74 

regression are equivalent to SVD SNP effects as proposed by Chen et al (Chen et al., 2013). 75 

As the single-SNP regression resembles the popular single-marker GWAS method, as 76 

implemented in PLINK (Purcell et al., 2007), we call this method EigenGWAS. We show 77 

that the EigenGWAS framework represents an alternative way for identifying regions under 78 

selection along gradients of ancestry. 79 

  80 
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 81 

Results 82 

Properties of the estimating SNP effects for eigenvectors 83 

We applied EigenGWAS to the HapMap cohort, a known structured population. Eigenvectors 84 

were estimated via principal component analysis based on the � matrix using all 919,133 85 

SNPs. We conducted EigenGWAS for HapMap, using �� , the ���  eigenvector, as the 86 

phenotype and investigated the performance of EigenGWAS from ��  to ���. From ��  to ��� , 87 

we found 546,716 significant signals (231,677 quasi-independent signals after clumping) on 88 

�� and gradually reduced to 236 (163 after clumping) selection signals on ���  (Fig. 1). The 89 

large number of genome-wide significant loci are likely because HapMap3 was comprised of 90 

samples from different ethnicities, and these loci can be interpreted as ancestry informative 91 

marker (AIM). For each �� , its associated eigenvalue was highly correlated with the 	��, the 92 

genomic inflation factor that is commonly used in adjusting population stratification for 93 

GWAS (Devlin and Roeder, 1999), resulted from its EigenGWAS. The top five eigenvalues 94 

associated to HapMap samples were 100.14, 47.66, 7.168, 5.92, and 4.40, and the 95 

corresponding 	��  of EigenGWAS were 103.72, 44.69, 6.47, 5.17, and 3.96, respectively 96 

(Table 1). The large eigenvalues observed were consistent with previous theory that the 97 

magnitude of eigenvalues indicating structured population (Patterson et al., 2006). The 98 

connection between 	�� and eigenvalues, provides a straightforward interpretation: a large 99 

	��  indicates underlying population structure (Devlin and Roeder, 1999). Therefore, 100 

correction for 	�� will filter out signals due to population stratification, allowing loci under 101 

selection to be identified. These observations agreed well with our theory (see Methods & 102 

Materials). 103 

 104 

We demonstrate theoretically that for EigenGWAS, the estimated SNP effects using single-105 

marker GWAS are equivalent to the estimates from BLUP, and the correlation between the 106 

estimates from these two methods was very high (greater than 0.98 on average) (Fig. 2), even 107 

in HapMap samples that consist of a mix of ethnicities where the � matrix is non-zero for 108 

off-diagonal elements (Supplementary Fig. 1). This confirms that our EigenGWAS 109 

approach provides an accurate representation of the SNP effects on eigenvalues. 110 

 111 

We also conducted EigenGWAS on the POPRES samples, from which we selected 2,466 112 

European samples. On �� , there were 10,885 (3,004 quasi-independent signals after 113 
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clumping) genome-wide significant signals, and reduced to 1,639 (90 after clumping) on ��� 114 

(Table 1). As in the HapMap sample, we observed a concordance between eigenvalues and 115 

	�� in POPRES. The top five eigenvalues were 5.104, 2.207, 2.157, 2.077, and 1.971, with 116 

their associated EigenGWAS 	�� were 5.005, 1.929, 1.910, 1.464, and 1.866, respectively 117 

(Table 1), indicating population structure. The genetic relationship matrix (GRM) estimated 118 

from the POPRES data resembled a diagonal matrix, which had off-diagonal elements close 119 

to zero, suggesting that POPRES is a more homogenous samples as compared to HapMap 120 

(Supplementary Fig. 1). Correlations between the estimates from EigenGWAS and BLUP 121 

were high, with an average of greater than 0.999 from �� to ���  (Supplementary Fig. 2), 122 

close to one as expected. 123 

 124 

The chi-square statistics of the estimated SNP effects on eigenvectors from EigenGWAS 125 

were correlated with ���  for each SNP, consistent with previous established relationship 126 

between eigenvectors and ��� (Patterson et al., 2006; McVean, 2009). Using naïve threshold 127 

of �� 
 0, 2,466 POPRES samples were divided into nearly two even groups, which would 128 

be served as two subgroups in calculating ��� . �� 
 0 split the POPRES samples into North 129 

and South Europe; samples from UK, Ireland, Germany, Austria, and Australia were in one 130 

group, and samples from Italy, Spain, and Portugal were in the other group; samples from 131 

Switzerland and France were nearly evenly split into two groups. ���  for each SNP was 132 

consequently calculated based on these two groups. For every eigenvector until ��� , we 133 

observed strong correlations between ���  and the chi-square test statistics for EigenGWAS 134 

signals (Fig. 3), and the averaged correlation was 0.925 (S.D., 0.067). For example, the 135 

correlation was 0.89 (p-value<1e-16) between chi-square test statistics and ���  for ��  in 136 

POPRES (Supplementary Table 1). This correlation is consistent with our theory, where ���  137 

has a strong linear relationship with its EigenGWAS chi-square test statistic. 138 

 139 

We also validated our results in the simulation scheme I, in which there was neither selection 140 

nor population stratification. Given 2,000 simulated samples, each of which had 500,000 141 

unlinked SNPs, the EigenGWAS showed few GWAS signals (2 genome-wide significant 142 

signals on �� , (Supplementary Fig. 4). After splitting the samples into 2 groups depending 143 

on �	 
 0, the correlation between chi-square test statistics and ���  is about 0.67 from ��  to 144 

��� (Supplementary Fig. 5). As expected, 	�� ranged from around 1.124 to 1.130, with a 145 

mean of 1.124 for EigenGWAS on the top 10 eigenvectors, indicating little population 146 
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stratification for the simulated data. Furthermore, we also validated the theory in the 147 

simulation scheme II, in which there was population stratification. We wanted to know 148 

whether the adjustment of the test statistic with the greatest eigenvalue could render the 149 

distribution of the test statistics immunes of population stratification. Given various sample 150 

sizes for two subdivisions, after the adjustment for the test statistic with the largest 151 

eigenvalue, the test statistic followed the null distribution, which was a chi-square 152 

distribution of 1 degree of freedom (Supplementary Fig. 6), indicating a well control of 153 

population stratification after correction. The statistical power of EigenGWAS was also 154 

evaluated. As demonstrated, the power of EigenGWAS in detecting a locus under selection 155 

was determined by the ratio between the specific ���  of a locus and the averaged population 156 

stratification in the sample (Supplementary Fig. 7). 157 

 158 

Using EigenGWAS to identify loci under selection in structured populations 159 

We propose EigenGWAS as a method of finding loci differentiated among populations, or 160 

across a gradiant of ancestry. Intuitively, every EigenGWAS hit is an AIM, which differ in 161 

allele frequency along an eigenvector due to genetic drift or selection. A locus under 162 

selection should be more differed across populations than genetic drift can bring out. Thus, 163 

correction for 	��, controls for background population structure, providing a test of whether 164 

an AIM shows greater allelic differentiation than expected under the process of genetic drift. 165 

 166 

We pooled together CEU (112 individuals) and TSI (88 individuals), which represent 167 

Northwestern and Southern European populations in HapMap. EigenGWAS was conducted 168 

on ��, which partitioned CEU and TSI into two groups accurately using �� 
 0 as threshold 169 

(Supplementary Fig. 8). We corrected for 	��, which was 1.723, for CEU&TSI. Adjustment 170 

for 	��  significantly reduced population stratification (Supplementary Fig. 9), and was 171 

consequently possible to filter out the baseline difference between these two cohorts. After 172 

correction, we found evidence of selection at the lactose persistence locus, LCT (p-173 

value=1.21e-20). Due to hitchhiking effect, the region near LCT also showed divergent allele 174 

frequencies. For example, the DARS gene, 0.15M away from LCT, was also significantly 175 

associated with ��  (p-values=1.51e-23). HERC2 was slightly below genome-wide 176 

significance level (p-value=8.22e-08), indicating that anthropological difference reflected 177 

geographic locations of two cohorts but not under selection as strong as LCT. 178 

 179 
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We then conducted EigenGWAS in the POPRES sample by treating ��  as a quantitative trait, 180 

and calculated the approximate ���  for each SNP given two groups split by the threshold of 181 

�� 
 0 (Supplementary Fig. 10). Given 643,995 SNPs, the genome-wide threshold was p-182 

value < 7.76e-08 for the significance level of � 
 0.05. 	�� 
 5.00, which indicated 183 

substantial population stratification as expected for POPRES. Correcting for 	�� 184 

systematically reduced the EigenGWAS �
 test statistics (Supplementary Fig. 11), and we 185 

replicated the significance of LCT (p-value=1.23e-22) and DARS (p-value=8.99e-22) (Table 186 

2), suggesting selection at these regions. HERC2 was also replicated with p-value 8.15e-09, 187 

and with ���  of 0.041. 188 

 189 

Prediction accuracy for projected eigenvector 190 

We investigated three aspects of EigenGWAS prediction: 1) the number of loci needed to 191 

achieve high accuracy for the projected eigenvectors; 2) the required sample size of the 192 

training set; 3) the importance of matching the population structure between the training and 193 

the test sets. 194 

 195 

Using the POPRES samples, we split 5% (125 individuals), 10% (250 individuals), 20% (500 196 

individuals), 30% (750 individuals), 40% (1000 individuals), and 50% (1250 individuals) of 197 

the sample as the training set, and used the remainder of the samples as the test set. 198 

Eigenvectors were estimated using all markers in each training set. As predicted by our 199 

theory (Eq 7), the prediction accuracy of the projected eigenvector was consistent with 200 

�
 
 �
����

�

 in which �� 
 1,000 for ��  empirically. If only 100 and 1,000 random SNPs were 201 

sampled as predictors, the expected maximal �
 
 0.091 and 0.5, respectively and accuracy 202 

reached almost 1 if more than 100,000 SNPs were sampled. In agreement with our theory 203 

(Fig. 6), if the number of predictors were too small the prediction accuracy was poor, with 204 

prediction accuracy increasing with the addition of more markers for ��. When the sample 205 

size of the discovery was 1,000 or above, maximal prediction accuracy was achieved, as 206 

predicted in our theory. Therefore, a discovery with a sample size greater than 1,000 should 207 

be sufficient to predict the first eigenvector of an independent set, provided that population 208 

structure is the same across the discovery and prediction samples (Fig. 6). In contrast, the 209 

prediction accuracy for prediction eigenvectors decreased (Fig. 6) quickly for eigenvectors 210 

other than �� . For example, the prediction accuracy for �
  was below �
 � 0.2 and �
 �211 

0.15 for �
 . For ��~��� , the prediction accuracy dropped down to nearly zero. This is 212 
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consistent with the top 2~3 eigenvectors explaining the majority of variation (McVean, 213 

2009), if the training and the test sets had their population structure matched. 214 

 215 

If EigenGWAS SNPs of low p-value were likely to be AIMs, we would hypothesise that 216 

AIM markers would be more efficient in giving high accuracy for the predicted eigenvectors 217 

(Fig. 6). For ��, the prediction accuracy reached 1 more quickly by using markers selected by 218 

p-value thresholds. The prediction accuracy for projected �
  was dependent upon the 219 

threshold. For projected �
 given a 50:50 split of POPRES sample, applying the threshold of 220 

p-value < 1e-6 (927 SNPs), �
 
 0.136, as high as using all markers. For other projected 221 

eigenvectors, the pattern of accuracy did not change much after applying p-value thresholds 222 

because in general, the prediction accuracy was low. This indicated that eigenvectors other 223 

than the first two eigenvectors capture little replicable population structure in POPRES. 224 

 225 

In practice, the training and the test set may not match perfectly on population structure, and 226 

this will likely lead to a reduction in prediction accuracy. To demonstrate this, we split the 227 

POPRES samples into two sets: pooling Swiss (991 samples) and French (96 samples) 228 

samples into one group (SF), and the rest of the samples into the other group (NSF). We used 229 

SF as the training and the NSF as the testing. As SF was almost an average of North 230 

European and South European gene flow, making a less stratified population, its 231 

EigenGWAS effects would be consequently small and less “heritable”. When using all SNPs 232 

effects estimated from SF set, the observed prediction accuracy for NSF set was �
 
 0.33 233 

and 0.005 for �� and �
, respectively. These results indicate that a matched training and test 234 

set is important for prediction accuracy of the projected eigenvectors. 235 

 236 

Ancestry information may still be elucidated well even if the training set and the test set do 237 

not match well in their population structure. Using HapMap3 as the training set, we also tried 238 

to infer the ancestry of the Puerto Rican cohort (PUR, 105 individuals) and Pakistani cohorts 239 

(PJL, 95 individuals) from 1000 Genomes project (The 1000 Genomes Project Consortium, 240 

2012). In chromosome 1, 74,500 common SNs were found between HapMap3 and 1000 241 

Genomes project. As illustrated, using only 74,500 common markers between HapMap3 and 242 

1000 Genome projects SNPs on chromosome 1, it projected Eigenvectors accurately revealed 243 

the demographic history of Puerto Rican cohort, an admixture of African and European gene 244 

flows, and Pakistan cohort, an admixture of Asian and European gene flows (Fig. 7). 245 
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 246 

As a negative control, we replicated the prediction study for simulated data used in the 247 

previous section. The simulated data was split to two equal sample size. As there was no 248 

population structure in the simulated data, the prediction accuracy was poor, �
 � 0.01 from 249 

��  to ��� . This demonstrates that prediction can be used to validate whether population 250 

structure exists within a genotype sample. 251 

 252 

We concluded that to achieve high prediction accuracy of projected eigenvectors for 253 

independent samples, there are several conditions to be met: 1) the training set should 254 

harbour sufficient population stratification; 2) the sample size of the training should be 255 

sufficiently large; 3) the test sets should be as concordant as possible in its population 256 

structure; 4) when there is no real population structure, the prediction accuracy is very low 257 

close to zero; 5) depending on the population, high prediction was largely achievable for the 258 

projected �� . 259 

 260 

 261 

Discussion 262 

Eigenvectors have been routinely employed in population genetics, and various approaches 263 

have been proposed to offer interpretation and efficient algorithms (Patterson et al., 2006; 264 

Rokhlin et al., 2009; McVean, 2009; Chen et al., 2013; Galinsky et al., 2015). In this study, 265 

we created a GWAS framework for studying and validating population structure, and offer an 266 

interpretation of eigenvectors within this framework. The EigenGWAS framework (least 267 

square) identifies ancestry informative markers and loci under selection across gradients of 268 

ancestry. 269 

 270 

We integrated SVD, BLUP, and single-marker regression into a unified framework for the 271 

estimation of SNP-level eigenvectors. SVD is a special case of BLUP when heritability is of 272 

1 for the trait and the target phenotype is an eigenvector. Furthermore, the BLUP is 273 

equivalent to the commonly used GWAS method for estimating SNP effects. As 274 

demonstrated, the correlation between BLUP and GWAS is almost 1 for the estimated SNP 275 

effects. EigenGWAS offers an alternative way in estimating ���  that can replace conventional 276 

���  when population labels are unknown, populations are admixed, or differentiation occurs 277 
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across a gradient. As demonstrated for CEU&TSI samples, EigenGWAS brings out nearly 278 

identical estimation of ���  compared with conventional estimation. 279 

 280 

Different from conventional GWAS, which requires conventional phenotypes, the proposed 281 

EigenGWAS provides a novel method for finding loci under selection based on eigenvectors, 282 

which are generated from the genotype data itself. An EigenGWAS hit may reflect the 283 

consequence of process and thus additional evidence is needed to differentiate selection from 284 

drift. LCT is a known locus under selection, which differs in its allele frequency as indicated 285 

by ���  statistic between Northern and Southern Europeans (Bersaglieri et al., 2004). We 286 

replicated the significance of LCT in CEU&TSI samples and POPRES European samples. 287 

DARS has been found in association with hypomyelination with brainstem and spinal cord 288 

involvement and leg spasticity (Taft et al., 2013). In addition, we also found HERC2 locus 289 

independently, which may indicate the existence of anthropological difference in certain 290 

characters, such as hair, skin, or eyes color across European nations (Voight et al., 2006; 291 

Visser et al., 2012). 292 

 293 

Although by definition selection and genetic drift are different biological processes, both lead 294 

to allele frequency differentiation across populations and often difficult to tear them apart. In 295 

this study, with and without adjustment for 	�� from EigenGWAS offers a straightforward 296 

way to filter out population stratification. For example, with adjustment for 	��, LCT and 297 

DARS were still significant in both EigenGWAS, while HERC2 was only significant in 298 

POPRES. If adjustment for 	��  removed the average genetic drift since the most recent 299 

common ancestor for the whole sample, it might indicate that HERC2 reflected the 300 

anthropological difference between subsamples but not under selection as strong as that for 301 

LCT. Nevertheless, LCT was differentiated due to selection that was on top of genetic drift, 302 

and for DARS, it might be significant due to hitchhiking effect. So, LCT, DARS, and HERC2 303 

were significant in EigenGWAS for different mechanisms. 304 

 305 

In EigenGWAS application, it provides a clear scenario that 	��  is necessary if genetic 306 

drift/population stratification should be filtered out. It has been debated whether correction 307 

for 	�� is necessary for GWAS (Devlin and Risch, 1995; Yang, Weedon, et al., 2011). If the 308 

inflation is due to population stratification, as initially 	�� introduced, it seems necessary to 309 

control for it. In contrast, if it is due to polygenic genetic architecture, then correction for 	�� 310 
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will be a overkilling for GWAS signals. Interestingly, Patterson et al (Patterson et al., 2006) 311 

found that the top eigenvalues reflect population stratification, and in our study we found 	�� 312 

from EigenGWAS was numerically so similar to its corresponding eigenvalues. It in another 313 

aspect indicates 	�� captures population stratification. So, in concept and implementation, the 314 

correction for 	�� is technically reasonable. Of note, Galinsky et al also proposed a similar 315 

procedure to filter out population stratification in a study similar to ours (Galinsky et al., 316 

2015), but we believe our framework is much easier to understand and implement in practice. 317 

 318 

Once we have EigenGWAS SNP effects estimated, it is straightforward to project those 319 

effects onto an independent sample. The prediction of population structure was to that of 320 

recent studies (Chen et al., 2013). We found that the prediction accuracy for the top 321 

eigenvector could be as high as almost 1. Given a training set of about 1,000 samples, the 322 

prediction accuracy could be very high if there were a reasonable number of common 323 

markers in the order of 100,000. This number, which needs to be available in both reference 324 

set and the target set, is achievable. Further investigation may be needed to check whether 325 

this number of markers is related to effective number or markers after correction for linkage 326 

disequilibrium for GWAS data. When the population structure of the test sample resembles 327 

the training sample, high accuracy will be achieved for the leading projected eigenvectors. 328 

Therefore, this approach is likely to be extremely beneficial for extremely large samples, 329 

such as UK Biobank samples and 23andMe, both of which have more than half million 330 

samples where direct eigenvector analysis may be infeasible. Our results suggest that 331 

sampling about 1,000 individuals from the whole sample as the training set and subsequently 332 

project EigenGWAS SNP effects to the reminding samples will be sufficient to reach a 333 

reasonable high resolution of the population structure. 334 

 335 

Many improvements to the inference of ancestry using projected eigenvectors have been 336 

suggested (Chen et al., 2013). As the concordance of population structure between the 337 

training and test sets is often unknown (population structure, upon from genetic or social-338 

cultural perspectives, its definition can be difficult or controversial), improvement of the 339 

inference of ancestry may or may not be achieved dependent upon the scale of the precision 340 

required for a sample. However, for classification of samples at ethnicity level, projected 341 

eigenvectors are likely to have high accuracy, as demonstrated in the Puerto Rican cohort and 342 
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the Pakistani cohort. Therefore, when identifying ethnic outliers, using projected eigenvectors 343 

from HapMap is likely to be sufficient in practice. 344 

 345 

Eigenvector analysis of GWAS data is an important well utilized data technique, and here we 346 

show that its interpretation depends on many factors, such as proportion of different 347 

subpopulations, and ���  between subpopulations. Our EigenGWAS approach provides 348 

intuitive interpretation of population structure, enabling ancestry informative markers (AIM) 349 

to be identified, and potentially loci under selection to be identified. To facilitate the use of 350 

projected eigenvectors, we provide estimated SNP effects from HapMap samples and 351 

POPRES and software that can largely reduce the logistics involved in conventional way in 352 

generating eigenvectors, such as reference allele match, and strand flips. 353 

 354 

Methods and Materials 355 

HapMap3 samples. HapMap3 samples were collected globally to represent genetic diversity 356 

of human population (Altshuler et al., 2010). HapMap3 contains representative samples from 357 

many continents: CEU and TSI represent population from north and south Europe, CHB and 358 

JPT from East Asia, and CHD Chinese collected in Denver, Colorado. Loci with palindrome 359 

alleles (A/T alleles, or G/C alleles) were excluded, and 919,133 HapMap3 SNPs were used 360 

for the analysis. 361 

 362 

1000 Genomes project. 1000 Genomes project samples were used as a prediction set for 363 

projecting eigenvectors (The 1000 Genomes Project Consortium, 2012). We selected the 364 

Puerto Rico cohort (PUR, 105 samples) and the Pakistan cohort (Punjabi from Lahore, 365 

Pakistan, 95 samples) for analysis. 366 

 367 

POPRES samples. POPRES (Nelson et al., 2008) is a reference population for over 6,000 368 

samples from Asian, African, and European nations. In this study, we selected 2,466 369 

European descendants. The POPRES genotype sample was imputed to a 1000 Genomes 370 

reference panel (The 1000 Genomes Project Consortium, 2012). Imputation for the POPRES 371 

was performed in two stages. First, the target data was haplotyped using HAPI-UR (Williams 372 

et al., 2012). Second, Impute2 was used to impute the haplotypes to the 1000 genomes 373 

reference panel (Howie et al., 2011). We then selected SNPs which were present across all 374 

datasets at an imputation information score of >0.8. A full imputation procedure is described 375 
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at https://github.com/CNSGenomics/impute-pipe. After quality control and removing loci 376 

with palindromic alleles (A/T alleles, or G/C alleles) 643,995 SNPs for POPRES remained. 377 

In addition, we also conducted the analysis using non-imputed 234,127 common markers 378 

between POPRES and HapMap3. As the results were between these two datasets were very 379 

similar, this report focused on the results from 643,995 SNPs, which were more informative. 380 

 381 

Simulation scheme I: null model without population structure. 2,000 unrelated samples 382 

with 500,000 biallelic markers, which were in linkage equilibrium to each other, were 383 

simulated. The minor allele frequencies ranged from 0.01~0.5, and Hardy-Weinberg 384 

equilibrium was assumed for each locus. All individuals were simulated from a homogeneous 385 

population, with no population stratification. In order to calculate ���  at each locus, we 386 

divided the sample into sub-populations based upon eigenvectors that were estimated from a 387 

genetic relationship matrix calculated using all 500,000 markers (see below). 388 

 389 

Simulation scheme II: null model with population structure. In general, this simulation 390 

scheme was followed Price et al (Price et al., 2006). 2,000 unrelated samples with 10,000 391 

biallelic markers, which were in linkage equilibrium to each other, were generated. For each 392 

marker, its ancestral allele frequency was sampled from a uniform distribution between 0.05 393 

to 0.95, and its frequency in a subpopulation was sampled from Beta distribution with 394 

parameters � �����
���

 and �1 � �� ��������
. The Beta distribution had mean of � and sampling 395 

variance of ��1 � ����� . Once the allele frequency for a subpopulation over a locus was 396 

determined as ��, individuals were generated from a binomial distribution �� !"�#�2, ���. It 397 

agreed with the quantity that measures the genetic distance between a pair of subpopulations 398 

(Cavalli-Sforza et al., 1996). 399 

 400 

Calculating individual-level eigenvectors 401 

We assume that there is a reference sample consisting of �  unrelated individuals and � 402 

markers. $	 
 �%	�, %	
, … , %	���, is a vector of the ���  individual’s genotypes along � loci, 403 

with % the number of the reference alleles. An � � � genetic relatedness (correlation) matrix 404 

� (matrix in bold font) for each pair of individuals is defined as '	� 
 �
� (���� �����
��������
���


��������
, 405 

in which )� is the frequency of the reference allele. The principal component analysis (PCA) 406 
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is then implemented on the ' matrix (Price et al., 2006), generating *, which is an � � + 407 

(+ , �) matrix, in which ��  is the eigenvector corresponding to the ��� largest eigenvector. 408 

 409 

Unified framework for BLUP, SVD, and EigenGWAS 410 

Theoretically, PCA can also be implemented on a � � � matrix, but this is often infeasible 411 

because the � � � matrix is very large. However, for individual �, eigenvector � can also be 412 

written as: 413 

��.	 
 -�.	�  (Equation 1) 414 

in which -� is a � � 1 SNP-level vector of the SNP effects on �� , and %	  is the genotype of 415 

the ���  individual across � loci. In the text below, we denote individual-level eigenvector as 416 

eigenvector (� � 1 vector), and SNP-level eigenvector (� � 1) as SNP effects. 417 

 418 

We review three possible methods to estimate - given eigenvectors. The first method is best 419 

linear prediction (BLUP), which is commonly used in animal breeding and recently has been 420 

introduced to human genetics for prediction (Henderson, 1975; Goddard et al., 2009). The 421 

second method is to convert an individual-level eigenvector to SNP-level eigenvector using 422 

SVD, as proposed by Chen et al (Chen et al., 2013). The third method is the approach 423 

outlined here, EigenGWAS, which is a single-marker regression, as commonly used in 424 

GWAS analysis. 425 

 426 

Method 1 and 2: BLUP and SVD 427 

For a quantitative trait, / 
 0 1 -. 1 2, in which / is the phenotype, 0 is the grand mean, - 428 

is the vector for additive effects, $ is the genotype matrix, and 2 is the residual. Without loss 429 

of generality, the BLUP equation can be expressed as: 430 

-3 
 .4�5��/  (Equation 2) 431 

in which -3  is the estimates of the SNP effects, .4 is the standardized genotype matrix, 5 is the 432 

variance covariance with 5 
 6�
� 1 76�
 � 6�
89, and / is the trait of interest (Henderson, 433 

1975). Replacing / with individual-level eigenvector (��), Eq 2 can be written as 434  -3� 
 .4������   (Equation 3) 435 

in which -�  is the BLUP estimate of the SNP effects, ��  is the ���  eigenvector estimated 436 

from the reference sample., The 5 matrix can be replaced with � because the eigenvector has 437 

no residual error (i.e. ;
=1). This method has also been proposed as an equivalent computing 438 

algorithm for genomic predictions (Maier et al., 2015). 439 
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 440 

In addition, the connection between PCA and SVD can be established through the 441 

transformation between the � � �  matrix to the � � �  matrix (McVean, 2009). Let 442 

� 
 <=<�� , in which = is a � � �  diagonal matrix with 	� , < is � � �  matrix with the 443 

eigenvectors. > 
 .��<=<�����< 
 .�<=�� , in which >  is � � �  matrix. This is 444 

equivalent to the equation used in Chen et al (Chen et al., 2013) where ?� 
 =���.�<��. 445 

Thus, eigenvector transformation can be viewed as a special case of BLUP in which the 446 

heritability is 1 (Eq 3). However, under SVD another analysis step is then required to 447 

evaluate the significance of the estimated SNP effect. In an EigenGWAS framework an 448 

empirical p-value is produced when estimating the regression coefficient. 449 

 450 

Method 3: estimating SNP effects on eigenvectors with EigenGWAS 451 

Given the realized genetic relationship matrix ', for unrelated homogeneous (i.i.d.) samples, 452 

�7'	�8 
 0  ( � @ A ), and consequently ���� 
 9 , an identity matrix. Due to sampling 453 

variance of the genetic relationship matrix �, the off diagonal is a number slightly different 454 

from zero even for unrelated samples (Chen, 2014). If we replace the matrix with its 455 

mathematical expectation – the identity matrix, Equation 3 can be further reduced to -� 
456 

.4���, which is equivalent to single-marker regression �� 
 B 1 C% 1 2, as implemented in 457 

PLINK (Purcell et al., 2007). Furthermore, standardization for . is not required because it 458 

will not affect p-value. Thus, SNP effects can be estimated using the single-marker 459 

regression, which is computationally much easier in practice and is implemented in many 460 

software packages. Each SNP effect, -3�.� , is estimated independently, and the p-value of 461 

each marker can be estimated, which requires additional steps in BLUP and SVD. 462 

 463 

We summarise the properties and their transformation of SVD, BLUP, and EigenGWAS as 464 

below: 465 

1) ��  is determined by the �  matrix, or in another words, it is determined by the 466 

genotypes completely. If we consider each ��  is the trait of interest – a quantitative 467 

trait, its heritability is 1. 468 

2) ;
 
 1. SVD and BLUP are both computational tool in converting a vector from 469 

� � � matrix to a � � � matrix. SVD is a special case to BLUP when ;
 
 1 for 470 

BLUP. 471 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 17, 2015. ; https://doi.org/10.1101/023457doi: bioRxiv preprint 

https://doi.org/10.1101/023457
http://creativecommons.org/licenses/by-nc/4.0/


 16

3) ;
 
 1 and ���� 
 9. When these two conditions are set, BLUP is further reduced to 472 

single-marker association studies, which is EigenGWAS as suggested in this study. 473 

 474 

Recently, in an independent work Galinsky et al (Galinsky et al., 2015) introduced an 475 

approximation to find the proper scaling for SNP effects (“SNP weight” in Galinsky’s 476 

terminology) estimated from SVD, in order to produce accurate p-values. In our EigenGWAS 477 

framework, p-values for individual-level SNP eigenvector are automatically generated. In 478 

practice, it is conceptually easier to conduct EigenGWAS on eigenvectors than to conduct 479 

BLUP/SVD. Also, if computational speed is of concern, EigenGWAS can be easily 480 

parallelized for each chromosome, each region, or even each locus. 481 

 482 

Interpretation for EigenGWAS 483 

We can write a linear regression model �� 
 B 1 -% 1 2 , in which both ��  and %  is 484 

standardized. Assuming that a sample has two subdivisions, which have sample size  � and 485 

 
, - 
 
 !���!��"	�"
�
 
"#$% , and the sampling variance for - is 6&
 
 '�


('�


 �
(. A chi-square test 486 

for - is 487 

����
� 
 4 E�1 � E����) (Equation 4) 488 

in which ���) 
 �"	�"
�


"#$%  is Nei’s estimator of genetic difference for a biallelic locus (Nei, 489 

1973). 490 

 491 

In principal component analysis, the proportion of the variance explained by the largest 492 

eigenvalue is equal to ���* (McVean, 2009), in which ���* 
 
∑ !�

��	 ,�"��"#�
-

"#$%  for a pair of 493 

subpopulations as defined in Weir (Weir, 1996). So 	� F �G��* �  , in which �G��* characterizes 494 

the average divergence for a pair of subpopulations. When the test statistic, Eq 4, is adjusted 495 

by the largest eigenvalue 	�, an equivalent technique in GWAS for the correction of 496 

population stratification, �7��..	
 8 
 �(!���!�����
.	


 4E�1 � E� �����%��
. For a population with a 497 

pair of subdivisions 4E�1 � E����) 
 ���* . So  498 

�7��..	
 8 
 ���

�%��


 (Equation 5) 499 

after the adjustment of the largest eigenvalue, the test statistic immunes of population 500 

stratification, at least for a divergent sample. 501 

 502 
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For a locus under selection, which should have a greater ���  than �G��  the background 503 

divergence. So the statistical power for detecting whether a locus is under selection is 504 

determined by the strength of selection, which can be defined as the ratio between ���  505 

of a particular locus and �G��the average divergent in the sample. It is analogous to 506 

consider a chi-square test with non-centrality parameter (NCP), �HI 
 ���

�%��


� 1. 507 

Otherwise specified, in this study ���  is referred to the one defined in Weir (Weir, 1996). 508 

 509 

Validation and prediction for population structure 510 

Once -�  is estimated, it is straightforward to get genealogical profile for an independent 511 

target sample.  In general, it is equivalent to genomic prediction, and the theory for prediction 512 

can be applied (Daetwyler et al., 2008; Dudbridge, 2013). The predicted genealogical score 513 

can be generated as 514 

�J� 
 -3�.�.  (Equation 6) 515 

in which ��  is the predicted ��� eigenvector, -3�.� is the estimated SNP effects, and . is the 516 

genotype for the target sample. We focus on the correlation between the predicted 517 

eigenvectors and the direct eigenvectors, and thus it does not matter whether . or .4 is used. 518 

 519 

In contrast to conventional prediction studies, which focus on a metric phenotype of interest, 520 

prediction of population structure is focussed on a “latent” variable. This latent variable is the 521 

genetic structure of population, which is shaped by allele frequency and linkage 522 

disequilibrium of markers. Thus, expectations of prediction accuracy differ from what has 523 

been established for conventional prediction (Daetwyler et al., 2008; Dudbridge, 2013) 524 

�
 
 ;
 K �


�
��
�

L � ;
 M 1 . We therefore assess prediction of accuracy for ��  across 525 

markers, when using different prediction thresholding (Purcell et al., 2009). 526 

 527 

Here we proposed an equation for prediction accuracy, especially for ��  528 

�
 
 /�
��

��
0



�
/��
�
��
0��

��
����

��
�

F �
��)�/�

  (Equation 7) 529 

when there is no heritability, the predictor can be simplified to �
 
 �
����

�

, meaning that as 530 

the number of markers increases prediction accuracy should rapidly reach 1. Here the ;
 is 531 

interpreted as the genetic difference in the source population, or real ancestry informative 532 
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markers. For a homogeneous population, the genetic difference is large due to genetic drift, 533 

and ;
 F 0. 534 

 535 

For this study, the genetic relationship matrix (� matrix), principal component analysis, and 536 

BLUP estimation were conducted using GCTA software (Yang, Lee, et al., 2011). Single-537 

marker GWAS was conducted using PLINK (Purcell et al., 2007), or GEAR 538 

(https://github.com/gc5k/GEAR/wiki/EigenGWAS; 539 

https://github.com/gc5k/GEAR/wiki/ProPC). 540 

 541 

Web resource and data availability 542 

GEAR is available at http://cnsgenomics.com/ 543 

GCTA is available at http://cnsgenomics.com/ 544 

PLINK is available at http://pngu.mgh.harvard.edu/~purcell/plink/index.shtml 545 

1000 Genomes Project: http://www.1000genomes.org/ 546 
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 648 

Figure 1 Manhattan plots for EigenGWAS for top 10 eigenvectors for HapMap. Using �	  as 649 
the phenotype, the single-marker association was conducted for nearly 919,133 markers.  The 650 

left panel illustrates from ��~�2; the right panel from �3~���. The horizontal lines indicate 651 
genome-wide significant after Bonferroni correction. 652 

  653 
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 654 

Figure 2 Correlation for the SNP effects estimated using EigenGWAS and BLUP for 655 

HapMap3. The x-axis represents EigenGWAS estimation for SNP effects, and the y-axis 656 

represents BLUP estimation for SNP effects. The left panel illustrates from ��~�2; the right 657 

panel from �3~���. As illustrated, the correlation is nearly 1. 658 
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 660 
Figure 3 The correlation between ���  and ��
 for EigenGWAS SNP effects for POPRES. For 661 

each eigenvector, upon �	 
 0 or �	 , 0, the samples were POPRES samples were split into 662 

two groups, upon which ���  was calculated for each locus. 663 
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 665 

Figure 4 EigenGWAS for CEU (112 samples) & TSI (88 samples) from HapMap. a) 666 

Manhattan plot for EigenGWAS on �� without correction for 	��. When there was no 667 

correction, on chromosome 2 found LCT, chromosome 6 MICA (HMC region), chromosome 668 
14 HIF1A, and chromosome 15 HERC2. The line in the middle was for genome-wide 669 

significant level at � 
 0.05 given multiple correction. b) Manhattan plot for EigenGWAS 670 

on E� with λ45 correction, and LCT was still significant, and HERC2 slightly below whole 671 
genome-wide significance level. The genome-wide significance threshold was p-values = 672 

5.44e-08 for � 
 0.05. 673 
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 675 
Figure 5 EigenGWAS for POPRES samples on eigenvector 1. a) Manhattan plot for 676 

EigenGWAS without correction for 	��. b) After correction for λ45, on Chromosome 2 677 
found LCT, chromosome 6 SLC44A4, and chromosome 15 HERC2. The genome-wide 678 

significance level was p-values = 7.76e-08 given � 
 0.05. 679 
  680 
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681 

Figure 6 Prediction accuracy of the projected eigenvectors for POPRES samples. Given 682 

2,466 POPRES samples, the data were split to 5%:95%, 10%:90%, 20%:80%, 30%:70%, 683 

40%:60%, and 50%:50, as training and test set. The left columns represent prediction 684 

accuracy ( ) using randomly selected numbers (100, 1,000, 10,000, 100,100, all) of 685 

markers, the 95% confidence interval were calculated from 30 replication for resampling 686 

given number of markers. In contrast, the right columns represent the predicted accuracy for 687 

8 p-value thresholds (1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 0.5, and 1) for EigenGWAS SNPs. 688 

 689 
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690 

Figure 7 Projected eigenvectors for Puerdo Rican cohort (PUR) and Pakistan cohort 691 

(PJL) in 1000 Genome project. The training set was HapMap3 samples build on 919,133 692 

SNPs. The eigenvectors 1 and 2 for were generated based on the 74,500 common SNPs on 693 

chromosome 1. PUR showed an admixture of African and European gene flows, and PJL 694 

Asian and European gene flows. 695 
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Table 1 GWAS signals for on eigenvectors for HapMap and POPRES 
 HapMap POPRES 

Eigenvector (��) Eigen value GWAS ��� #GWAS hits #After clumping Eigen value GWAS ��� #GWAS hits #After clumping 
1 100.135 103.715 546,716 231,677 5.104 5.005 10,885 3,004 
2 47.658 44.686 382,867 161,022 2.207 1.929 1,254 289 
3 7.168 6.471 33,317 15,344 2.157 1.910 1,201 340 
4 5.923 5.173 21,935 12,401 2.077 1.464 1,353 331 
5 4.402 3.964 9,554 4,727 1.971 1.866 781 76 
6 2.449 1.982 1,113 567 1.871 1.295 1,162 111 
7 2.285 1.986 593 389 1.843 1.337 1,239 130 
8 2.107 1.742 236 171 1.818 1.486 1,259 152 
9 2.056 1.729 268 174 1.807 1.503 1,701 113 

10 2.0217 1.661 236 163 1.798 1.492 1,639 90 
Notes: HapMap has 988 samples, and 919,133 SNPs; its GWAS hits were those had p-values < 5.44e-08 given � � 0.05. POPRES has 2,466 European 
samples, and 643,995 SNPs; its GWAS hits were those had p-values < 7.76e-08 given � � 0.05. 
After clumping, the reported numbers were quasi-independent GWAS hits. Within 250K bp and linkage disequilibrium of �� 	 0.5 only the most significant 
GWAS hit was counted as a GWAS hit (see PLINK --clump default option). 
��� was calculated as the ratio between the median of observed 
� from EigenGWAS to the median of 
� value, which is 0.455. 
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Table 2 Gene discovery using EigenGWAS 
Gene Lead SNP Position Allele p-value (���) MAF (TSI:CEU) ��� Annotation 
CEU & TSI samples 
LCT rs6719488 2:135817629 G/T 6.68e-34 (1.21e-20) 0.733:0.206 0.558 Lactose persistent locus 
DARS rs13404551 2:135964425 C/T 8.18e-39 (1.51e-23) 0.756:0.206 0.604 Genetic hitchhiking due to LCT. 
MICA rs2256175 6:31412672 T/C 8.94e-10 (2.60e-6) 0.665:0.360 0.183 MHC class I polypeptide-related sequence A 
HIF1A rs2256205 14:61670944 A/G 1.51e-10 (8.86e-7) 0.464:0.179 0.192 HIF-1A thus plays an essential role in 

embryonic vascularization, tumor 
angiogenesis and pathophysiology of ischemic 
disease. 

HERC2 rs8039195 15:26189679 C/T 2.75e-12 (8.22e-08) 0.403:0.122 0.212 Genetic variations in this gene are associated 
with skin/hair/eye pigmentation variability 

POPRES European samples 
     Southern Europeans : 

Northern Europeans 
  

LCT rs3754686 2:135817629 T/C 3.30e-106 (1.23e-22) 0.514:0.279 0.110  
DARS rs13404551 2:135964425 C/T 6.32e-102 (8.99e-22) 0.518:0.293 0.106  
SLC4A4 rs605203 6:31819235 C/A 8.94e-44 (5.77e-10) 0.214:0.343 0.040 Defects in this gene can cause sialidosis, a 

lysosomal storage disease 
HERC2 rs1667394 15:26189679 C/T 3.90e-38 (8.15e-09) 0.276:0.173 0.041  
Notes: The p-value cutoff for CEU&TSI was 5.44e-08 (919,133 SNPs), for POPRES was 7.76e-08 (643,995 SNPs) at genome-wide significance level of 
� � 0.05. ��� � 1.725 for CEU&TSI, and ��� � 5.00 for POPRES. 
���  is calculated by partitioning the sample into two groups upon �� 	 0. For TSI&CEU set, partitioning on ��perfectly separated TSI (88 samples) and CEU 
(112 samples). For POPRES, partitioning on ��  separated southern European population (1,092 samples) and northern European population (1,374 samples). 
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