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leave no effects on the column-wise MSA probability via substitutions. Next, at each 
upper-tip of an upward extension, we encounter the following summation: either 

P ω(nRoot;υi ), n
Root( ) υi

⎡
⎣

⎤
⎦ ω(n

Root;υi ) P̂
S (nRoot, nD (b);υi ) ω(n

D (b);υi )ω (nRoot ;υi )∈Ω
∑   

if the tip is the root node (i.e., nA (b) = nRoot ), or  
pI (ω(n

A (b);υi );υi, n
A (b)) ω(nA (b);υi ) P̂

S (nA (b), nD (b);υi ) ω(n
D (b);υi )ω (nA (b);υi )∈Ω

∑  

otherwise (i.e., if nA (b) = nD (b
I
) ). Each of them is a summation over the initial states, 

and each summand is the product of an “initial probability” and a single probability 
conditioned on the initial state. Thanks to Eq.(A3.5’), the latter type of summation can 
be performed, yielding pI (ω(n

D (b);υi );υi, n
D (b)) . The former type of summation 

can also be performed if we additionally assume the following equation: 
P ′ω , nRoot( ) υi
⎡
⎣

⎤
⎦ ′ω P̂S (nRoot, nD (b);υi ) ω(n

D (b);υi )′ω ∈Ω
∑

= pI (ω(n
D (b);υi );υi, n

D (b)) .
 

--- Eq.(A3.13)      
Thus, if Eq.(A3.13) holds, every upward extension can be receded down to its origin 
( nOri ) belonging to the minimum web, providing pI (ω(n

Ori;υi );υi, n
Ori ) . Finally, 

consider the contribution from a “null site” that is not kept at any external nodes. In 
this case, after successively performing the summations at the lower-tips of the 
downward extensions, we are always left with either P ′ω , nRoot( ) υi

⎡
⎣

⎤
⎦′ω ∈Ω

∑  or 

pI ( ′ω ;υi, n)′ω ∈Ω
∑ . Each of them always yields 1  (unity). Putting together all these 

arguments, we see that the probability of the residue states of a MSA column under 
any indel history can be reduced to that under the Dollo parsimonious indel history. 
This means that the residue component of the MSA probability, which is the 
summation of Eq.(A3.10b) over all possible residue states at internal nodes, is indeed 
independent of the basic sequence states at internal nodes, s(n){ }ΝIN . Thus, under the 
assumptions of Eqs.(A3.1a,b), the column-wise factorization of the substitution 
evolutionary operators, Eq.(A3.5’) and Eq.(A3.13), the MSA probability can indeed 
be factorized into the basic and residue components, as in Eq.(A3.11). 
 
A4. Pursuing further biological realism 
Eq.(A3.5’) and Eq.(A3.13) in Subsection A3 are non-equilibrium generalizations of 
the famous detailed-balance condition, π ( ′ω ) ′ω P̂S ( ′t , t;υi ) ω′ω ∈Ω

∑ = π (ω) , for a 

time-reversible substitution model with the equilibrium residue frequencies 
π (ω){ }ω ∈Ω

 and the assumption that the residue content of the inserted subsequences 

is also given by π (ω){ }ω ∈Ω
. These widely accepted assumptions played important 

roles to facilitate the calculations in the past studies with evolutionary models 
incorporating both substitutions and indels (e.g., Thorne et al. 1991, 1992; Miklós et 
al. 2004; Rivas and Eddy 2008). However, even if generalized to Eq.(A3.5’) and 
Eq.(A3.13), they may still be too restrictive to accommodate some biologically 
realistic features. For example, when transposable elements (e.g., Morgante et al. 
2007; Chalopin et al. 2015) or foreign DNA sequences (e.g., Waterhouse and Russell 
2006) are inserted, the residue content of such inserted sequences is likely to be 
substantially different from the residue content of the genome that underwent the 
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insertions. It remains to be seen whether we can further relax the conditions to 
accommodate such situations while keeping the “indel-substitution factorization” 
enabled. Recently, Lèbre and Michel (2010, 2013) developed some analytical models 
to examine the effects of the base composition of inserted sequences on the evolution 
of the base composition of an entire genome or of its subset. It might be interesting to 
see if their methods are applicable to the issue at hand. 
 Another potentially important biologically realistic feature is the observation 
by some studies that the substitution rate increases at sites surrounding 
insertions/deletions (e.g., Tian et al. 2008; De and Babu 2010). If the incremental 
substitutions occurred simultaneously or almost simultaneously with the indel events, 
this feature could be formally incorporated into our theoretical framework by 
“dressing” each indel operator term in the action of the rate operator, s Q̂SID , with 

substitution operators. The deletion operator, M̂ D (xB
, xE ) , could be replaced with: 

   M̂ D (xB
, xE )⊗

pΔS
ωxB2

,...,ωxE 2
⎡⎣ ⎤⎦

′ωxB2
,..., ′ωxE 2

⎡⎣ ⎤⎦; ′s , t

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

× ⊗
x=xB2

xE 2
M̂S (x,ωx ′ωx )

⎛

⎝
⎜

⎞

⎠
⎟

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

′ωxB2
,..., ′ωxE 2

⎡⎣ ⎤⎦

∈Ω
LLF
CO+LRF

CO

∑
ωxB2

,...,ωxE 2
⎡⎣ ⎤⎦

∈Ω
LLF
CO+LRF

CO

∑

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥ xB2≡xB−LLF

CO ,
xE 2≡xB+LRF

CO−1,
′s = s M̂ D (xB , xE )

.  

--- Eq.(A4.1)     
Here pΔS ωxB2

,...,ωxE 2
⎡⎣ ⎤⎦( ′s ) ′ωxB2

,..., ′ωxE 2
⎡⎣ ⎤⎦; ′s , t( )  is the probability that the residue 

states of the intermediate state, ′s ≡ s M̂D (xB, xE ) , was replaced as indicated, and 

satisfies pΔS ωxB2
,...,ωxE 2

⎡⎣ ⎤⎦( ′s ) ′ωxB2
,..., ′ωxE 2

⎡⎣ ⎤⎦; ′s , t( )
′ωxB2
,..., ′ωxE 2

⎡⎣ ⎤⎦∈Ω
LLF
CO+LRF

CO

∑ =1. For 

notational convenience, we have also set ′ω x M̂S (x,ωx ωx ) ≡ δ( ′ωx,ωx ) ωx , 
where the subscript x  in ωx  and ′ω x  indicates that they are residue states at the x  th 
site. The LLF

CO  and LRF
CO  are the “cut-off” lengths of the left-flanking and right-flanking 

regions, respectively, that could accommodate the incremental substitutions. The cut-
offs were introduced just for convenience. If we can assume that the incremental 
substitution at each site is independent of those at the other sites, Eq.(A4.1) is reduced 
to: 

M̂ D (xB
, xE )⊗ ⊗

x=xB2

xE 2
pΔS (x,ωx ′ωx; ′s , t) M̂S (x,ωx ′ωx )( )

′ωx ∈Ω

∑
ωx ∈Ω

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
xB2≡xB−LLF

CO ,
xE 2≡xB+LRF

CO−1,
′s = s M̂ D (xB , xE )

.  

--- Eq.(A4.1’)    
Here the site-wise incremental substitution probability, pΔS (x,ωx ′ωx; ′s , t) , satisfies 

the equation, pΔS (x,ωx ′ωx; ′s , t)
′ωx ∈Ω

∑ =1 . We can also “dress” the insertion operator, 

M̂I (x, l) F̂(x, δ ′ω [l]) , in a similar manner. The expression of a dressed insertion 
operator becomes bulkier than Eq.(A4.1), and thus is omitted here. Once the 
incremental substitutions are introduced as in Eq.(A4.1), we cannot easily perform the 
“indel-substitution factorization” of the alignment probabilities, because the expected 
number of substitutions increases with the number of indels in a local history. 
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Therefore, if the incremental substitutions occur commonly along the genome, the 
above line of arguments is no longer applicable for the separation of basic and residue 
components of the entire alignment probability. Nevertheless, the alignment 
probability may still be factorable into the product of local contributions, possibly 
with some modifications in the arguments (in Section 4 of part I (Ezawa, Graur and 
Landan 2015a)) and the models (given in Section 5 of part I). It remains to be seen 
whether we can still factorize the alignment probability into the basic and residue 
components by substantially extending and/or modifying the arguments given in this 
subsection. Unless we can, one solution might be to develop an “effective substitution 
model” that takes beforehand account of the effects of such incremental substitutions 
in the vicinity of indels (including invisible ones). 
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