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Abstract – Life history invariants play a pivotal role in the study of social adaptation: they 27!

provide theoretical hypotheses that can be empirically tested, and benchmark frameworks 28!

against which new theoretical developments can be understood. Here we derive a novel 29!

invariant for dispersal evolution: the “constant philopater hypothesis” (CPH). Specifically, we 30!

find that, irrespective of variation in maternal fecundity, all mothers are favoured to produce 31!

exactly the same number of philopatric offspring, with high-fecundity mothers investing 32!

proportionally more, and low-fecundity mothers investing proportionally less, into dispersing 33!

offspring. This result holds for female and male dispersal, under haploid, diploid and 34!

haplodiploid modes of inheritance, irrespective of the sex ratio, local resource availability, 35!

and whether mother or offspring controls the latter’s dispersal propensity. We explore the 36!

implications of this result for evolutionary conflicts of interest – and the exchange and 37!

withholding of contextual information – both within and between families, and we show that 38!

the CPH is the fundamental invariant that underpins and explains a wider family of invariance 39!

relationships that emerge from the study of social evolution. 40!

 41!
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 44!

 45!

 46!

 47!

 48!

 49!

 50!

 51!

 52!

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 31, 2015. ; https://doi.org/10.1101/023655doi: bioRxiv preprint 

https://doi.org/10.1101/023655


! 3!

Introduction 53!

 54!

A number of surprising invariance relationships have emerged from the study of social 55!

evolution, whereby a cancelling-out of multiple partial effects of a genetic, ecological or 56!

demographic parameter means that it has no net impact upon the evolution of a social 57!

behaviour. For example, in the study of sex allocation under “local mate competition” 58!

(Hamilton 1967), the number of sons produced by a mother is expected to be independent of 59!

her fecundity, in what is known as the “constant male hypothesis” (CMH; Frank, 1985, 60!

1987b; Yamaguchi, 1985). Specifically, the increased extent to which the sons of more-61!

fecund mothers engage in costly competition with male relatives for mating opportunities 62!

means that a mother’s proportional investment into sons is expected to be inversely 63!

proportional to her fecundity, such that her absolute investment into sons is invariant with 64!

respect to her fecundity. Such invariance results provide an important stimulus for scientific 65!

advancement. For example, the discovery of the CMH invariant spurred both empirical 66!

testing and further development of theory in the field of sex allocation, which has continued 67!

in a sustained way from the mid 1980s to the present day (Frank, 1985, 1987a,b,c; May & 68!

Seger, 1985; Yamaguchi, 1985; Stubblefield & Seger, 1990; Foster & Benton, 1992; 69!

Hasegawa & Yamaguchi, 1995; Petersen & Fischer, 1996; Flanagan et al., 1998; Wool & 70!

Sulami, 2001; Ode & Rissing, 2002; Dagg & Vidal, 2004; Akimoto & Murakami, 2012; 71!

Akimoto et al., 2012; Rodrigues & Gardner, 2015). 72!

Such invariance results may cross over from their field of origin to illuminate other 73!

topics, in which they give rise to new waves of theoretical and empirical research. For 74!

example, a surprising discovery that sex ratios are unaffected by the rate of female dispersal – 75!

owing to a cancellation of relatedness and kin-competition effects (Bulmer, 1986; Frank, 76!

1986; Taylor, 1988a) – was subsequently shown to translate to the evolution of helping and 77!

harming behaviours, stimulating a great deal of further theoretical and empirical study 78!
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(Taylor, 1992; Wilson et al., 1992; Taylor & Irwin, 2000; Irwin & Taylor, 2001; Perrin & 79!

Lehmann, 2001; Gardner & West, 2006; Lehmann et al., 2006; Alizon & Taylor, 2008; El 80!

Mouden & Gardner, 2008; Grafen & Archetti, 2008; Johnstone, 2008; Johnstone & Cant, 81!

2008; Kümmerli et al., 2009; Gardner, 2010; Rodrigues & Gardner, 2012, 2013a, 2013b; Yeh 82!

& Gardner, 2012). More generally, invariance with respect to transformation is the basis for 83!

all analogy and the generalisation of all scientific knowledge to new domains. 84!

Dispersal is a major life history trait and received a considerable amount of attention 85!

from both theoreticians and empiricists and has been studied in relation to a variety of factors 86!

such as kin competition (Hamilton & May, 1977; Léna et al., 1998; Ronce et al., 1998, 2000; 87!

Leturque & Rousset, 2003; Kisdi, 2004; Innocent et al., 2010; Rodrigues & Johnstone, 2014), 88!

spatial and/or temporal heterogeneity (Comins et al., 1980; Hastings, 1983; Holt, 1985; 89!

Cohen & Levin, 1991; McPeek & Holt, 1992; Gandon & Michalakis, 1999; Leturque & 90!

Rousset, 2002; Massol et al., 2010; Rodrigues & Johnstone, 2014), parent-offspring offspring 91!

(Motro, 1983; Frank, 1986; Taylor, 1988b; Gandon, 1999; Starrfelt & Kokko, 2010), 92!

intragenomic conflict (Farrell et al., 2015), budding dispersal (Gandon & Michalakis, 1999), 93!

density-dependent dispersal (Crespi & Taylor, 1990; Travis et al., 1999; Poethke & 94!

Hovestadt, 2002; De Meester & Bonte, 2010; Baguette et al., 2011) and other types of 95!

condition-dependent dispersal (Ronce, 1998, 2000; Kisdi, 2004; Gyllenberg et al., 2011a,b). 96!

One factor that is likely to have an important impact on the evolution of dispersal is 97!

variation in fecundity among group members, i.e. reproductive skew (Vehrencamp, 1983; 98!

Hager & Jones, 2009). The social evolutionary consequences of variation in fecundity has 99!

received attention in relation to helping and harming behaviour (Frank, 1996; Johnstone, 100!

2008; Bao & Wild, 2012; Rodrigues & Gardner, 2013a) and sex ratio (Yamaguchi, 1985; 101!

Frank, 1985, 1987c; Stubblefield & Seger, 1990; Rodrigues & Gardner, 2015).  However, the 102!

implications for dispersal, and attendant conflicts of interest within and between families, 103!

remain to be addressed. 104!
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Here we study the evolution of dispersal in groups where the fecundity of breeders 105!

vary and report a new invariance result – the “constant philopater hypothesis” (CPH) – in the 106!

context of dispersal evolution. We find that, irrespective of variation in maternal fecundity, 107!

each mother is expected to make the same absolute investment into philopatric (i.e. non-108!

dispersing) offspring. This is because higher fecundity is associated with one’s offspring 109!

facing more stringent kin competition for breeding opportunities when failing to disperse, 110!

such that each mother’s proportional investment into philopatric offspring is expected to be 111!

inversely proportional to her fecundity. We develop a mathematical kin-selection model to 112!

show that the CPH holds for female and male dispersal, under haploid, diploid and 113!

haplodiploid modes of inheritance, irrespective of the sex ratio, local resource availability, 114!

and whether mother or offspring controls the latter’s dispersal propensity. We provide explicit 115!

solutions for variation in resource availability within and between patches, considering both 116!

spatial heterogeneity and also temporal heterogeneity for unpredictable and seasonal 117!

environments, and we explore the implications of this result for evolutionary conflicts of 118!

interest – and the exchange and withholding of contextual information – both within and 119!

between families. Finally, we show that the CPH result is the fundamental invariant that 120!

underpins and explains a family of other invariance results, including the previously described 121!

“constant female hypothesis” (CFH; Frank, 1987c, 1998).  122!

 123!

Model and Results 124!

 125!

Model 126!

We assume an infinite island model (Wright, 1931; Hamilton & May, 1977; 127!

Rodrigues & Johnstone, 2014), with n mothers in every patch. There are different types of 128!

patches, i.e. type-t patches with t ∈ T = {1, 2, …, np}, and each type differing in its resource 129!

availability. Within each patch, each mother is randomly assigned a rank i ∈ I = {1, 2, …, n}, 130!
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and produces a large number of offspring in accordance with her rank, such that no two 131!

mothers in the same patch share the same rank, and all mothers sharing the same rank and 132!

patch type have the same fecundity. In the asexual version of the model we consider that all 133!

offspring are daughters and clones of their mother, and in the sexual version of the model we 134!

consider that a fraction σit of the offspring of a rank-i mother are sons and a fraction 1-σit are 135!

daughters and that there is a haploid, diploid or haplodiploid mode of inheritance. After 136!

reproduction, all mothers die, and the offspring of rank-i mothers either remain in their natal 137!

patch with probability 1-zit or else they disperse with probability zit, with a fraction 1-c of 138!

dispersers relocating to a new randomly-chosen patch and the remainder c perishing en route. 139!

We assume that dispersal is controlled either by the offspring themselves or by their mother. 140!

In the sexual version of the model, individuals mate at random within their patches following 141!

dispersal, with each female mating once, after which all males die. Patches may maintain their 142!

resource availability, and therefore remain of the same type, or change their resource 143!

availability, and therefore change their type. Females then compete for breeding 144!

opportunities, with n females being chosen at random within each patch to become the 145!

mothers of the next generation, and all other females dying, which returns the population to 146!

the beginning of the lifecycle. 147!

 148!

Evolution of dispersal 149!

Applying kin-selection methodology (Hamilton, 1964; Taylor & Frank, 1996; Frank, 150!

1997, 1998; Rousset, 2004; Taylor et al., 2007), we find that an increase in the probability of 151!

dispersal of an offspring of a rank-i mother in a type-t patch is favoured when 152!

 153!

−!!"!!!! + 1− ! !!" !!!!!!!∈! + !!!!ℎ! !!"!!"#!∈! > 0,                                            (1) 154!

 155!
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where: �t is the probability that an individual wins a breeding site in a type-t patch; υt is the 156!

expected reproductive value of an individual in a type-t patch; pm is the frequency of type-m 157!

patches in the population; rit is either the relatedness of a rank-i mother in a type-t patch to 158!

one of her offspring (when dispersal is under maternal control), or else the relatedness of the 159!

offspring to itself (when dispersal is under offspring control); ht is the probability that a 160!

random individual sampled after dispersal was born in the local patch (i.e. the probability of 161!

philopatry); Ujt is the probability that this philopatric individual was produced by the rank-j 162!

mother; and ρijt is the relatedness of the rank-i mother (when dispersal is under maternal 163!

control) or an offspring of the rank-i mother (when dispersal is under offspring control) to an 164!

offspring of the rank-j mother in the same type-t patch (see Supporting Information for more 165!

details).  166!

If dispersal is under maternal control, then rit = ρiit, as both of these quantities describe 167!

the relatedness of the rank-i mother to her own offspring. However, if dispersal is under 168!

offspring control, then ri is the relatedness of the focal offspring to itself, whilst ρiit is its 169!

relatedness to its siblings. Condition (1) holds for both the asexual and sexual models, and 170!

also for haploid, diploid and haplodiploid modes of inheritance. Under the sexual 171!

reproduction model, the quantities described in condition (1) are sex-specific: for instance, if 172!

we are considering the dispersal of females, then Ujt is the probability that a random 173!

philopatric female is a daughter of a rank-j mother in a type-t patch.  174!

 175!

The constant philopater hypothesis 176!

Of key interest is the quantity Nit = NtUit, which describes the number of philopatric 177!

offspring produced by a rank-i mother in a type-t patch, where Nt is the total number of 178!

philopatric offspring in the focal patch. Note that: the relatedness of a mother to her offspring, 179!

and the relatedness of the offspring to itself, are both independent of the mother’s rank, so we 180!

may write rit = rt for all i ∈ I, and all t ∈ T; the relatedness of an offspring to its siblings is 181!
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independent of its mother’s rank, so we may write !!!" = !! for all i ∈ I, and all t ∈ T; and the 182!

relatedness of a mother to another mother’s offspring, and the relatedness of an offspring to 183!

another mother’s offspring, is independent of the rank of either mother, so we may write 184!

!!"# = Ρ! for all t ∈ T, all i ∈ I, and all j ∈ I, j ≠ i. Accordingly, !!"!!"#!∈! = !!"!! +185!

Ρ! !!"!∈!,!!! = !!"!! + Ρ!(1− !!"), and condition (1) can be rewritten as  186!

 187!

!!" > !! !
!!!!!!

!!!!!!! !!! !! !!!!!!!∈! !!!!!!!!!
!!!!!

.                                                                 (2) 188!

 189!

That is, the number of philopatric offspring produced by each rank-i mother in a type-t 190!

patch is favoured to converge upon the RHS of condition (2) and, because this quantity is 191!

independent of i, natural selection favours the number of philopatric offspring produced by 192!

each and every mother to converge upon the same number (i.e. Nit = Nt
*, and Uit = Ut

*), 193!

irrespective of the total number of offspring that she produces and her sex allocation. This 194!

result holds for both asexual and sexual reproduction under haploid, diploid, and haplodiploid 195!

inheritance, for female and/or male dispersal and for maternal or offspring control of 196!

dispersal. In analogy with the CMH, we term this invariant result the “constant philopater 197!

hypothesis” (CPH). 198!

 The CPH emerges from a balance between the mortality risk of dispersing and the kin-199!

competition consequences of philopatry. From condition (1) we see that: because both the 200!

relatedness of a mother to her own offspring and also the relatedness of an offspring to itself 201!

are independent of maternal rank, the impact of the mortality cost of dispersal is the same for 202!

all mothers within each patch (-ritυt+(1-c)rit∑m∈Tpmυm = -rtυt+(1-c)rit∑m∈Tpmυm for all i ∈ I, 203!

and t ∈ T); because both the relatedness of a mother to another mother’s offspring and also 204!

the relatedness of an offspring to another mother’s offspring are independent of maternal rank 205!

(!!"# = Ρ! for all t ∈ T, all i ∈ I, and all j ∈ I, j ≠ i), the offspring of all mothers experience the 206!

same strength of kin competition if all mothers produce the same number of philopatric 207!
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offspring (htυtUt
*(rt+(n-1)Ρ!) under maternal control, or htυtUt

*(rt+(n-1)!!) under offspring 208!

control); and, because any correlation that does arise between maternal rank and number of 209!

philopatric offspring leads to stronger kin competition among the offspring of mothers who 210!

produce more philopatric offspring, which favours such mothers to reduce their number of 211!

philopatric offspring, any correlation between rank and number of philopatric offspring will 212!

tend to disappear.  213!

All mothers are favoured to produce the same number of philopatric offspring, but 214!

various constraints may interfere with their ability to do so. One possible constraint is that 215!

some low-ranking mothers are unable to produce the requisite number of philopatric offspring 216!

even if none of their offspring disperse, on account of their low fecundity. In this case, the 217!

CPH invariant breaks down, analogous to the breakdown of the CMH when some mothers are 218!

of such low fecundity that they cannot produce the requisite number of sons even if all of 219!

their offspring are male (Frank, 1985, 1987c). 220!

 221!

Within-patch heterogeneity 222!

Above we have shown that the CPH holds under a very general set of assumptions, 223!

and we have expressed this result in terms of emergent quantities such as the relatedness and 224!

the probability of philopatry. Here we express these emergent quantities as a function of the 225!

underlying ecological and demographic parameters, which enables us to explicitly determine 226!

the optimal dispersal behaviour of offspring in particular scenarios. Here we focus on a 227!

particular case to illustrate how different model parameters mediate the optimal dispersal rates 228!

of offspring. We then contrast the optimal dispersal behaviour of offspring under maternal 229!

control with the optimal dispersal behaviour under offspring control to understand the role of 230!

the CPH in mediating parent-offspring conflict over dispersal.   231!

We focus on a particular case in which there are two asexually-reproducing mothers 232!

per patch: a rank-1 mother with relatively-high fecundity (denoted by F1), and a rank-2 233!
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mother with relatively-low fecundity (denoted by F2). We denote the reproductive inequality 234!

between females by s, where s = 1-(F2/F1). We find that the probability of dispersal of 235!

offspring of high-fecundity mothers rises, whilst the probability of dispersal of offspring of 236!

low-fecundity mothers falls, as the reproductive inequality between mothers rises (Fig. 1). On 237!

the one hand, offspring of high-fecundity mothers and offspring of low-fecundity mothers 238!

both suffer the same cost of dispersal (c), and the relatedness between a focal offspring and 239!

herself is equal (r1 = r2 = 1), so the first term in inequality (1) is the same for both offspring 240!

(i.e. -c r1 = -c r2). But, on the other hand, all else being equal, the number of philopatric 241!

offspring of the high-fecundity mother is greater than that of the low-fecundity mother (U1 > 242!

U2): accordingly, the expected relatedness between a focal offspring of the high-fecundity 243!

mother and a random offspring in the patch is greater than the expected relatedness between a 244!

focal offspring of the low-fecundity mother and a random offspring in the patch (i.e. 245!

h(U1ρ11+U2ρ12) > h(U1ρ21+U2ρ22), where ρ11 = ρ22 = 1, and ρ12 = ρ21 = ρ). Therefore, the 246!

selection pressure for dispersal of offspring of high-fecundity mothers is stronger than the 247!

selection pressure for dispersal of offspring of low-fecundity mothers.   248!

  We also find that the mean probability of dispersal falls as the cost of dispersal rises 249!

(Fig. 1). As the cost of dispersal rises, the first term in inequality (1) decreases and the second 250!

term in inequality (1) increases. As the effect on the first term is stronger than the effect on 251!

the second term, the overall effect of increasing the cost of dispersal is that dispersal becomes 252!

less evolutionarily advantageous.  253!

 The number of philopatric offspring of the high-fecundity mother rises as the 254!

reproductive inequality between the two mothers increases, and as the cost of dispersal 255!

increases. So long as this number is not too high, low-fecundity mothers are able to match it 256!

(i.e. 1-z1
* = (1-s)(1-z2

*)). However, if the number of philopatric offspring of high-fecundity 257!

mothers is too high (due to high s and / or high c), then low-fecundity mothers cannot produce 258!
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the requisite number of philopatric offspring even if none of their offspring dispersal, and in 259!

such scenarios the CPH breaks down (Fig. 1).  260!

 261!

Between-patch heterogeneity 262!

Temporally-stable environments – We now consider a heterogeneous population in which 263!

there are type-1 patches with high resource-availability and type-2 patches with low resource-264!

availability. We define the reproductive inequality between patches as sb = 1-(F12/F11), and 265!

the reproductive inequality within patches as s1 = 1-(F21/F11) = s2 = 1-(F22/F12) = s. We first 266!

consider a spatially-heterogeneous environment in which patches retain their type over 267!

generations. We find that the average probability of dispersal is higher from low-quality type-268!

2 patches than from high-quality type-1 patches (Fig. 2, panel (c)). As a result, high-quality 269!

patches have more non-dispersing offspring than low-quality patches. However, in both types 270!

of patches, higher-ranking mothers disperse more offspring than lower-ranking mothers, and, 271!

as long as inequality within patches is sufficiently small, both high- and low-rank mothers 272!

produce exactly the same number of philopatric offspring irrespective of the quality of their 273!

patch (Fig. 2, panel (f)).   274!

 275!

Temporally-unpredictable environments – We next consider unpredictable environments in 276!

which a patch’s type in the next generation is independent of its type in the current 277!

generation. Under such circumstances, the expected reproductive value is identical across 278!

patches. Thus, υt = υ, for all t ∈ T. Moreover, the relatedness coefficients are also identical 279!

across patches. Thus, r = rt, ρt = ρ, and Ρ! = Ρ. Therefore, inequality (2) becomes  280!

 281!

1 > ! !
!!!!

!!!! !!! ! !!!!!∈! !!!!!!
!!! .                                                                                    (3) 282!

 283!
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This means that, at equilibrium, ht
* = h* and �t

* = �*, and therefore natural selection favours 284!

the number of philopatric offspring produced by each and every mother to converge upon the 285!

same number (i.e. Nit = Nt
* = N*, and Uit = Ut

* = U*). Thus, in unpredictable environments, the 286!

CPH holds not only within each patch, but also between patches (Fig. 2, panel (e)).  287!

 288!

Seasonal environments – Finally, we consider seasonal environments in which a patch always 289!

changes its type from one generation to the next. We find that the average probability of 290!

dispersal is higher from high-quality type-1 patches than from low-quality type-2 patches 291!

(Fig. 2, panel (a)). As a result, low-quality patches have more philopatric offspring than high-292!

quality patches. However, in both types of patches, higher rank mothers disperse more 293!

offspring than lower rank mothers, and, as long as inequality within patches is sufficiently 294!

small, both high- and low-rank mothers produce exactly the same number of philopatric 295!

offspring irrespective of the quality of their patch (see Fig. 2, panel (d)).   296!

 297!

Parent-offspring conflict 298!

Although the CPH result obtains irrespective of whether dispersal is controlled by the 299!

offspring themselves or by their mother, we find that the level of dispersal that is favoured 300!

does depend upon whose control it is under. This recovers Motro’s (1983) result that an 301!

evolutionary conflict of interest often exists between mother and offspring with regards to 302!

dispersal, with mothers generally preferring that their offspring disperse at a rate that is higher 303!

than the rate at which the offspring would prefer to disperse themselves. This is on account of 304!

the mother being equally related to those offspring that disperse and their siblings that benefit 305!

from the resulting relaxation of kin competition, and her offspring being more related to 306!

themselves than they are to each other (see also Frank, 1986; Taylor, 1988b; Gandon, 1999; 307!

Starrfelt & Kokko, 2010).  308!
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Our model has crucially incorporated heterogeneity in maternal condition, and this 309!

allows us to investigate how such heterogeneity mediates the parent-offspring conflict of 310!

interests with respect to dispersal. Here, we determine whether the potential for conflict is 311!

greater in families with more resources (i.e. families with high-fecundity rank-1 mothers) or 312!

fewer resources (i.e. families with low-fecundity rank-2 mothers). We consider two scenarios: 313!

one in which offspring have complete information about their mothers’ rank (i.e. conditional 314!

dispersal); and one in which offspring have no information about their mothers’ rank (i.e. 315!

unconditional dispersal). We first focus on cases in which offspring have complete 316!

information about their mothers’ rank. Here, we find that mothers always prefer greater 317!

dispersal rates of offspring than the offspring, irrespective of the resources available for each 318!

family (Fig. 3). However, the difference between the optimal behaviour from the mother’s 319!

perspective and the optimal behaviour from the offspring’s perspective is not the same for the 320!

different types of families. In particular, we find that for lower inequality, conflict is more 321!

pronounced within resource-poor families than within resource-rich families (Fig. 3). As 322!

inequality between families rises the optimal dispersal rate of offspring in resource-rich 323!

families rises, whereas the optimal dispersal rate of offspring in resource-poor families falls, 324!

irrespective of who controls the dispersal rate of offspring. When the inequality between 325!

families is sufficiently large, resource-poor families hit a threshold beyond which all their 326!

offspring are philopatric, independently of who controls the dispersal rate of offspring. At this 327!

point the conflict within resource-poor families ceases, whilst it still exists within resource-328!

rich families (Fig. 3). In summary, when inequality is low, resource-poor mothers suffer more 329!

parent-offspring conflict over offspring dispersal than resource-rich families, but they still 330!

produce a fair amount offspring. When inequality is high, there is less conflict within 331!

resource-poor families, but their fecundity is very low.  332!

We next contrast cases in which offspring have complete information about their 333!

mothers’ rank with cases in which offspring have no information about their mothers’ rank. 334!
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This allows us to investigate the circumstances under which mothers are selectively favoured 335!

to inform their offspring as to their rank versus withholding this contextual information. We 336!

find that when offspring know that they have rank-1 mothers, parent-offspring conflict is less 337!

strong than when offspring do not know the rank of their mothers (Fig. 3, panel (a)). This 338!

suggests that rank-1 mothers should disclose full information about their status to their 339!

offspring in order to minimise parent-offspring conflict. In contrast, we find that when 340!

offspring know that they have rank-2 mothers, parent-offspring conflict is stronger than when 341!

offspring do not know the rank of their mothers, as long as inequality is sufficiently small 342!

(Fig. 3, panel (b)). This suggests that rank-2 mothers should withhold information about their 343!

status from their offspring in order to minimise parent-offspring conflict. These conflicting 344!

selective forces generate an informational battleground between rank-1 and rank-2 mothers, in 345!

which rank-1 mothers are favoured to disclose maternity information to offspring in the group 346!

whilst rank-2 mothers are favoured to withhold it.  347!

 348!

Allomaternal control of dispersal 349!

Above, we have considered that control of offspring dispersal occurs either by the 350!

offspring themselves or by their mothers. Whilst this may often be the case, in other situations 351!

mothers may control the dispersal traits of offspring other than their own. This may be 352!

particularly important when differences in fecundity between mothers are also extended to 353!

other behavioural traits such as dominance over other group members. First we consider a 354!

case in which the high-fecundity breeder has full control over the dispersal of her own 355!

offspring, but varies in the degree of control, denoted by α, over the offspring of the low-356!

fecundity mother, with 0 ≤ α ≤ 1. We find that the CPH holds as long as the high-fecundity 357!

mother does not exert any control over the dispersal of the low-fecundity mother’s offspring 358!

(i.e. when α = 0; Fig. 4). However, when the degree of control by the high-fecundity mother 359!

increases, the dispersal probability of their own offspring decreases, whilst the dispersal 360!
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probability of the low-fecundity mother’s offspring increases (Fig. 4, panel(a)). Indeed, when 361!

the high-fecundity mother reaches a certain degree of control, all of the low-fecundity 362!

mother’s offspring are forced to disperse (i.e. z2 = 1). We obtain similar results when we 363!

allow the low-fecundity mother control the dispersal of the high-fecundity mother’s offspring, 364!

where we denote the degree of control of the low-fecundity mother by β. When the degree of 365!

control by the low-fecundity mother increases, the dispersal probability of their own offspring 366!

decreases, whilst the dispersal probability of the low-fecundity mother’s offspring increases 367!

(Fig. 4, panel(b)). If the degree of control is sufficiently high, all offspring of high-fecundity 368!

rank-1 mothers are forced to disperse, whilst all offspring of low-fecundity rank-2 mothers 369!

remain in the local patch. When the low-fecundity mother has no control over the high-370!

fecundity mother’s offspring (i.e. when β = 0), the CPH holds, but not otherwise (i.e. when β 371!

> 0; Fig. 4).  372!

 373!

The CPH underpins a family of invariance results 374!

To the extent that any trait may be coincident with an individual’s dispersal status, the 375!

CPH underpins a whole family of invariance results. For example, if dispersing individuals 376!

engage in aggressive behaviour whilst non-dispersing individuals are more docile (e.g. El 377!

Mouden & Gardner, 2008), then the present CPH result could be reframed as a “constant non-378!

aggressor hypothesis”. The important caveat here is that such derivative invariants are only 379!

expected to hold insofar as the focal trait is tightly coupled to dispersal status, and the fact 380!

that incomplete coupling leads to a failure of these invariants whilst the CPH continues to 381!

hold confirms that the CPH is the more fundamental invariant. 382!

One such derivative invariant that has been previously described is the “constant 383!

female hypothesis” (CFH; Frank, 1987c, 1998). This is concerned with “local resource 384!

competition” (Clark, 1978) scenarios in which females are philopatric and males are the 385!

dispersing sex, and the CFH predicts that more fecund mothers will invest relatively less into 386!
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daughters than will less fecund mothers, such that all mothers will produce the same number 387!

of daughters, irrespective of their fecundity. This is because the selection gradient acting on 388!

the sex allocation strategy shows properties that are identical to those of the selection gradient 389!

acting on dispersal. Namely, if we assume that the sex-ratio of a mother (i.e. σit) is now an 390!

evolving trait, rather than a parameter, the selection gradient acting on the sex allocation 391!

strategy of a mother is given by  392!

 393!

−!!!!" + !!!!" + !! !!!!"!∈! > 0.                                                                                    (4)      394!

 395!

As in the CPH, the relatedness coefficients are independent of the mother’s rank. Thus, ri = r 396!

and !!! = ! for all i ∈ I; !!" = Ρ for all i ∈ I, and all j ∈ I, j ≠ i. Thus, mothers adjust their sex 397!

ratio such that each and every mother converge upon the same number of daughters (i.e. Ni = 398!

N*, and Ui = U*).  399!

However, this invariant result only holds when all daughters are philopatric. If females 400!

exhibit at least some propensity to disperse, then the selection gradient acting on the sex ratio 401!

is given by  402!

 403!

− !! 1− !! + !!!! 1− ! !! + !!!! + !! 1− !! ℎ !!!!"!∈! > 0.                              (5) 404!

 405!

This means that the first term of the selection gradient now depends on the fecundity of the 406!

focal mother, and therefore the CFH no longer holds. The CPH, by contrast, does hold, 407!

irrespective of the sex ratio produced by each mother. That is, it is the CPH that underpins the 408!

CFH, and not the reverse. 409!

 410!

 411!

 412!
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Discussion 413!

 414!

We have described a new life-history invariant result for dispersal evolution. 415!

Specifically, we have found that natural selection favours all mothers to produce the same 416!

number of philopatric offspring, irrespective of variation between mothers in the total number 417!

of offspring that they produce. This is because kin competition, arising from a failure to 418!

disperse, is related to the number, rather than the proportion, of a mother’s philopatric 419!

offspring. In analogy with the similar “constant male hypothesis” (CMH) of the sex allocation 420!

literature (Frank, 1987c, 1998), we term this result the “constant philopater hypothesis” 421!

(CPH).  422!

Such invariance results provide testable predictions in their own right, and also 423!

promote the interplay of theory and empirical testing by reducing the extent to which 424!

extraneous genetic, ecological and demographic parameters are confounding in comparative 425!

analyses (e.g. West et al., 2001; Rodrigues & Gardner, 2015). Moreover, they also facilitate 426!

the development and conceptualisation of theory. For example, the invariant relationship 427!

between helping and harming, on the one hand, and degree of population viscosity, on the 428!

other hand (Taylor, 1992; El Mouden & Gardner, 2008), has been used to demonstrate that 429!

heterogeneity in resource availability per se – and not any conflating effect of viscosity itself 430!

– modulates the evolution of helping and harming in viscous populations (Rodrigues & 431!

Gardner, 2012, 2013a). The CPH invariance prediction is readily amenable to empirical 432!

testing, as it is robust to variation in difficult-to-measure quantities such as the mortality risk 433!

associated with dispersal. Social groups in different species often comprise multiple breeders 434!

that vary in their fecundity (reproductive skew), and in some cases there is variation in the 435!

proportion / number of dispersers produced by each breeder (e.g. Crespi & Taylor 1990; 436!

Innocent et al., 2010). Our theory predicts that dispersal rates (or the fraction of dispersal 437!
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morphs) should be higher for more productive breeders, and that at the same time the number 438!

of philopatric offspring should be equal for each breeder. 439!

In terms of reaction-norms, the CPH means that mothers with fecundity below a 440!

certain threshold should produce no dispersing offspring, while mothers with fecundity above 441!

that threshold should exhibit a positive correlation between their fecundity and the dispersal 442!

rate of their offspring. Such reaction norms with a critical threshold have also been observed 443!

in the context of the evolution of dispersal conditional on the overall number of individuals in 444!

a patch (Crespi & Taylor, 1990; Ezoe & Iwasa, 1997; Kisdi, 2004; Rodrigues & Johnstone, 445!

2014). Under certain conditions, this means that differences in density between patches before 446!

dispersal are eroded after dispersal. Specifically, we have shown that the CPH holds both 447!

within and between patches when the environment is temporally unpredictable but not for 448!

other types of temporal variation. This implies that there are two forces mediating the 449!

evolution of dispersal: one acting between patches that tends to equalise or enhance 450!

differences in density between them; and one acting within patches that tends to equalise 451!

differences in number of philopatric offspring among group members. These two forces may 452!

be operating simultaneously in natural population, and future empirical studies should take 453!

both into consideration. 454!

We have shown that the adaptive adjustment of offspring dispersal conditional on 455!

maternal fecundity may have a dramatic impact on the amount of kin competition that each 456!

offspring experiences. More specifically, this means that variation in fecundity among 457!

breeders is not translated into an equivalent variation in kin competition among offspring. 458!

Indeed, owing to the CPH, the amount of kin competition may be precisely the same, 459!

irrespective of a mother’s fecundity. This has wide-reaching implications for the evolution of 460!

social behaviour within groups. We have shown how the CPH underlies the “constant female 461!

hypothesis”, an invariant result that has been previously described in the sex allocation 462!

literature (Frank, 1987c, 1998). Another topic for which the CPH may have important 463!
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implications is reproductive skew, which has been shown to promote the evolution of 464!

harming by high-fecundity mothers and helping by low-fecundity mothers (Johnstone, 2008). 465!

Crucially, that result has been derived under the assumption that, while helping and harming 466!

are conditional on a mother’s fecundity, dispersal of offspring is not. An immediate 467!

consequence of the CPH is that, if offspring disperse conditionally, according to maternal 468!

fecundity, the asymmetry in the level of kin competition between high- and low-fecundity 469!

mothers vanishes, such that helping and harming are no longer favoured. This suggests a 470!

promising avenue for future theoretical and empirical study. 471!

We have also shown that there will typically be a conflict of interests between parent 472!

and offspring with respect to the latter’s probability of dispersing, and that the intensity of 473!

such conflict is modulated by heterogeneity in parental condition, and hence is liable to vary 474!

between families. We find that if inequality in fecundity is sufficiently low, the intensity of 475!

parent-offspring conflict is greater in resource-poor families but, by contrast, if the inequality 476!

is sufficiently high, the conflict within resource-poor families may vanish, with parents and 477!

offspring agreed that there should be no dispersal. To the extent that within-family conflict 478!

has a negative impact on a mother’s fecundity, this result suggests that parent-offspring 479!

conflict may either reinforce inequality between families (when inequality is relatively low) 480!

or may attenuate inequality between families (when inequality is relatively high).  481!

On account of our finding that parent and offspring dispersal optima depend upon the 482!

degree of heterogeneity in fecundity across families, we have uncovered a new informational 483!

battleground over dispersal, with high-fecundity mothers being favoured to disclose full 484!

information about their status to all the offspring in the group, and low-fecundity mothers 485!

being favoured to withhold this information. The resolution of this informational conflict will 486!

depend upon the specific biology of particular species (for reviews see Godfray, 1995; Kilner 487!

& Hinde, 2008). There are many examples of mothers disclosing contextual information to 488!

their offspring: in daphnia, for instance, mothers provide accurate information about the 489!
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presence of predators in the local environment, and offspring respond to this information by 490!

developing a protective helmet (Tollrian & Dodson, 1999). Conversely, there are examples of 491!

mothers withholding information or actively deceiving their offspring with regards to the 492!

circumstances in which they find themselves: in black-headed gulls, Larus ridibundus, for 493!

instance, mothers appear to adjust yolk androgen concentration in eggs in order to manipulate 494!

the offspring’s perception of their birth order in the brood (Eising et al., 2001). 495!

More generally, we suggest that the resolution of this informational conflict will 496!

depend on whether mothers are: (i) constrained to either honestly communicate their rank to 497!

their offspring or else withhold this information; or (ii) able to honestly communicate, 498!

withhold the information or deceive their offspring with regards to their rank. If deception is 499!

not an option, then in this simple binary scenario an offspring will always be able to correctly 500!

determine her mother’s rank, either because her mother honestly communicates the fact that 501!

she is of rank-1 or else because her mother communicates no information, which enables the 502!

offspring to infer that she is of rank-2, and this system of signalling will be stably maintained 503!

by the coincidence of interests of the rank-1 mother and her offspring. However, if 504!

unconstrained deception is an option, then all mothers are expected to communicate that they 505!

are of rank-1, which provides no useful information to their offspring, and hence this system 506!

of communication is expected to collapse. The resolution of this conflict represents a further 507!

avenue for future research.  508!

Our model provides an explanation for different patterns of dispersal within social 509!

groups depending on the degree of control by each group member, which can change the sign 510!

of rank-dependent dispersal. If each mother controls the dispersal of their own offspring or if 511!

offspring control their own dispersal, then we should expect a positive correlation between 512!

mother’s fecundity and offspring propensity to disperse – i.e. positive rank-dependent 513!

dispersal. Under allomaternal control of offspring dispersal the mother with a higher degree 514!

of control is expected to force offspring of other mothers to disperse and therefore their own 515!
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offspring are less likely to disperse. If, for instance, the dominant mother controls the 516!

dispersal of offspring in the social group, then we should expected negative rank-dependent 517!

dispersal. For example, in meerkats the dominant is more likely to force distantly related 518!

offspring to disperse than their close relatives, and therefore offspring of lower rank mothers 519!

are more likely to disperse than offspring of higher rank mothers (i.e. negative rank-520!

dependent dispersal rates; Clutton-Brock et al., 2010). By contrast, in the red-fronted lemurs, 521!

there is no correlation between dispersal and kinship, and therefore we should not expect 522!

negative rank-dependent dispersal rates (Kappeler & Fichtel, 2012, reviewed in Clutton-523!

Brock, 2013). More generally, while in our model we have considered a simple control 524!

parameter, more species-specific resolution models can be adopted (e.g. Godfray, 1995; 525!

Kilner & Hinde, 2008). These possibilities also represent avenues for future theoretical and 526!

empirical exploration. 527!

The CPH result emerges from key symmetries in relatedness, for instance the 528!

independence of the relatedness between two mothers breeding in the same patch with respect 529!

to their rank and hence their share of the group’s total fecundity. This situation obtains in the 530!

present model owing to our assumption that rank is not inherited. However, more generally, 531!

rank may be heritable, to some extent, such that high-ranking females tend to be the daughters 532!

of highly-fecund mothers, in which case they may be more likely to breed alongside sisters 533!

than are females of lower rank, which could lead to a positive correlation between rank / 534!

fecundity and relatedness to group mates. Alternatively, whilst we have considered the cost of 535!

dispersal to be paid in terms of mortality, dispersal may also incur fecundity costs, which 536!

again could lead to a positive correlation between fecundity and relatedness, owing to low-537!

fecundity dispersers being unrelated to their group mates.  538!

Finally, although our results hold under a wide range of model assumptions, we have 539!

not studied the effects of many other potentially-relevant factors. It is likely that, in some of 540!

these cases, our model will fail to conform to empirical data. However, by highlighting those 541!

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 31, 2015. ; https://doi.org/10.1101/023655doi: bioRxiv preprint 

https://doi.org/10.1101/023655


! 22!

scenarios in which our model’s key assumptions are not met, our result may be used to 542!

illuminate otherwise obscured biological details, concerning a species’ ecology, demography, 543!

phenotypic plasticity or cognition. In this respect, the model also establishes a baseline 544!

scenario, which may help to understand and interpret new empirical data and future 545!

mathematical results.  546!
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Figure legends 823!

 824!

Figure 1. Convergence stable dispersal rates in heterogeneous groups. The CS dispersal 825!

strategies of offspring of high-fecundity rank-1 breeders (z1
*, solid lines) and of offspring of 826!

low-fecundity rank-2 breeders (z2
*, dashed lines) as a function of the reproductive inequality 827!

(s) for varying cost of dispersal (c). The dispersal rate of offspring of high-fecundity breeders 828!

is greater than that of offspring of low-fecundity breeders (i.e. z1
* > z2

*). All breeders produce 829!

the same number of offspring that remain in the natal patch as long as low-fecundity mothers 830!

give birth to a sufficiently high number of offspring.  831!

 832!

Figure 2. Convergence stable dispersal rates in heterogeneous populations. The CS 833!

dispersal strategies of offspring of high-fecundity rank-1 breeders (z1X
*, solid lines) and of 834!

offspring of low-fecundity rank-2 breeders (z2X
*, dashed lines) in high resource-availability 835!

rank-1 patches (zX1
*)  and in low resource-availability rank-2 patches (zX2

*) as a function of 836!

the reproductive inequality (s) for temporally stable, unpredictable, and seasonal 837!

environments. (a,d) In temporally seasonal environments average dispersal is higher from 838!

rank-1 patches, and the CPH holds as long as inequality is sufficiently small. (b,e). In 839!

temporally unpredictable environments average dispersal is higher from rank-1 patches, and 840!

the CPH holds both within and between patches as long as inequality is sufficiently small. 841!

(c,f) In temporally stable environments average dispersal is higher from rank-2 patches, and 842!

the CPH holds as long as inequality is sufficiently small. Parameter values: c = 0.50, p = 0.50. 843!

 844!

Figure 3. Parent-offspring conflict. The CS dispersal strategies of mothers (solid lines) and 845!

of daughters under complete maternity information (offspringC, dotted lines) and under no 846!

maternity information (offspringU, dashed lines) for (a) rank-1 resource-rich families, and (b) 847!

rank-2 resource-poor families. Under lower reproductive inequality, parent-offspring conflict 848!

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 31, 2015. ; https://doi.org/10.1101/023655doi: bioRxiv preprint 

https://doi.org/10.1101/023655


! 34!

is more intense for low-fecundity families. For resource-rich families, parent-offspring 849!

conflict is more intense under no-maternity information irrespective of the inequality between 850!

families. For resource-poor families, parent-offspring conflict is less intense under no-851!

maternity information to the left of the vertical dashed line. The number of philopatric 852!

offspring is in arbitrary units. Parameter values: c = 0.25. 853!

 854!

Figure 4. Allomaternal control of dispersal. The CS dispersal strategies of offspring and the 855!

number of philopatric offspring as a function of rank-1 high-fecundity and rank-2 low-856!

fecundity mothers degree of control. When mothers control the dispersal of their own 857!

offspring (i.e. α = 0, and β = 0) the CPH holds. (a,c) When high-fecundity mothers increase 858!

their control over the dispersal of low-fecundity mothers’ offspring, the dispersal of low-859!

fecundity mothers’ offspring rises whilst the dispersal of their own offspring falls. (b,d) When 860!

low-fecundity mothers increase their control over the dispersal of high-fecundity mothers’ 861!

offspring, the dispersal of high-fecundity mothers’ offspring rises whilst the dispersal of their 862!

own offspring falls. (c,d) The CPH breaks down when mothers do not control the dispersal of 863!

their own offspring or when offspring do not control their own dispersal. The number of 864!

philopatric offspring is in arbitrary units. Parameter values: c = 0.25, s = 0.5. 865!

 866!

 867!

 868!

 869!

 870!

 871!

 872!

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 31, 2015. ; https://doi.org/10.1101/023655doi: bioRxiv preprint 

https://doi.org/10.1101/023655


Figure 1 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 31, 2015. ; https://doi.org/10.1101/023655doi: bioRxiv preprint 

https://doi.org/10.1101/023655


Figure 2 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 31, 2015. ; https://doi.org/10.1101/023655doi: bioRxiv preprint 

https://doi.org/10.1101/023655


Figure 3 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 31, 2015. ; https://doi.org/10.1101/023655doi: bioRxiv preprint 

https://doi.org/10.1101/023655


Figure 4 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 31, 2015. ; https://doi.org/10.1101/023655doi: bioRxiv preprint 

https://doi.org/10.1101/023655

