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Abstract

By combining Haar wavelets with Bayesian Hidden Markov
Models, we improve detection of genomic copy number
variants (CNV) in array CGH experiments compared to the
state-of-the-art, including standard Gibbs sampling. At the
same time, we achieve drastically reduced running times,
as the method concentrates computational effort on chro-
mosomal segments which are difficult to call, by dynam-
ically and adaptively recomputing consecutive blocks of
observations likely to share a copy number. This makes
routine diagnostic use and re-analysis of legacy data col-
lections feasible; to this end, we also propose an effective
automatic prior. An open source software implementation
of our method is available at http://bioinformatics.
rutgers.edu/Software/HaMMLET/. The web supple-
ment is at http://bioinformatics.rutgers.edu/
Supplements/HaMMLET/

Background

The human genome shows remarkable plasticity, leading
to significant copy number variations (CNV) within the hu-
man population [1]. They contribute to differences in phe-
notype [2–4], ranging from benign variation over disease
susceptibility to inherited or somatic diseases [5], including
neuropsychiatric disorders [6–8] and cancer [9, 10]. Sepa-
rating common from rare variants is important in the study
of genetic diseases [5, 11, 12], and while the experimental
platforms have matured, interpretation and assessment of
pathogenic significance remains a challenge [13].

Computationally, CNV detection is a segmentation prob-
lem, in which consecutive stretches of the genome are to be
labeled by their copy number. Along with a variety of other
methods [14–40], Hidden Markov Models (HMM) [41] play
a central role [42–52], as they directly model the separate
layers of observed measurements, such as log-ratios in ar-
ray CGH, and their corresponding latent copy number (CN)
states, as well as the underlying linear structure of segments.

As statistical models, they depend on a large number of

parameters, which have to be either provided a priori by the
user or inferred from the data. Classic frequentist maximum
likelihood (ML) techniques like Baum-Welch [53, 54] are
not guaranteed to be globally optimal, i. e. they can con-
verge to the wrong parameter values, which can limit the
accuracy of the segmentation. Furthermore, the Viterbi algo-
rithm [55] only yields a single maximum a posteriori (MAP)
segmentation given a parameter estimate [56]. Failure to
consider the full set of possible parameters precludes alter-
native interpretations of the data, and makes it very difficult
to derive p-values or confidence intervals. Furthermore,
these frequentist techniques have come under increased
scrutiny in the scientific community.

Bayesian inference techniques for HMMs, in particular
Forward-Backward Gibbs sampling [57, 58], provide an
alternative for CNV detection as well [59–61]. Most impor-
tantly, they yield a complete probability distribution of copy
numbers for each observation. As they are sampling-based,
they are computationally expensive, which is problematic
especially for high-resolution data. Though they are guar-
anteed to converge to the correct values under very mild
assumptions, they tend to do so slowly, which can lead to
oversegmentation and mislabeling if the sampler is stopped
prematurely.

Another issue in practice is the requirement to specify
hyperparameters for the prior distributions. Despite the
theoretical advantage of making the inductive bias more
explicit, this can be a major source of annoyance for the
user. It is also hard to justify any choice of hyperparameters
when insufficient domain knowledge is available.

Recent work of our group [62] has focused on accelerating
Forward-Backward Gibbs sampling through the introduction
of compressed HMMs and approximate sampling. For the
first time, Bayesian inference could be performed at running
times on par with classic maximum likelihood approaches.
It was based on a greedy spatial clustering heuristic, which
yielded a static compression of the data into blocks, and
block-wise sampling. Despite its success, several important
issues remain to be addressed. The blocks are fixed through-
out the sampling and impose a structure that turns out to
be too rigid in the presence of variances differing between
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Figure 1. Overview of HaMMLET. Instead of individual computations per observation (panel a), Forward-Backward Gibbs Sampling
is performed on a compressed version of the data, using sufficient statistics for block-wise computations (panel b) to accelerate
inference in Bayesian Hidden Markov Models. During the sampling (panel c) parameters and copy number sequences are sampled
iteratively. During each iteration, the sampled variances determine which coefficients of the data’s Haar wavelet transform are
dynamically set to zero. This controls potential break points at finer or coarser resolution or, equivalently, defines blocks of variable
number and size (panel c, bottom). Our approach thus yields a dynamic, adaptive compression scheme which greatly improves speed
of convergence, accuracy and running times.
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CN states. The clustering heuristic relies on empirically de-
rived parameters not supported by a theoretical analysis,
which can lead to suboptimal clustering or overfitting. Also,
the method cannot easily be generalized for multivariate
data. Lastly, the implementation was primarily aimed at
comparative analysis between the frequentist and Bayesian
approach, as opposed to overall speed.

To address these issues and make Bayesian CNV inference
feasible even on a laptop, we propose the combination of
HMMs with another popular signal processing technology:
Haar wavelets have previously been used in CNV detection
[63], mostly as a preprocessing tool for statistical down-
stream applications [24–28] or simply as a visual aid in
GUI applications [17, 64]. A combination of smoothing and
segmentation has been suggested as likely to improve re-
sults [65], and here we show that this is indeed the case.
The wavelets provide a theoretical foundation for a better,
dynamic compression scheme for faster convergence and
accelerated Bayesian sampling. We improve simultaneously
upon the typically conflicting goals of accuracy and speed,
because the wavelets allow summary treatment of “easy”
CN calls in segments and focus computational effort on the
“difficult” CN calls, dynamically and adaptively. This is in
contrast to other computationally efficient tools, which often
simplify the statistical model or use heuristics. The required
data structure can be efficiently computed, incurs minimal
overhead, and has a straightforward generalization to mul-
tivariate data. We further show how the wavelet transform
yields a natural way to set hyperparameters automatically,
with little input from the user.

We implemented our method in a highly optimized end-
user software, called HaMMLET. Aside from achieving an
acceleration of up to two orders of magnitude, it exhibits
significantly improved convergence behavior, has excellent
precision and recall, and provides Bayesian inference within
seconds even for large data sets. The accuracy and speed
of HaMMLET also makes it an excellent choice for routine
diagnostic use and large-scale re-analysis of legacy data.

Results and discussion

Simulated aCGH data

A previous survey [65] of eleven CNV calling methods for
aCGH has established that segmentation-focused methods
such as DNAcopy [32, 33], an implementation of circular
binary segmentation (CBS), as well as CGHseg [35] perform
consistently well. DNAcopy performs a number of t-tests to
detect break-point candidates. The result is typically over-
segmented and requires a merging step in post-processing,
especially to reduce the number of segment means. To this
end MergeLevels was introduced by [66]. They compare
the combination DNAcopy+MergeLevels to their own HMM
implementation [45] as well as GLAD [23], showing its
superior performance over both methods. This established
DNAcopy+MergeLevels as the de facto standard in CNV
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Figure 2. F-measures of CBS (light) and HaMMLET (dark) for
calling aberrant copy numbers on simulate aCGH data. Boxes
represent the interquartile range (IQR = Q3-Q1), with a horizontal
line showing the median (Q2), whiskers representing the range
( 3

2 IQR beyond Q1 and Q3), and the bullet representing the mean.
HaMMLET has the same or better F-measures in most cases, and
converges to 1 for larger segments, whereas CBS plateaus for
aberrations greater than 10.

detection, despite the comparatively long running time.
The paper also includes aCGH simulations deemed to

be reasonably realistic by the community. DNACopy
was used to segment 145 unpublished samples of breast
cancer data, and subsequently labeled as copy num-
bers 0 to 5 by sorting them into bins with boundaries
(−∞,−0.4,−0.2,0.2,0.4,0.6,∞), based on the sample
mean in each segment (the last bin appears to not be
used). Empirical length distributions were derived, from
which the sizes of CN aberrations are drawn. The data it-
self is modeled to include Gaussian noise, which has been
established as a sufficient for aCGH data [67]. Means
were generated such as to mimic random tumor cell pro-
portions, and random variances were chosen to simulate
experimenter bias often observed in real data; this em-
phasizes the importance of having automatic priors avail-
able when using Bayesian methods, as the means and vari-
ances might be unknown a priori. The simulations are
available at http://www.cbs.dtu.dk/~hanni/aCGH/.
They comprise three sets of simulations: “breakpoint de-
tection and merging” (BD&M), “spatial resolution study”
(SRS), and “testing” (T) (see their paper for details). We
used the MergeLevels implementation as provided on their
website. It should be noted that the superiority of DNA-
copy+MergeLevels was established using a simulation based
upon segmentation results of DNAcopy itself.

We used the Bioconductor package DNAcopy (version
1.24.0), and followed the procedure suggested therein, in-
cluding outlier smoothing. This version uses the linear-time
variety of CBS [34]; note that other authors such as [31]
compare against its quadratic-time version [33], which is
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likely to yield a favorable comparison and speedups of sev-
eral orders of magnitude, especially on large data. For
HaMMLET, we use a 5-state model with automatic hyperpa-
rameters P(σ2 ≤ 0.01) = 0.9 (see section Automatic priors),
and all Dirichlet hyperparameters set to 1.

We report F-measures for detecting aberrant segments
(Fig. 2). On datasets T and BD&M, both methods have simi-
lar medians, but HaMMLET has a much better interquartile
range (IQR) and range, about half of CBS’s. On the spa-
tial resolution data set (SRS), HaMMLET performs much
better on very small aberrations. This might seem some-
what surprising, as short segments could easily get lost
under compression. However, Lai et al. [65] have noted
that smoothing-based methods such as quantile smoothing
(quantreg) [19], lowess [20], and wavelet smoothing [25]
perform particularly well in the presence of high noise and
small CN aberrations, suggesting that “an optimal combi-
nation of the smoothing step and the segmentation step
may result in improved performance”. Our wavelet-based
compression inherits those properties. For CNVs of sizes
between 5 and 10, CBS and HaMMLET have similar ranges,
with CBS being skewed towards better values; CBS has a
slightly higher median for 10–20, with IQR and range being
about the same. However, while HaMMLET’s F-measure
consistently approaches 1 for larger aberrations, CBS does
not appear to significantly improve after size 10.

High-density CGH array

In this section, we demonstrate HaMMLET’s performance
on biological data. Due to the lack of a gold standard for
high-resolution platforms, we assess the CNV calls quali-
tatively. We use raw aCGH data (GEO:GSE23949) [68] of
genomic DNA from breast cancer cell line BT-474 (invasive
ductal carcinoma, GEO:GSM590105), on an Agilent-021529
Human CGH Whole Genome Microarray 1x1M platform
(GEO:GPL8736). We excluded gonosomes, mitochondrial
and random chromosomes from the data, leaving 966,432
probes in total.

HaMMLET allows for using automatic emission priors (see
section Automatic priors) by specifying a noise variance, and
a probability to sample a variance not exceeding this value.
We compare HaMMLET’s performance against CBS, using
a 20-state model with automatic priors, P(σ2 ≤ 0.1) = 0.8,
10 prior self-transitions and 1 for all other hyperparameters.
CBS took over 2 h 9 m to process the entire array, whereas
HaMMLET took 27.1 s for 100 iterations, a speedup of 288.
The compression ratio (see section Speed and convergence
effects of wavelet compression) was 220.3. CBS yielded a
massive over-segmentation into 1,548 different copy num-
ber levels. As the data is derived from a relatively homo-
geneous cell line as opposed to a biopsy, we do not expect
the presence of subclonal populations to be a contributing
factor [69, 70]. Instead, measurements on aCGH are known
to be spatially correlated, resulting in a wave pattern which
has to be removed in a preprocessing step. CBS performs

such a smoothing, yet the unrealistically large number of
different levels is likely due to residuals of said wave pat-
tern. Repeated runs of CBS yielded different numbers of
levels, suggesting that indeed the merging was incomplete.
This further highlights the importance of prior knowledge
in statistical inference. By limiting the number of CN states
a priori, non-i.i.d. effects are easily remedied, and inference
can be performed without preprocessing. Furthermore, the
internal compression mechanism of HaMMLET is derived
from a spatially adaptive regression method, so smoothing
is inherent to our method. The results are included in the
supplement.

For a more comprehensive analysis, we restricted our
evaluation to chromosome 20 (21,687 probes), which we
assessed to be the most complicated to infer, as it appears to
have the highest number of different CN states and break-
points. CBS yields a 19-state result after 15.78 s (Fig. 3,
top). We have then used a 19-state model automated priors
(P(σ2 ≤ 0.04) = 0.9), 10 prior self-transitions, all other
Dirichlet parameters set to 1) to reproduce this result. Us-
ing noise control (see Methods), our method took 1.61 s
for 600 iterations. The solution we obtained is consistent
with CBS (Fig. 3, middle and bottom). However, only 11
states were part of the final solution, i. e. 6 states yielded
no significant likelihood above that of other states. We ob-
serve superfluous states being ignored in our simulations as
well, cf. Supplement. In light of the results on the entire
array, we suggest that the segmentation by DNAcopy has
not sufficiently been merged by MergeLevels. Most strik-
ingly, HaMMLET does not show any marginal support for
a segment called by CBS around probe number 4,500. We
have confirmed that this is not due to data compression,
as the segment is broken up into multiple blocks in each
iteration (data not shown). On the other hand, two much
smaller segments called by CBS in the 17,000–20,000 range
do have marginal support of about 40% in HaMMLET, sug-
gesting that the lack of support for the larger segment is
correct. It should be noted that inference differs between
the entire array and chromosome 20 in both methods, since
long-range effects have higher impact in larger data.

We also demonstrate another feature of HaMMLET called
noise control. While Gaussian emissions have been deemed a
sufficiently accurate noise model for aCGH [67], microarray
data is prone to outliers, for example due to damages on the
chip. While it is possible to model outliers directly [60], the
characteristics of the wavelet transform allow us to largely
suppress them during the construction of our data structure
(see Methods). Notice that due to noise control most outliers
are correctly labeled according to the segment they occur
in, while the short gain segment close to the beginning is
called correctly.
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Figure 3. Copy number inference for chromosome 20 in invasive ductal carcinoma (21,687 probes). CBS creates a 19-state solution
(top), however, a compressed 19-state HMM only supports an 11-state solution (bottom), suggesting insufficient level merging in CBS.
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Speed and convergence effects of wavelet com-
pression

The speedup gained by compression depends on how well
the data can be compressed. Poor compression is expected
when the means are not well separated, or short segments
have small variance, which necessitates the creation of
smaller blocks for the rest of the data to expose potential
low-variance segments to the sampler. On the other hand,
data must not be over-compressed to avoid merging small
aberrations with normal segments, which would decrease
the F-measure. The level of compression is measured with
the compression ratio. Due to the dynamic changes to the
block structure, we define compression ratio as the total
number of blocks in all iterations, divided by the product
of the number of data points T and the number of itera-
tions N . As usual a compression ratio of one indicates no
compression.

To evaluate the impact of dynamic wavelet compression
on speed and convergence properties of an HMM, we
created 129,600 different data sets with T = 32,768 many
probes. In each data set, we randomly distributed 1 to
6 gains of a total length of {100,250,500,750,1000}
uniformly among the data, and do the same for losses.
Mean combinations (µloss,µneutral,µgain) were cho-
sen from (log2

1
2 , log2 1, log2

3
2 ), (−1,0,1), (−2,0,2),

and (−10, 0, 10), and variances (σ2
loss,σ

2
neutral,σ

2
gain)

from (0.05,0.05,0.05), (0.5,0.1,0.9), (0.3,0.2,0.1),
(0.2,0.1,0.3), (0.1,0.3,0.2), and (0.1,0.1,0.1). These
values have been selected to yield a wide range of easy
and hard cases, both well separated, low-variance data
with large aberrant segments as well as cases in which
small aberrations overlap significantly with the tail
samples of high-variance neutral segments. Consequently,
compression ratios range from ∼1 to ∼2,100. We use
automatic priors P(σ2 ≤ 0.2) = 0.9, self-transition priors
αii ∈ {10,100,1000}, non-self transition priors αi j = 1,
and initial state priors α ∈ {1,10}. Using all possible
combinations of the above yields 129,600 different
simulated data sets, a total of 4.2 billion values.

We achieve speedups per iteration of up to 350 com-
pared to an uncompressed HMM (Fig. 5). In contrast, [62]
have reported ratios of 10–60, with one instance of 90. No-
tice that the speedup is not linear in the compression ratio.
While sampling itself is expected to yield linear speedup, the
marginal counts still have to be tallied individually for each
position, and dynamic block creation causes some overhead.
The quantization artifacts observed for larger speedup are
likely due to the limited resolution of the Linux time com-
mand (10 milliseconds). Compressed HaMMLET took about
11.2 CPU hours for all 129,600 simulations, whereas the
uncompressed version took over 3 weeks and 5 days. All
running times reported are CPU time measured on a single
core of a AMD OpteronTM 6174 Processor, clocked at 2.2
GHz.

We evaluate the convergence of the F-measure of com-

Figure 5. HaMMLET’s speedup as a function of the average com-
pression during sampling. As expected, higher compression leads
to greater speedup. The non-linear characteristic is due to the
fact that some overhead is incurred by the dynamic compression,
as well as parts of the implementation that do not depend on the
compression, such as tallying marginal counts.

pressed and uncompressed inference for each simulation.
Since we are dealing with multi-class classification, we use
the micro- and macro-averaged F-measures (Fmi, Fma) pro-
posed by [71]; they tend to be dominated by the classifier’s
performance on common and rare categories, respectively.
Since all state labels are sampled from the same prior and
hence their relative order is random, we used the label
permutation which yielded the highest sum of micro- and
macro-averaged F-measures.

In Fig. 4, we show that the compressed version of the
Gibbs sampler converges almost instantly, whereas the un-
compressed version converges much slower, with about
5% of the cases failing to yield an F-measure > 0.6 within
1,000 iterations. Wavelet compression is likely to yield rea-
sonably large blocks for the majority class early on, which
leads to a strong posterior estimate of its parameters and
self-transition probabilities. As expected, Fma are generally
worse, since any misclassification in a rare class has a larger
impact. Especially in the uncompressed version, we observe
that Fma tends to plateau until Fmi approaches 1.0. Since
any misclassification in the majority (neutral) class adds
false positives to the minority classes, this effect is expected.
It implies that correct labeling of the majority class is a nec-
essary condition for correct labeling of minority classes, in
other words, correct identification of the rare, interesting
segments requires the sampler to properly converge, which
is much harder to achieve without compression. It should
be noted that running compressed HaMMLET for 1,000
iterations is unnecessary on the simulated data, as in all
cases it converges between 25 and 50 iterations. Thus, for
all practical purposes, an additional speedup of 40–80 can
be achieved by reducing the number of iterations, which
yields convergence up to 3 orders of magnitude faster than
standard FBG.

6

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2015. ; https://doi.org/10.1101/023705doi: bioRxiv preprint 

https://doi.org/10.1101/023705
http://creativecommons.org/licenses/by-nd/4.0/


0.0

0.2

0.4

0.6

0.8

1.0

M
ic

ro
-a

v
e
ra

g
e
d
 F

-m
e
a
su

re

Uncompressed Compressed

0 200 400 600 800 1000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

M
a
cr

o
-a

v
e
ra

g
e
d
 F

-m
e
a
su

re

0 200 400 600 800 1000
Iteration

0 25

0.8

1.0

0 25

0.8

1.0

Figure 4. The median value (black) and quantile ranges (in 5% steps) of the micro- (top) and macro-averaged (bottom) F-measures
for uncompressed (left) and compressed (right) FBG inference, on the same 129,600 simulated data sets, using automatic priors. The
x-axis represents the number of iterations alone, and does not reflect the additional speedup obtained through compression. Notice
that the compressed HMM converges no later than 50 iterations (inset figures, right).
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Coriell, ATCC and breast carcinoma

The data provided by [72] includes 15 aCGH samples for
the Coriell cell line. At about 2,000 probes, the data is
small compared to modern high-density arrays. Neverthe-
less, these data sets have become a common standard to
evaluate CNV calling methods, as they contain few and sim-
ple aberrations. The data also contains 6 ATCC cell lines as
well as 4 breast carcinoma, all of which are substantially
more complicated, and typically not used in software eval-
uations. In Fig. 6, we demonstrate our ability to infer the
correct segments on the most complex example, a T47D
breast ductal carcinoma sample of a 54 year old female. We
used 6-state automatic priors with P(σ2 ≤ 0.1) = 0.85, and
all Dirichlet hyperparameters set to 1. On a standard laptop,
HaMMLET took 0.09 seconds for 1,000 iterations; running
times for the other samples were similar. Our results for all
25 data sets have been included in the supplement.

Conclusions

In the analysis of biological data, there are usually con-
flicting objectives at play which need to be balanced: the
required accuracy of the analysis, ease of use—using the
software, setting software and method parameters—and
often the speed of a method. Bayesian methods have ob-
tained a reputation of requiring enormous computational
effort and being difficult to use, for the expert knowledge
required for choosing prior distributions. It has also been
recognized [60, 62, 73] that they are very powerful and
accurate, leading to improved, high-quality results and pro-
viding, in the form of posterior distributions, an accurate
measure of uncertainty in results. Nevertheless, it is not sur-
prising that a hundred times larger effort in computational
effort alone prevented wide-spread use.

Inferring Copy Number Variants (CNV) is a quite special
problem, as experts can identify CN changes visually, at
least on very good data and for large, drastic CN changes
(e. g., long segments lost on both chromosomal copies).
With lesser quality data, smaller CN differences and in the
analysis of cohorts the need for objective, highly accurate,
and automated methods are evident.

The core idea for our method expands on our prior work
[62] and affirms a conjecture by Lai et al. [65] that a com-
bination of smoothing and segmentation will likely improve
results. One ingredient of our method are Haar wavelets,
which have previously been used for pre-processing and
visualization [17, 64]. In a sense, they quantify and identify
regions of high variation and allow to summarize the data
at various levels of resolution, somewhat similar to how
an expert would perform a visual analysis. We combine,
for the first time, wavelets with a full Bayesian HMM by
dynamically and adaptively infering blocks of subsequent
observations from our wavelet data structure. The HMM
operates on blocks instead of individual observations which
leads to great saving in running times, up to 350-fold com-

pared to the standard FB-Gibbs sampler, and up to 288
times faster than CBS. Much more importantly, operating
on the blocks greatly improves convergence of the sampler,
leading to higher accuracy for a much smaller number of
sampling iterations. Thus, the combination of wavelets and
HMM realizes a simultaneous improvement on accuracy
and on speed; typically one can have one or the other. An
intuitive explanation as to why this works is that the blocks
derived from the wavelet structure allow efficient, summary
treatment of those “easy” to call segments given the current
sample of HMM parameters and identifies “hard” to call
CN segment which need the full computational effort from
FB-Gibbs. Note that it is absolutely crucial that the block
structure depends on the parameters sampled for the HMM
and will change drastically over the run time. This is in
contrast to our prior work [62], which used static blocks
and saw no improvements to accuracy and convergence
speed. The data structures and linear-time algorithms we
introduce here provide the efficient means for recomputing
these blocks at every cycle of the sampling, cf. Fig. 1. Com-
pared to our prior work, we observe a speed-up of up to
3,000 due to the greatly improved convergence, O(T) vs.
O(T log T ) clustering, improved numerics and, lastly, a C++
instead of a Python implementation.

We performed an extensive comparison with the state-
of-the-art as identified by several review and benchmark
publications and with the standard FB-Gibbs sampler on a
wide range of biological data sets and 129,600 simulated
data sets, which were produced by a simulation process
not based on HMM to make it a harder problem for our
method. All comparisons demonstrated favorable results
for our method when measuring accuracy at a very notice-
able acceleration compared to the state-of-the-art. It must
be stressed that these results were obtained with a statisti-
cally sophisticated model for CNV calls and without cutting
algorithmic corners, but rather an effective allocation of
computational effort.

All our computations are performed using our automatic
prior, which derives estimates for the hyperparameters of
the priors for means and variances directly from the wavelet
tree structure and the resulting blocks. The block structure
also imposes a prior on self-transition probabilities. The
user only has to provide an estimate of the noise variance,
but as the automatic prior is designed to be weak the prior
and thus the method is robust against incorrect estimates.
We have demonstrated this by using different hyperparam-
eters for the associated Dirichlet priors in our simulations,
which HaMMLET is able to infer correctly regardless of
the transition priors. At the same time the automatic prior
can be used to tune certain aspects of the HMM if stronger
prior knowledge is available. We would expect further im-
provements from non-automatic, expert-selected priors, but
refrained from using them for the evaluation, as they might
be perceived as unfair to other methods.

In summary, our method is as easy to use as other, sta-
tistically less sophisticated tools, more accurate and much

8

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2015. ; https://doi.org/10.1101/023705doi: bioRxiv preprint 

https://doi.org/10.1101/023705
http://creativecommons.org/licenses/by-nd/4.0/


Figure 6. HaMMLET’s inference of copy-number segments on T47D breast ductal carcinoma. Notice that the data is much more
complex than the simple structure of a diploid majority class with some small aberrations typically observed for Coriell data.
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more computationally efficient. We believe this makes it
an excellent choice both for routine use in clinical settings
and principled re-analysis of large cohorts, where the added
accuracy and the much improved information about uncer-
tainty in copy number calls from posterior marginal distri-
butions will likely yield improved insights into CNV as a
source of genetic variation and its relationship to disease.

Methods

We will briefly review Forward-Backward Gibbs sampling
(FBG) for Bayesian Hidden Markov Models, and its accel-
eration through compression of the data into blocks. By
first considering the case of equal emission variances among
all states, we show that optimal compression is equivalent
to a concept called selective wavelet reconstruction, follow-
ing a classic proof in wavelet theory. We then argue that
wavelet coefficient thresholding, a variance-dependent mini-
max estimator, allows for compression even in the case of
unequal emission variances. This allows the compression of
the data to be adapted to the prior variance level at each
sampling iteration. We then derive a simple data structure
to dynamically create blocks with little overhead. While
wavelet approaches have been used for aCGH data before
[25, 29, 30, 63], our method provides the first combination
of wavelets and HMMs.

Bayesian Hidden Markov Models

Let T be the length of the observation sequence, which is
equal to the number of probes. An HMM can be represented
as a statistical model (q,A ,θ |y), with transition matrixA ,
a latent state sequence q = (q0, q1, . . . , qT−1), an observed
emission sequence y = (y0, y1, . . . , yT−1), and the emission
parameters θ . The initial distribution of q0 is often included
and denoted as π, but in a Bayesian setting it makes more
sense to take π as a set of hyperparameters for q0.

In the usual frequentist approach, the state sequence q is
inferred by first finding a maximum likelihood estimate of
the parameters,

(AML,θML) = arg max
(A ,θ )

L (A ,θ |y),

using the Baum-Welsh algorithm [53, 54]. This is only guar-
anteed to yield local optima, as the likelihood function is
not convex. Repeated random reinitializations are used to
find “good” local optima, but there are no guarantees for
this method. Then, the most likely state sequence given
those parameters,

q̂= argmax
q
P(q |AML,θML,y),

is calculated using the Viterbi algorithm [55]. However, if
there are only a few aberrations, that is there is imbalance
between classes, the ML parameters tend to overfit the nor-
mal state which is likely to yield incorrect segmentation

[62]. Furthermore, alternative segmentations given those
parameters are also ignored, as are the ones for alternative
parameters.

The Bayesian approach is to calculate the distribution of
state sequences directly by integrating out the emission and
transition variables,

P(q |y) =
∫

A

∫

θ

P(q,A ,θ |y)dθ dA .

Since this integral is intractable, it has to be approximated
using Markov Chain Monte Carlo techniques, i. e. drawing
N samples,

(q(i),A (i),θ (i))∼ P(q,A ,θ |y),

and subsequently approximating marginal state probabili-
ties by their frequency in the sample

P(qt = s |y)≈
1
N

N
∑

i=1

I(q(i)t = s).

Thus, for each position t, we get a complete probability
distribution over the possible states. As the marginals of
each variable are explicitly defined by conditioning on the
other variables, an HMM lends itself to Gibbs sampling,
i. e. repeatedly sampling from the marginals (q |A ,θ ,y),
(A |q,θ ,y) and (θ |q,A ,y), conditioned on the previously
sampled values. Using Bayes’ formula and several condi-
tional independence relations, the sampling process can be
written as

A ∼ P(A |q) ∝ P(q |A )P(A |πA ),

θ ∼ P(θ |q,y) ∝ P(q,y |θ )P(θ |πθ ), and

q∼ P(q |A ,y,θ ) ∝ P(A ,y,θ |q)P(q |πq),

where π represents hyperparameters to the prior distribu-
tion. Notice that q depends on a prior only in q0, so πq is a
set of parameters from which the distribution of q0 is sam-
pled (typically πq are parameters of a Dirichlet distribution).
In non-Bayesian settings, π often denotes P(q0) itself. Typi-
cally, each prior will be conjugate, i. e. it will be the same
class of distributions as the posterior. Thus πS and πA(k,:),
the hyperparameters of q0 and the k-th row ofA , will be
the αi of a Dirichlet distribution, and πθ = (α,β ,ν,µ0) will
be the parameters of a Normal-Inverse Gamma distribution.

Though there are several sampling schemes available,
[58] has argued strongly in favor of Forward-Backward
Gibbs sampling (FBG) [57]. Variations of this have been
implemented for segmentation of aCGH data before [60,
62, 73]. However, sampling-based Bayesian methods such
as FBG are computationally expensive. Recently, [62] have
introduced compressed FBG by sampling over a shorter
sequence of sufficient statistics of data segments which
are likely to come from the same underlying state. Let
B := (Bw)Ww=1 be a partition of y into W blocks. Each block
Bw contains nw elements. Let yw,k the k-th element in Bw.
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The forward variable αw( j) for this block needs to take into
account the nw emissions, the transitions into state j, and
the nw − 1 self-transitions, which yields

αw( j) := Anw−1
j j P(Bw |µ j ,σ

2
j )

nw
∑

i=1

αw−1(i)Ai j , and

P(Bw |µ,σ2) =
nw
∏

k=1

P(yw,k |µ,σ2).

The ideal block structure would correspond to the actual,
unknown segmentation of the data. Any subdivision thereof
would decrease the compression ratio, and thus the speedup,
but still allow for recovery of the true breakpoints. In addi-
tion, such a segmentation would yield sufficient statistics
for the likelihood computation that corresponds to the true
parameters of the state generating a segment. Using wavelet
theory, we show that such a block structure can be easily
obtained.

Wavelet theory preliminaries

Here, we review some essential wavelet theory; for details,
see [74, 75]. Let

ψ(x) :=







1 0≤ x < 1
2

−1 1
2 ≤ x < 1

0 elsewhere

be the Haar wavelet [76], and ψ j,k(x) := 2 j/2ψ(2 j x − k); j
and k are called the scale and shift parameter. Any square-
integrable function over the unit interval, f ∈ L2([0,1)), can
be approximated using the orthonormal basis {ψ j,k | j, k ∈
Z,−1≤ j, 0≤ k ≤ 2 j−1}, admitting a multiresolution analy-
sis [77, 78]. Essentially, this allows us to express a function
f (x) using scaled and shifted copies of one simple basis
function ψ(x) which is spatially localized, i. e. non-zero on
only a finite interval in x . The Haar basis is particularly
suited for expressing piecewise constant functions.

Finite data y := (y0, . . . ,yT−1) can be treated as an equidis-
tant sample f (x) by scaling the indices to the unit interval
using x t := t

T . Let h := log2 T . Then y can be expressed
exactly as a linear combination over the Haar wavelet basis
above, restricted to the maximum level of sampling resolu-
tion ( j ≤ h− 1):

yt =
∑

j,k

d j,kψ j,k(x t).

The wavelet transform d =W y is an orthogonal endomor-
phism, and thus incurs neither redundancy nor loss of in-
formation. Surprisingly, d can be computed in linear time
using the pyramid algorithm [77].

Compression via wavelet shrinkage

The Haar wavelet transform has an important property con-
necting it to block creation: Let d̂ be a vector obtained

by setting elements of d to zero, then ŷ =W ᵀd̂ := Ŵ ᵀd is
called selective wavelet reconstruction (SW). If all coefficients
d j,k with ψ j,k(x t) 6= ψ j,k(x t+1) are set to zero for some t,
then ŷt = ŷt+1, which implies a block structure on ŷ. Con-
versely, blocks of size > 2 (to account for some pathological
cases) can only be created using SW. This general equivalence
between SW and compression is central to our method. Note
that ŷ does not have to be computed explicitly; the block
boundaries can be inferred from the position of zero-entries
in d̂ alone.

Assume all HMM states had the same emission variance
σ2. Since each state is associated with an emission mean,
finding q can be viewed as a regression or smoothing prob-
lem of finding an estimate µ̂ of a piecewise constant function
µ whose range is precisely the set of emission means, i. e.

µ= f (x), y= f (x) + ε, ε∼iid N(0,σ2).

Unfortunately, regression methods typically do not limit
the number of distinct values recovered, and will instead
return some estimate ŷ 6= µ̂. However, if ŷ is piecewise
constant and minimizes ‖µ− ŷ‖, the sample means of each
block are close to the true emission means. This yields
high likelihood for their corresponding state and hence a
strong posterior distribution, leading to fast convergence.
Furthermore, the change points in µmust be close to change
points in ŷ, since moving block boundaries incurs additional
loss, allowing for approximate recovery of true breakpoints.
ŷ might however induce additional block boundaries that
reduce the compression ratio.

In a series of ground-breaking papers, Donoho, Johnstone
et al. [79–83] showed that SW could in theory be used as an
almost ideal spatially adaptive regression method. Assum-
ing one could provide an oracle ∆(µ,y) that would know
the true µ, then there exists a method MSW(y,∆) = Ŵ ᵀSW
using an optimal subset of wavelet coefficients provided by
∆ such that the quadratic risk of ŷSW := Ŵ ᵀSWd is bounded
as

‖µ− ŷSW‖
2
2 = O

�

σ2 ln T
T

�

.

By definition, MSW would be the best compression method
under the constraints of the Haar wavelet basis. This bound
is generally unattainable, since the oracle cannot be queried.
Instead, they have shown that for a method MWCT(y,λσ)
called wavelet coefficient thresholding, which sets coefficients
to zero whose absolute value is smaller than some threshold
λσ, there exists some λ?T ≤

p
2 ln T with ŷWCT := Ŵ ᵀWCTd

such that

‖µ− ŷWCT‖
2
2 ≤ (2 ln T + 1)

�

‖µ− ŷSW‖
2
2 +
σ2

T

�

.

This λ?T is minimax, i. e. the maximum risk incured over
all possible data sets is not larger than that of any other
threshold, and no better bound can be obtained. It is not
easily computed, but for large T , on the order of tens to
hundreds, the universal threshold λu

T :=
p

2 ln T is asymp-
totically minimax. In other words, for data large enough
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to warrant compression, universal thresholding is the best
method to approximate µ, and thus the best wavelet-based
compression scheme for a given noise level σ2.

Integrating wavelet shrinkage into FBG

This compression method can easily be extended to multiple
emission variances. Since we use a thresholding method,
decreasing the variance simply subdivides existing blocks. If
the threshold is set to the smallest emission variance among
all states, ŷ will approximately preserve the breakpoints
around those low-variance segments. Those of high vari-
ance are split into blocks of lower sample variance; see
[84, 85] for an analytic expression. While the variances for
the different states are not known, FBG provides a priori
samples in each iteration. We hence propose the follow-
ing simple adaptation: In each sampling iteration, use the
smallest sampled variance parameter to create a new block
sequence via wavelet thresholding (Algorithm 1).

Algorithm 1 Dynamically adaptive FBG for HMMs

1: procedure HAMMLET(y, πA , πθ ,πq)
2: T ← |y |
3: λ←

p
2 ln T

4: A ∼ P(A |πA )
5: θ ∼ P(θ |πθ )
6: for i = 1, . . . ,N do
7: σmin←minσi

{σ̂MAD,σi |σ2
i ∈ θ}

8: Create block sequence B from threshold λσmin
9: q∼ P(A ,B,θ |q)P(q |πq)

10: A ∼ P(q |A )P(A |πA )
11: θ ∼ P(q,B |θ )P(θ |πθ )
12: Add count of marginal states for q to result
13: end for
14: end procedure

While intuitively easy to understand, provable guarantees
for the optimality of this method, specifically the correspon-
dence between the wavelet and the HMM domain remain
an open research topic. A potential problem could arise
if all sampled variances are too large. In this case, blocks
would be under-segmented, yield wrong posterior variances
and hide possible state transitions. As a safeguard against
over-compression, we use the standard method to estimate
the variance of constant noise in shrinkage applications,

σ̂2
MAD :=

�

MADk{dlog2 T−1,k}

Φ−1
�

3
4

�

�2

as an estimate of the variance in the dominant com-
ponent, and modify the threshold definition to λ ·
min {σ̂MAD,σi ∈ θ}. If the data is not i.i.d., σ̂2

MAD will sys-
tematically underestimate the true variance [24]. In this
case, the blocks get smaller than necessary, thus decreasing
the compression.

A data structure for dynamic compression

The necessity to recreate a new block sequence in each it-
eration based on the most recent estimate of the smallest
variance parameter creates the challenge of doing so with lit-
tle computational overhead, specifically without repeatedly
computing the inverse wavelet transform or considering all
T elements in other ways. We achieve this by creating a
simple tree-based data structure.

The pyramid algorithm yields d sorted according to ( j, k).
Again, let h := log2 T , and ` := h − j. We can map the
wavelet ψ j,k to a perfect binary tree of height h such that
all wavelets for scale j are nodes on level `, nodes within
each level are sorted according to k, and ` is increasing
from the leaves to the root (Fig. 7). d represents a breadth-
first search (BFS) traversal of that tree, with d j,k being the
entry at position b2 jc+ k. Adding yi as the i-th leaf on level
` = 0, each non-leaf node represents a wavelet which is
non-zero for the n := 2` data points yt , for t in the the
interval I j,k := [kn, (k+ 1)n− 1] stored in the leaves below;
notice that for the leaves, kn= t.

This implies that the leaves in any subtree all have the
same value after wavelet thresholding if all the wavelets in
this subtree are set to zero. We can hence avoid computing
the inverse wavelet transform to create blocks. Instead, each
node stores the maximum absolute wavelet coefficient in the
entire subtree, as well as the sufficient statistics required for
calculating the likelihood function. More formally, a node
N`,t corresponds to wavelet ψ j,k, with ` = h− j and t = k2`

(ψ−1,0 is simply constant on the [0,1) interval and has no
effect on block creation, thus we discard it). Essentially, `
numbers the levels beginning at the leaves, and t marks the
start position of the block when pruning the subtree rooted
at N`,t . The members stored in each node are:

• The number of leaves, corresponding to the block size:

N`,t[n] := 2`

• The sum of data points stored in the subtree leaves:

N`,t[Σ1] :=
∑

i∈I j,k

yi

• Similarly, the sum of squares:

N`,t[Σ2] :=
∑

i∈I j,k

y2
i

• The maximum absolute wavelet coefficient of the sub-
tree, including the current d j,k itself:

N0,t[d] := 0 N`>0,t[d] :=max
`′≤`

t≤t ′<t+2`

��

�dh−`′,2`′/t ′
�

�

	

All these values can be computed recursively from the child
nodes in linear time. As some real data sets contain salt-and-
pepper noise, which manifests as isolated large coefficients
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on the lowest level, its is possible to ignore the first level in
the maximum computation so that no information to create
a single-element block for outliers is passed up the tree. We
refer to this technique as noise control. Notice that this does
not imply that blocks are only created at even t, since true
transitions manifest in coefficients on multiple levels.

The block creation algorithm is simple: upon construction,
the tree is converted to depth-first search (DFS) order, which
simply amounts to sorting the BFS array according to (kn, j).
Given a threshold, the tree is then traversed in DFS order by
iterating linearly over the array (Fig. 7, solid lines). Once the
maximum coefficient stored in a node is less or equal to the
threshold, a block of size n is created, and the entire subtree
is skipped (dashed lines). As the tree is perfect binary and
complete, the next array position in DFS traversal after
pruning the subtree rooted at the node at index i is simply
obtained as i + 2n− 1, so no expensive pointer structure
needs to be maintained, leaving the tree data structure a
simple flat array. An example of dynamic block creation is
given in Fig. 8.

Once the Gibbs sampler converges to a set of variances,
the block structure is less likely to change. To avoid recre-
ating the same block structure over and over again, we
employ a technique called block structure prediction. Since
the different block structures are subdivisions of each other
that occur in a specific order for decreasing σ2, there is a
simple bijection between the number of blocks and the block
structure itself. Thus, for each block sequence length we
register the minimum and maximum variance that creates
that sequence. Upon entering a new iteration, we check
if the current variance would create the same number of
blocks as in the previous iteration, which guarantees that
we would obtain the same block sequence, and hence can
avoid recomputation.

The wavelet tree data structure can be readily extended
to multivariate data of dimensionality m. Instead of storing
m different trees and reconciling m different block patterns
in each iteration, one simply stores m different values for
each sufficient statistic in a tree node. Since we have to
traverse into the combined tree if the coefficient of any of
the m trees was below the threshold, we simply store the
largest N`,t[d] among the corresponding nodes of the trees,
which means that the block creation can be done in O(T)
instead of O(mT ), i. e. the dimensionality of the data only
enters into the creation of the data structure, but not the
query during sampling iterations.

Automatic priors

While Bayesian methods allow for inductive bias such as
the expected location of means, it is desirable to be able to
use our method even when little domain knowledge exists,
or large variation is expected, such as the lab and batch
effects commonly observed in micro-arrays [86], as well
as unknown means due to sample contamination. Since
FBG does require a prior even in that case, we propose the
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Figure 7. Mapping of wavelets ψ j,k and data points yt to tree
nodes N`,t . Each node is the root of a subtree with n= 2` leaves;
pruning that subtree yields a block of size n, starting at position
t. For instance, the node N1,6 is located at position 13 of the DFS
array (solid line), and corresponds to the wavelet ψ3,3. A block of
size n = 2 can be created by pruning the subtree, which amounts
to advancing by 2n− 1= 3 positions (dashed line), yielding N3,8

at position 16, which is the wavelet ψ1,1. Thus the number of
steps for creating blocks per iteration is at most the number of
nodes in the tree, and thus strictly smaller than 2T .
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Figure 8. Example of dynamic block creation. The data is of size
T = 256, so the wavelet tree contains 512 nodes. Here, only 37
entries had to be checked against the threshold (dark line), 19
of which (round markers) yielded a block (vertical lines on the
bottom). Sampling is hence done on a short array of 19 blocks
instead of 256 individual values, thus the compression ratio is
13.5. The horizontal lines in the bottom subplot are the block
means derived from the sufficient statistics in the nodes. Notice
how the algorithm creates small blocks around the breakpoints,
e. g. at t ≈ 125, which requires traversing to lower levels and
thus induces some additional blocks in other parts of the tree
(left subtree), since all block sizes are powers of 2. This some-
what reduces the compression ratio, which is unproblematic as it
increases the degrees of freedom in the sampler.
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following method to specify hyperparameters of a weak prior
automatically. Posterior samples of means and variances are
drawn from a Normal-Inverse Gamma distribution (µ,σ2)∼
NIΓ(µ0,ν,α,β), whose marginals simply separate into a
Normal and an Inverse Gamma distribution

σ2 ∼ IΓ(α,β), µ∼ N

�

µ0,
σ2

ν

�

.

Let s2 be a user-defined variance (or automatically infered,
e. g. from the largest of the finest detail coefficients, or
σ̂2

MAD), and p the desired probability to sample a variance
not larger than s2. From the CDF of IΓ we obtain

p := P(σ2 ≤ s2) =
Γ
�

α, βs2

�

Γ (α)
=Q

�

α,
β

s2

�

.

IΓ has a mean for α > 1, and closed-form solutions for
α ∈ N. Furthermore, IΓ has positive skewness for α > 3.
We thus let α= 2, which yields

β = −s2
�

W−1

�

−
p
e

�

+ 1
�

, 0< p ≤ 1,

where W−1 is the negative branch of the Lambert W -function,
which is transcendental. However, an excellent analytical
approximation with a maximum error of 0.025% is given in
[87], which yields

β ≈ s2

�

2
p

b

M1

p
b+
p

2
�

M2 b exp
�

M3

p
b
�

+ 1
� + b

�

,

b := − ln p,

M1 := 0.3361, M2 := −0.0042, M3 := −0.0201.

Since the mean of IΓ is β
α−1 , the expected variance of µ is βν

for α= 2. To ensure proper mixing, we could simply set βµ
to the sample variance of the data, which can be estimated
from the sufficient statistics in the root of the wavelet tree
(the first entry in the array), provided that µ contained all
states in almost equal number. However, due to possible
class imbalance, means for short segments far away from µ0
can have low sampling probability, as they do not contribute
much to the sample variance of the data. We thus define δ to
be the sample variance of block means in the compression
obtained by σ̂2

MAD, and take the maximum of those two
variances. We thus obtain

µ0 :=
Σ1

n
, and ν= βmax

�

nΣ2 −Σ2
1

n2
,δ

�−1

.

Numerical issues

To assure numerical stability, many HMM implementations
resort to log-space computations. Our implementation,
which differs from [62], reflects the block structure and
avoids a considerable number of expensive function calls
(exp, log, pow) required by others. This yields an additional

speedup of about one order of magnitude compared to the
log version (data not shown). The term accounting for emis-
sions and self-transitions within the block can be written
as

Anw−1
j j

(2π)nw/2σ
nw
j

exp

�

−
nw
∑

k=1

(yw,k −µ j)2

2σ2
j

�

.

Any constant cancels out during normalization. Further-
more, exponentiation of potentially small numbers causes
underflows. We hence move those terms into the exponent,
utilizing the much stabler logarithm function.

exp

�

−
nw
∑

k=1

(yw,k −µ j)2

2σ2
j

+ (nw − 1) log A j j − nw logσ j

�

.

Using the block’s sufficient statistics

nw, Σ1 :=
nw
∑

k=1

yw,k, Σ2 :=
nw
∑

k=1

y2
w,k.

the exponent can be rewritten as

Ew( j) :=
2µ jΣ1 −Σ2

2σ2
j

+ K(nw, j),

K(nw, j) := (nw − 1) log A j j − nw

�

logσ j +
µ2

j

2σ2
j

�

.

Note that K(nw, j) can be precomputed for each iteration,
thus greatly reducing the number of expensive function calls.
To avoid overflow of the exponential function, we subtract
the largest such exponents among all states, hence Ew( j)≤
0. This is equivalent to dividing the forward variables by

exp
�

max
k

Ew(k)
�

,

which cancels out during normalization. Hence we obtain

α̃w( j) := exp
�

Ew( j)−max
k

Ew(k)
�

nw
∑

i=1

αw−1(i)Ai j ,

which are then normalized to

α̂w( j) =
α̃w( j)

∑

k α̃w(k)
.
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