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and Verde, 2014b). Clusters 1 and 2 contain 713 and 287 sites,
respectively. Typical distribution examples in each cluster are shown
in Figure 5. Cluster 1 shows two modes for distributions in GBM,
whereas cluster 2 shows heavy-tailed distributions in GBM.

Next, we perform enrichment analysis on gene sets in clusters 1
and 2. We used ingenuity pathway analysis (IPA) for 423 and 184
genes in clusters 1 and 2, respectively, and significantly enriched
pathways in each cluster using Fisher’s exact test. Table ?? shows
five pathways and related genes, ranked with p-values in each
cluster.

Nearly all the pathways in clusters 1 and 2 have been previously
reported as significant pathways in GBM, even though we do not
include any information on GBM. The axonal guidance signaling
pathway in cluster 1 has been suggested as prompting the cell
invasion of GBM (Dominique, et al., 2007). The protein kinase
A (PKA) pathway that is dysregulated has been considered to
trigger the important steps to cancer genesis (Kiran, er al., 2005),
and Prasad, et al., (2003) have indicated that PKA-activated c-
AMP inhibits the proliferation and differentiation of GBM. The
neuregulin signaling pathway in GBM is investigated by Patricia, et
al., (2003), and the effects of death receptor pathway dysregulation
is mentioned in Murphy, et al., (2013), Ziegler, et al., (2008), and
Krakstad, ef al., (2010). In cluster 2, the thioredoxin pathway has
been found to play a key role in cancer, including GBM (Powis,
et al., 2007; Yacoub, et al., 2010), and Lai, ef al., (2014) show that
the transcriptional regulatory network in embryonic stem cells is the
most significant pathway with genome-wide methylation analysis in
GBM. The remaining pathways might be explained elsewhere. Our
prediction using D*M provides a hypothesis that DNA methylation
in these pathways might cause the phenotypical difference between
GBM and LGG.

We further focus on phosphatase and tensin homolog (PTEN) in
neuregulin signaling and protein kinase A signaling pathways, and
then compare the ranking based on p-value by D®M with those by
other methods. The methylation of PTEN promoter is frequent in
LGG and secondary GBM patients, but rare in normal and de novo
GBM patients (John, et al., 2007). In our result, PTEN belongs
to cluster 1, for which the distribution shape for LGG is bimodal,
with the majority and minority being hyper- and hypo-methylation,
respectively, and the distribution for GBM is unimodal with hypo-
methylation. This suggests that demethylation of PTEN in some
LGG might trigger transformation from LGG to GBM. PTEN is
ranked 922" out of 394,363 sites (0.23%) with D*M. However,
PTEN is not included in the top 1,000 sites with Welch and Differ,
being ranked 1 1,424™ out of 394,363 sites (2.89%) with Welch and
10,856™ out of 394,363 sites (2.75%) with DiffVar.

5 DISCUSSION

Here we summarize the advantages and disadvantageseps of DM,
DiffVar, and MMD, which have all been recently developed. These
methods are designed for detecting differential methylation patterns
focusing on cancer heterogeneity, which is caused by epigenetic
instability and diversity. Cancer heterogeneity can often be confused
with outliers. In fact, in our simulations and real data analysis,
DiffVar, which is robust to outliers, regards important features of
heterogeneity as outliers, and as a result, it fails to detect differential
methylation sites. For example, DiffVar detects simulation case 2 as
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Fig. 3. Heat map of GBM 145 samples (upper) LGG 530 samples (lower)
with top 1000 sites

differential methylation, even though we set the mean and variance,
but not the shapes, to be the same for the two groups. This is because
DiffVar deals with minority distributions as outliers and evaluates
only those in the majority.

In general, the significance of an outlier depends on the
context of analysis (Aggarwal, 2013). When an outlier arises from
measurement error not relevant to signals of interest, we must
remove them prior to analysis. In contrast, when an outlier arises
from an unusual event including new findings that we seek, we use
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Table 3. Pathways detected with the proposed method

Cluster ~ Pathway —log(P-value) Genes
Cluster 1 ~ Axonal Guidance Signaling 3.96 (C9orf3, NFATC4, PLCD1, EFNB2, SEMA6B, GNAO1
SEMAZ3E, EPHB4, ADAMS, NTN1, TUBAS, ITGAS
ITGA2, EPHA2, NFATCI1, MET, EFNA1, PDGFA
PRKCZ, BMP7, SEMASA
Proten Kinase A Signaling 3.73 NFATC4, PLCDI, PTPN14, CDC14B, PTEN, PDE4A
PYGL, NTN1, PTPRN, TGFB2, NFATC1, PDESA
DUSPS5, CNGA3, PDE4D, PTPRA, SIRPA, PRKCZ
ADCY9
Neuregulin Signaling 3.53 PTEN, PICK1, ITGA2, NRG3, NRG2
PRKCZ, ITGAS, GRB7
Death Receptor Signaling 340 CFLAR, ACTGI, ACTCI1, TNFSF10, PARP14, CASP8
BIRC3, CASP6
Adipogenesis pathway 3.10 BMPR2, NFATC4, ARNTL, CTBP2, ZNF423, KLF5
RPS6KA1, BMP7, FGFRLI1
Cluster 2 Thioredoxin Pathway 3.01 NXN, TXNRDI
Transcriptional Regulatory Network in Embryonic Stem Cells 2.37 MEIS1, ZFHX3, SET
Vitamin-C Transport 2.25 NXN, TXNRDI
Hepatic Fibrosis / Hepatic Stellate Cell Activation 2.24 KLF6, BCL2, COL21A1, TGFB2, COL9A1, COL9A2
Factors Promoting Cardiogenesis in Vertebrates 2.16 BMP8A, TGFB2, PRKCB, DKKI1
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Fig. 4. Q-Q plot of significance and insignificance for top 1,000 sites
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them for further analysis. In this case, cancer heterogeneity could
be regarded as an abnormal event compared with normal cases, and
thus must be included in the analysis.

MMD is designed to detect higher-order changes, such as shape
in methylation profiles based on kernels (Mayo, et al., 2014).
However, in our simulation, p-value does not work in the sense
of type I error control. M®D based on MMD also cannot derive
p-values, substantially just ordering distances over regions. Then,
we cannot evaluate error rates probabilistically, which could be a
crucial disadvantage when working with actual data.

D3M detects differences of all moments with underlying
distributions based on the Wasserstein metric.

Simulation results indicate that D3M can detect not only shape
differences but also mean and variance differences, as effectively
as Welch and DiffVar. Thus, the proposed method can be applied
to differential methylation analysis for general purposes. The
limitation of DM is that it requires sufficient sample size to
construct distribution values to some extent. Empirically, because
quantiles are used in the calculation of the Wasserstein metric, it
requires at least 100 samples. The statistical test relies on resampling
and requires computational time to calculate p-values. However, we
could reduce the resampling time using a semi-parametric approach
(Knijnenburg, et al., 2009).

6 CONCLUSION

In this study, we proposed a novel method, D®*M, for detecting
differential methylation sites based on distribution-valued data.
We showed that distribution shape includes interesting information
other than that found using mean- and variance-based methods.
A simulation study indicated that D®M can detect differential
methylation sites in various cases of distributions for which other
methods, Welch, DiffVar, KS, MWW, and MMD, failed.

In the application to the GBM and LGG dataset in the TCGA
cohort, we identified 1,000 sites with the smallest p-values. Most
of the sites detected by D*M show strong heterogeneity and tend
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to be hyper- and hypo-methylated in LGG and GBM, respectively,
as found in previous studies. Furthermore, mean-, variance-, and
shape-based methods mutually detected differential methylation
sites, because overlapped sites included up to approximately 20%
of each other. Thus, distribution shape differences can provide new
insights regarding methylation patterns.

Since the GBM and LGG dataset contains a large number
of significantly different sites, including 55,796, 254,334, and
178,395 sites for D®M, Welch, and DiffVar, respectively, at the
1% significance level, it is difficult to understand the methylation
patterns at these sites. In the future, it would be of interest to develop
a method that describes the diversity of methylation patterns.
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