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Abstract  14	
  

Species may evolve on a reticulate network due to hybridization or other gene flow rather than 15	
  

on a strictly bifurcating tree, but comparative methods to deal with trait evolution on a network 16	
  

are lacking. We create such a method, which uses a Brownian motion model. Our method seeks 17	
  

to separately or jointly detect a bias in trait value coming from hybridization (𝛽) and a burst of 18	
  

variation at the time of hybridization (𝑣!) associated with the hybridization event, as well as 19	
  

traditional Brownian motion parameters of ancestral state (𝜇) and rate of evolution (𝜎!) of 20	
  

Brownian motion, as well as measurement error of the tips (SE). We test the method with 21	
  

extensive simulations. We also apply the model to two empirical examples, cichlid body size and 22	
  

Nicotiana drought tolerance, and find substantial measurement error and a hint that hybrids have 23	
  

greater drought tolerance in the latter case. The new methods are available in CRAN R package 24	
  

BMhyd. 25	
  

 26	
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Various comparative methods have been proposed to deal with the fact of non-independence of 31	
  

species due to shared history on a phylogenetic tree (Felsenstein 1985, 2008; Cheverud et al. 32	
  

1985; Grafen 1989; Gittleman and Kot 1990; Hansen 1997; Lynch 1991; Housworth et al. 2004; 33	
  

Butler and King 2004; O’Meara et al. 2006; Hansen et al. 2008; Beaulieu et al. 2012) as well as 34	
  

many other problems, ranging from ancestral state estimation (Schluter et al. 1997) to estimating 35	
  

the effect of traits on diversification rates (Maddison et al. 2007) to predicting extinction risk 36	
  

(Cardillo et al. 2006). However, hybridization, a fairly common process (Mallet 2005, 2007; 37	
  

Riesberg 2006), results in species being related in a phylogenetic network rather than a tree 38	
  

(Arnold 1996; Doolittle 1999; Otto and Whitton 2000; Linder and Rieseberg 2004; Huson et al. 39	
  

2010; Nakhleh 2011), and this reality is not yet accomodated by existing comparative methods. 40	
  

Due to the importance of hybridization as a process, numerous methods have been developed to 41	
  

infer phylogenetic reticulate networks (for simplicity, we refer to these as “networks”) rather 42	
  

than trees (e.g., Sang and Zhong 2000; Weigel et al. 2002; Bryand and Moulton 2004; Moret et 43	
  

al. 2004; Huson and Bryant 2006; Joly et al. 2009; Kubatko 2009; Meng and Kubatko 2009; 44	
  

Wang et al., 2013; Willson, 2013; Wu, 2013). We thus stand at a point where phylogenetic 45	
  

networks will increasingly be inferred but we lack comparative methods to properly use this 46	
  

information. 47	
  

 48	
  

A species formed as a hybrid of two parental species can differ from its parents in important 49	
  

ways. Due to transgressive segregation (Rieseberg et al. 1999), hybrids may have trait values 50	
  

outside those of their parental species. If we consider species’ trait values evolving through time 51	
  

in a Brownian motion random walk, this transgressive segregation can be modeled in a few 52	
  

different ways. For example, if hybrids are on average 10% larger than their parent species, this 53	
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could be modeled by a shift in mean trait value associated with hybridization. If processes like 54	
  

transgressive segregation lead to difference from parents but with no consistent trend in direction 55	
  

across many hybrid events, this could be modeled as a burst of variation at the time of the hybrid 56	
  

event. Hybrids may also evolve at different rates than parental species, especially if they are 57	
  

formed from polyploidization (Ainouche et al. 2008). This could be reflected in a different rate 58	
  

parameter for hybrid species than for non-hybrids. Finally, hybrids may not be formed equally 59	
  

from both parental species. For example, one “hybrid” species may have formed through regular 60	
  

allopatric speciation of a single species, plus a few genes introgressed from a neighboring 61	
  

species. If a phenotypic trait value represents the additive result of multiple quantitative loci, an 62	
  

appropriate model would treat the hybrid trait mean as being a weighted average of the two 63	
  

parental species’ means, with the weighting based on the relative genetic contributions of each 64	
  

parent.  65	
  

 66	
  

In this work, we propose a new comparative method to study trait evolution under phylogenetic 67	
  

networks. This method allows for estimation of traditional evolutionary parameters such as rate 68	
  

and overall mean under a Brownian motion model while also allowing investigation of trait 69	
  

evolution occurring as a result of the hybridization process. We test our model with simulations 70	
  

and investigate two empirical datasets of cichlid and Nicotiana (tobacco and relatives). 71	
  

 72	
  

METHODS 73	
  

Brownian Motion for Trait Evolution  74	
  

Brownian motion (BM) is a general model for unbounded continuous trait evolution 75	
  

commonly used in phylogenetics (Felsenstein 1985). Biologists often incorrectly believe this 76	
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is only a model for traits evolving under genetic drift, but in fact a variety of biological 77	
  

mechanisms can lead to this same model, such as selection towards an optimum that changes 78	
  

due to multiple factors through time, drift-mutation balance, an evolutionary trend, as well as 79	
  

pure genetic drift (Hansen & Martins 1996). Under Brownian motion, the variance of a trait 80	
  

is proportional to evolutionary time multiplied by the rate of evolution, 𝜎!. Therefore, given 81	
  

a phylogenetic tree the covariance among species can be represented by the shared branched 82	
  

length on the phylogenetic tree.  Figure 1 shows a three-taxon phylogenetic network with 83	
  

gene flow. 84	
  

 85	
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Figure 1: Three taxon network with extant species X, R and Y. Species C and species D are the 86	
  

immediate parents of species B; in this example, it gets 75% of its genes from C, 25% from D. 87	
  

This network can be thought of as a tree (the black edges) combined with gene flow from A via 88	
  

D into B (the gray edges). D’s descendant, E, is not in the final tree that is used (X,(R,Y)) either 89	
  

through extinction or not being sampled. Thus, even though gene flow must occur between 90	
  

coeval species, the effective path of gene flow from the X lineage to the R lineage occurs starting 91	
  

at time 𝑡!, not time 𝑡! + 𝑡!, the actual origin of the hybrid: the changes occurring on the X 92	
  

branch in the 𝑡! time interval cannot be shared with the hybrid B. The dashed arrow starting at 93	
  

time 𝑡! and ended at time 𝑡! + 𝑡! thus indicates the effective gene flow from A to B. 94	
  

 95	
  

This represents a scenario where at time 𝑡!, there was a speciation event: one branch led to X, 96	
  

and the other led to a species D that eventually went extinct (E) or was otherwise unsampled 97	
  

in this analysis. However, at time 𝑡! + 𝑡!, species D exchanged genes with the species at C 98	
  

to form a hybrid species, B, which survived to be sampled species R. Though gene flow only 99	
  

occurs between taxa occurring at the same point in time (D and C), due to extinction it can 100	
  

look like flow forward in time: the shared history of R with X is not from when D exchanged 101	
  

genes (time 𝑡! + 𝑡!) but earlier, time 𝑡!: changes on the A to D branch are not shared 102	
  

between X and R. Thus, the dashed line shows the effective path leading to the covariance of 103	
  

the observed tips, rather than the path from A to D to B and thus to R. The corresponding 104	
  

variance-covariance matrix for the extant species X, R, Y for the tree model (black edges 105	
  

only) is given by the matrix 𝐕𝒔 as following 106	
  

                      𝑋                                                                   𝑅                                                                       𝑌 
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             𝐕𝒔 =    

𝑋
𝑅
𝑌

            𝜎!(𝑡! + 𝑡! + 𝑡!) 0 0
0           𝜎!(𝑡! + 𝑡! + 𝑡!)           𝜎!(𝑡! + 𝑡!)
0           𝜎!(𝑡! + 𝑡!)           𝜎!(𝑡! + 𝑡! + 𝑡!)

. 107	
  

 108	
  

Now consider the trait evolution includes the gene flow (dashed arrow). Let the trait value  109	
  

of the root state O be µ. By assuming species evolve under Brownian motion (variables  110	
  

are measured in log scale in comparative analysis), the trait values at species D and  111	
  

species C are µ!  =  µ  + ε! and µ!   =  µ + 𝜀! , respectively, where ε! and  ε!  can be regarded 112	
  

as error terms that follow a normal distribution with zero mean and variance  113	
  

𝜎!(𝑡! + 𝑡!). Under our model, the hybrid species B, at the moment of hybridization, 114	
  

assumes the value µ!, defined as  115	
  

µ! =   𝑚µ! + 1−𝑚 𝜇! + log𝛽 

which follows a normal distribution with mean 𝜇 + log𝛽 and variance 𝜎!(𝑡! + 𝑡!). The 116	
  

parameter 𝑚 measures the proportion of the hybrid trait value inherited from parent D while 117	
  

1−𝑚 measures the proportion the hybrid inherits from parent C (𝑚 is bounded between 118	
  

zero and one). If the hybrid species is formed mostly from individuals of species D, with 119	
  

only some gene flow from species C, then for a polygenic quantitative trait, 𝑚 might be 120	
  

much closer to one. In particular, 𝑚 = 0.5 indicates inheriting the trait equally from both 121	
  

parents. In the absence of information to the contrary, 0.5 represents a reasonable value to 122	
  

use. The parameter β governs the possible bias in trait value as a result of hybridization. If 123	
  

there is a bias that leads to greater fitness, this is often called heterosis or hybrid vigor; if 124	
  

there is a bias that leads to lower fitness, this may be called outbreeding depression. Here we 125	
  

care about trait values, not their fitness effects, but hybrid means may be thought of in the 126	
  

same way, in that they may be something other than the average of their parents. For 127	
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example, if there exist widespread heterosis, with hybrids being on average 20% larger than 128	
  

their parent species, β would be 1.2. The natural lower bound for β is zero and the upper 129	
  

bound is arbitrary; a value of 1 indicates that the hybrid is just a weighted average of its 130	
  

parents. Brownian motion assumes that an increase or decrease by a certain amount has the 131	
  

same probability regardless of a trait value. This is often not the case for raw measurements: 132	
  

an increase or decrease of mass by 1 kg over a million years is far likelier for an elephant 133	
  

species than for a mouse species. However, they both might be equally likely to increase or 134	
  

decrease their mass by 1%. It is thus typical to log transform raw values to meet this 135	
  

assumption. Therefore, we add the log parameter, log𝛽, to represent log scale bias for the 136	
  

hybrid at formation. Here we assume that µ!, µ!   and µ!  were in log scale already (i.e. the 137	
  

representation in raw scale is 𝑒!! = 𝛽𝑒!"!!(!!!)!!). To model a process like transgressive 138	
  

segregation, where a hybrid can deviate from the range of parental values but without a 139	
  

particular bias, non-negative variance 𝑣! is added to lengthen the hybrid branch, equivalent 140	
  

to adding a burst of variation due to the hybridization event. Therefore, we have V𝑎𝑟 𝑋 =141	
  

𝑉𝑎𝑟(𝑌) = 𝜎!(𝑡! + 𝑡! + 𝑡!) and V𝑎𝑟 𝑅 = 𝜎!(𝑡! + 𝑡! + 𝑡!)+ 𝑣!. To allow hybrid species 142	
  

to have different rates of evolution than non-hybrid species, one would just require 143	
  

modifying this variance to be V𝑎𝑟 𝑅 = 𝜎!!𝑡! + 𝜎! 𝑡! + 𝑡! + 𝑣!, where the new term 𝜎!! is 144	
  

the rate of evolution in hybrids. We currently limit the model to the one where the hybrid 145	
  

and non-hybrid species have the same rate (𝜎!! = 𝜎!). The corresponding variance-146	
  

covariance matrix for the species 𝑋,𝑅,𝑌 for the network model under the assumption of the 147	
  

BM process for trait evolution is given by the matrix  148	
  

𝑽𝑹 as following      149	
  

                        𝑋                                                                                             𝑅                                                                                                 𝑌 
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𝑋
𝑅
𝑌

      𝜎!(𝑡! + 𝑡! + 𝑡!) 𝜎!𝑚𝑡! 0
𝜎!𝑚𝑡!           𝜎!(𝑡! + 𝑡! + 𝑡!)+ 𝑣!    𝜎! 1−𝑚 (𝑡! + 𝑡!)
0 𝜎! 1−𝑚 (𝑡! + 𝑡!)       𝜎!(𝑡! + 𝑡! + 𝑡!)

 

     

Furthermore, measurement error can be substantial, and it has the effect, if ignored, of 150	
  

leading to larger estimates of rates on tip branches. We deal with this (following a suggestion 151	
  

in O’Meara et al. (2006)) by adding a parameter, SE, to the diagonals of 𝐕𝑹 to represent 152	
  

measurement error. The final 𝐕𝑹 thus becomes: 153	
  

    154	
  

                        𝑋                                                                                             𝑅                                                                                                 𝑌 

            
𝑋
𝑅
𝑌

      𝜎!(𝑡! + 𝑡! + 𝑡!)+ SE 𝜎!𝑚𝑡! 0
𝜎!𝑚𝑡!           𝜎!(𝑡! + 𝑡! + 𝑡!)+ 𝑣! + SE   𝜎! 1−𝑚 (𝑡! + 𝑡!)
0 𝜎! 1−𝑚 (𝑡! + 𝑡!)       𝜎!(𝑡! + 𝑡! + 𝑡!)+ SE

 

  155	
  

Given traits 𝑦!,𝑦!,⋯ ,𝑦! (in log scale) for 𝑛 species some of which are hybrids, the column 156	
  

vector 𝐘 = 𝑦!,𝑦!,⋯ ,𝑦! ! can be treated as a multivariate normal random variable given an 157	
  

assumption of Brownian motion. i.e. 𝐘  ~  𝑀𝑉𝑁(𝝁,𝐕𝑹  ) where 𝝁 = 𝜇!, 𝜇!,⋯ , 𝜇! ! and 158	
  

𝜇! = 𝜇 or 𝜇 + log𝛽 is the mean for usual species or the mean for hybrid species, 159	
  

respectively, and VR is calculated as above given the tree (with branch lengths) T, structure 160	
  

of gene flow 𝑫!!,!!,!, and parameters µμ,𝜎!, 𝑣! , and  𝛽 . The negative log likelihood function 161	
  

given these  is 162	
  

−log 𝐿 µμ,𝜎!, 𝑣! ,𝛽 𝐘,𝑻,𝑫!!,!!,! =
𝑛
2 log 2𝜋 +

1
2 log  |𝐕𝑹|+

1
2 (𝐘− 𝝁)

!𝐕𝑹!!(𝐘− 𝝁) 
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where   |𝐕𝑹| is the determinant of  𝐕𝑹 and (𝐘− 𝝁)! is the transpose of (𝐘− 𝝁). 𝐃!!,!!,! 163	
  

contains information on gene flow. It must be provided by the user, and indicates donors, 164	
  

recipients, and the time of hybridization events. 165	
  

  166	
  

Numerical problems  167	
  

It is known that the variance covariance matrix of the phylogeny can be ill-conditioned: the 168	
  

matrix can be effectively singular, which makes dealing with its inverse, as required to 169	
  

calculate the likelihood, numerically difficult. Anecdotally, this seems to occur more 170	
  

frequently for phylogenetic networks than trees. One approach would be to just prohibit 171	
  

analyses if this is the case. This is practically problematic: a biologist spending years 172	
  

gathering data and a tree could find her or his analysis stymied just due to the structure of the 173	
  

network. Instead, we opted for an approximate solution a user may choose to apply (though 174	
  

the default is not to do this). We evaluate the condition by taking the variance covariance 175	
  

matrix and calculating the determinant of it, of it multiplied by 1000, and of it multiplied by 176	
  

0.0001. If all three determinants are positive, the matrix is more likely to be well-conditioned, 177	
  

no matter the parameter estimates (which, in the case of 𝜎!, 𝑣! and SE, may change the 178	
  

magnitude of entries). If it fails this test, we lengthen terminal branch lengths slightly and try 179	
  

again, repeating until the maximum number of tries (by default, 100, causing the terminal 180	
  

branch lengths, likely to be in units of millions of years, to be increased by just 0.001). If it is 181	
  

still ill-conditioned, the analysis aborts; otherwise, it continues, but will only return an 182	
  

approximate answer. This adjustment is done to the original tree, before fitting parameters; 183	
  

regardless of whether that was done, the matrix may also be poorly conditioned for some 184	
  

parameter combinations, resulting in numerical errors in calculation of likelihood. During a 185	
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run, the log of the condition number of the final variance covariance matrix is measured and 186	
  

compared to a set precision; if this value exceeds the precision, numerical problems may 187	
  

ensue. We approximate what the likelihood would be given the problematic variance 188	
  

covariance matrix by calculating the likelihood with a series of better conditioned ones (by 189	
  

decreasing the magnitude of off diagonal elements while increasing the magnitude of 190	
  

diagonal elements), and then predicting the likelihood with no such transformation from a 191	
  

smooth spline extrapolation of the likelihood from matrices with decreasing magnitude of 192	
  

transformations. This approximation is turned off by default, but can be helpful if the 193	
  

maximum likelihood estimates occur in a problematic region. The transformation of the 194	
  

mean vector proceeds similarly. 195	
  

 196	
  

Assessing the general performance of the model 197	
  

We assessed the performance of our model, varying (i) the number of non-hybrid taxa (30 or 198	
  

100), (ii)  the number of hybrids (1, 5, or 10), (iii) the proportion of flow of hybrid inherited 199	
  

from the parents (all from one parent, 10% from one and 90% from the other, or equally 200	
  

from both parents), (iv) the structure of hybridization, (v) the value of 𝛽 (0.1, 1, or 10), and 201	
  

(vi) the value of 𝑣! (0, 10, or 100). For each replicate we simulated a bifurcating tree of 30 202	
  

or 100 taxa using TreeSim (Stadler 2009), with a birth rate of 1, death rate of 0.5, sampling 203	
  

frequency of 0.5, and tree height of 50. We then added 1, 5, or 10 species of hybrid ancestry 204	
  

to the tree in one of two ways. The first was to attach those taxa randomly around the tree, 205	
  

but forcing each to arise from its own hybridization event: that is, no hybrid species 206	
  

subsequently speciated. The second was to have just one hybridization event on the tree, and 207	
  

have this lead to the observed number of species of hybrid origin through speciation of the 208	
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original hybrid. Different simulations differed in the ratio of genes coming from the two 209	
  

parents: it could be all from one parent (a flow of 0: this is equivalent to a tree model); 10% 210	
  

from one parent and 90% from the other; or 50% from each parent. Other parameter values 211	
  

fixed in the model were 𝜇 = 1, 𝜎 = 0.01, and SE = 0. All simulations were carried out by 212	
  

the BMhyd package. After the runs were done, we looked at deviation (absolute value of the 213	
  

difference between the observed and true parameter value, divided by the true parameter 214	
  

value (if it is nonzero)). We regressed this for each parameter of interest against the values 215	
  

used in our simulation: tree type, flow magnitude, number of non-hybrid taxa, number of 216	
  

hybrid taxa, and how a summary of the parameters could be calculated (using only the best 217	
  

of four models, doing model-averaging across all four models, or doing model-averaging 218	
  

across the models with 𝑣! fixed). The two 3-state values (flow and summary approach) were 219	
  

converted into two binary variables each. The package MuMIn (Barton 2015) was used to 220	
  

estimate the Akaike importance and coefficients for each of these parameters. The goal of 221	
  

this was to allow us to focus figures and discussion on the simulation parameters that had a 222	
  

strong effect on the relative error, rather than try to plot the seven dimensions of variation 223	
  

used in the simulations.  224	
  

 225	
  

Empirical test cases 226	
  

 227	
  

Simulations are essential in examining a new method to verify that it is working well enough 228	
  

in choosing models and estimating parameters. However, it can also be useful to run 229	
  

empirical datasets, both to make new discoveries using a new method and to verify that a 230	
  

method operates smoothly on real, messy data. Unfortunately, as the true model or parameter 231	
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estimates are not known from empirical data, information about accuracy may only come 232	
  

from the simulations, but empirical results can show other problems. In this paper, we look 233	
  

at hybridization in two examples: cichlid body size evolution, using a network from 234	
  

Kobmüller et al. (2007) and data from FishBase (Froese and Pauly 2010), and tobacco and 235	
  

relatives, using a network from Chase et al. (2003) and drought tolerance data from Komori 236	
  

et al. (2000).  237	
  

 238	
  

Cichlids 239	
  

Cichlids are notorious for widespread hybridization; their phylogeny is difficult due to 240	
  

presumed hybrid origin or ongoing gene flow. In fact, some may be going extinct due to 241	
  

merging through hybridization (Rhymer and Simberloff 1996). They thus reflect a good test 242	
  

case for this method. Kobmüller et al (2007) developed a phylogeny for cichlids which, 243	
  

importantly, included information about hybrid species and their presumed direction of 244	
  

ancestry. To replicate their tree, we downloaded their sequences from GenBank (Benson et 245	
  

al. 2005). The sequences were aligned by MAFFT (Katoh and Standley 2013) and 246	
  

subsequently inspected in Mesquite (Maddison and Maddison 2011) to trim ends of 247	
  

sequences for only a small subset of taxa. A backbone constraint was made from Kobmüller 248	
  

et al (2007)’s overall hybrid tree in Mesquite and used in all subsequent searches. The 249	
  

aligned sequences were then analyzed under the software PAUP (Swofford 2003) for 250	
  

parsimony tree search. The searched best-rooted tree was taken and was used to set to 251	
  

likelihood of GTR+ Γ substitution model with clock. We filtered for best under this model 252	
  

and then did a search limited to 10 hours to resolve branch lengths. Trait values (total body 253	
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length of cichlids) were collected from FishBase (Froese and Pauly 2010) using the R 254	
  

package rfishbase (Boettiger et al. 2012).  255	
  

 256	
  

In Kobmüller et al. (2007), the cichlid data contains 27 species where five species are 257	
  

putative hybrids. Three of the five hybrid species (Neolamprologus wauthioni, Lamprologus 258	
  

speciosus, and Neolamprologus fasciatus) are inferred to have arisen due to mating between 259	
  

extant species and two of them (Lamprologus meleagris, Neolamprologus multifasciatus) are 260	
  

inferred to be formed as a result of hybridization between extinct lineages. As in Fig. 1, this 261	
  

results in the gene flow appearing to be forward in time from at least one relative of the 262	
  

parental species.  263	
  

 264	
  

Nicotiana  265	
  

 266	
  

This group contains tobacco and relatives. Their relationships were long suspected to be 267	
  

reticulate (Godspeed 1954), and this was supported by Chase et al. (2003) in a work based 268	
  

on internal transcribed spacer region (ITS) and in situ hybridization. We followed the same 269	
  

procedure as for the cichlid dataset in returning a chronogram, except that we did not use 270	
  

Chase et al.’s parsimony trees as constraints. The crown age was set to 15.3 MY, following 271	
  

Clarkson et al. (2005). Taxa of hybrid origin and the placement of hybridization events were 272	
  

pulled from Chase et al.’s results; timing of events came from branch lengths on the 273	
  

chronogram, where the donor and recipient times were set to be equal (thus, no postulate of 274	
  

extinct intermediate hybrid parents) and to occur at the origin of the hybrid taxon. The 275	
  

relative seedling growth under mannitol treatment dataset from Komori et al. (2000) was 276	
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extracted from their Table 2. We note that this number is a proportion, thus not quite meeting 277	
  

the expectations of Brownian motion (unbounded traits); we log transformed it, but this is 278	
  

still an imperfect fix. We used iPlant TNRS (Boyle et al. 2013) to convert the taxon names 279	
  

from both datasets to the same taxonomy, and Geiger (Harmon et al. 2008) to prune the tree 280	
  

and data to the same taxon set.  Figure 2 represent the evolutionary tree and the gene flow for 281	
  

both cichlid and tobacco. The donor-recipient relationship among the hybrids and their 282	
  

parents in the cichlid and Nicotiana datasets can be found in Supplemental material.  283	
  

 284	
  

 285	
  

Figure 2: The empirical networks. Species in red are of putative hybrid origin. Red arrows 286	
  

show movement from a parent to a new hybrid lineage; in cases where only one arrow is 287	
  

shown leading to a lineage, it is because the hybrid lineage comes from its sister species on 288	
  

the tree plus the source of the arrow. Arrows appearing to move forward in time show 289	
  

transfer via an unsampled lineage (see explanation on Fig. 1). 290	
  

 291	
  

 292	
  

Cichlid

Julidochromis ornatus
Telmatochromis vittatus
Variabilichromis moorii
Neolamprologus brevis
Lamprologus callipterus
Altolamprologus calvus
Altolamprologus compressiceps
Lamprologus meleagris
Lamprologus ocellatus
Lamprologus speciosus
Neolamprologus wauthioni
Lepidiolamprologus elongatus
Lepidiolamprologus profundicola
Neolamprologus boulengeri
Lepidiolamprologus attenuatus
Neolamprologus hecqui
Neolamprologus meeli
Neolamprologus leloupi
Lamprologus lemairii
Neolamprologus caudopunctatus
Neolamprologus fasciatus
Neolamprologus multifasciatus
Neolamprologus similis
Lamprologus ornatipinnis
Lamprologus kungweensis
Lamprologus laparogramma
Lamprologus signatus

Nicotiana

N. spegazzinii
N. glauca
N. noctiflora
N. petunioides
N. glutinosa
N. arentsii
N. undulata
N. thyrsiflora
N. wigandioides
N. benavidesii
N. raimondii
N. cordifolia
N. solanifolia
N. paniculata
N. knightiana
N. rustica
N. clevelandii
N. bigelovii
N. miersii
N. pauciflora
N. acuminata
N. attenuata
N. sylvestris
N. nudicaulis
N. repanda
N. nesophila
N. stocktonii
N. africana
N. fragrans
N. occidentalis
N. debneyi
N. rotundifolia
N. amplexicaulis
N. cavicola
N. suaveolens
N. gossei
N. velutina
N. goodspeedii
N. exigua
N. rosulata
N. maritima
N. benthamiana
N. excelsior
N. umbratica
N. simulans
N. ingulba
N. megalosiphon
N. forgetiana
N. bonariensis
N. alata
N. langsdorffii
N. longiflora
N. plumbaginifolia
N. otophora
N. setchellii
N. tomentosa
N. kawakamii
N. tomentosiformis
N. tabacum
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Model Selection and Parameter Estimation 293	
  

  294	
  

We tried four different models for each empirical dataset. All fix the gene flow 𝑚 = 0.5 and 295	
  

allow 𝜇, 𝜎!, and SE to be optimized. They differ in the settings for mean change in the 296	
  

hybrid 𝛽 and the hybrid variation at formation 𝑣!. Model 1 fixes 𝛽 at 1 but allows 𝑣! to 297	
  

vary; Model 2 allows 𝛽 to vary but fixes 𝑣! at 0; model 3 fixes 𝛽 at 1 and 𝑣! at 0 and model 298	
  

4 allows both to vary. We fit those models to both cichlid and tobacco datasets.   299	
  

 300	
  

Adaptive confidence intervals sampling 301	
  

Uncertainty in parameter estimates can be substantial. One way of estimating this can be 302	
  

looking at the curvature of the surface at the maximum likelihood optimum, but this is 303	
  

known to be problematic when the likelihood function is not regular (Pawitan 2013). A 304	
  

different approach, advanced by (Edwards 1992) is to look at a confidence region of all 305	
  

points that generate a log likelihood within a certain range (often, set to be a delta of 2 log 306	
  

likelihood units) of the maximum likelihood. One approach to calculate this would be to 307	
  

vary each parameter on its own while holding the others constant. This is convenient and fast 308	
  

to implement, but can result in artificially small confidence intervals. For example, if two 309	
  

parameters a and b covary such that the likelihood is the same as long as 𝑎 = 0.7𝑏, the 310	
  

likelihood changing just a or just b would drop off very quickly, but there’s a ridge 311	
  

containing a wide array of a and b values that would not affect the likelihood. Thus, we 312	
  

chose to examine varying all parameters at once, so that if there is a ridge or other structure 313	
  

for the likelihood surface we do not overestimate our certainty. While there are many 314	
  

algorithms to find the peak of a surface, there are fewer to find the entirety of a region two 315	
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log likelihood units below the peak. We thus developed a Monte Carlo method to estimate 316	
  

this. We start by simulating points using a multivariate uniform centered on the maximum 317	
  

likelihood estimates. The likelihood at each of these points is calculated. The algorithm 318	
  

periodically checks to make sure half the points are within the region and half are outside. If 319	
  

too many are within the cutoff of the peak likelihood, there is not good enough sampling of 320	
  

the boundaries of the confidence region and the sampling width is increased; if there are too 321	
  

many that have values too far from the optimal likelihood, the sampling width decreases. For 322	
  

a given parameter value, we thus calculate the likelihood over a range of values for the other 323	
  

parameters, giving a more realistic, less conservative confidence interval. Note, however, 324	
  

that this merely examines uncertainty due to flatness of the likelihood surface: there can be 325	
  

substantial additional sources of uncertainty from tree topology or branch length uncertainty, 326	
  

problems with measurements beyond what a fixed measurement error can address, or other 327	
  

issues.  328	
  

 329	
  

Software and Data 330	
  

We have implemented this model in R (R team 2015) in the BMhyd package (on CRAN). It is 331	
  

open source, and includes functions for fitting models on networks, visualizing gene flow on 332	
  

networks, and even simulating random networks. It uses functions or code from Geiger (Harmon 333	
  

et al. 2008), phytools (Revell 2012), TreeSim (Stadler 2014), ape (Paradis 2004). All relevant R 334	
  

code and data files in this work can be found at Dryad Digital Repository  335	
  

LINK NEED.  336	
  

 337	
  

RESULTS 338	
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Simulation for Assessing General Performance of Models 339	
  

 340	
  

Overall we were not pleased with performance: looking at just the simulations with the best 341	
  

chance for good results (flow rate of 0.5, 100 non-hybrid taxa, 10 hybrid taxa) there was often 342	
  

quite poor correlation between the estimates of parameters 𝑣! and 𝛽 and the true values (SE, 𝜇, 343	
  

and 𝜎! performed far better, but they are not interesting parts of our model). Experimenting with 344	
  

the results suggested that model averaging or just taking the parameter estimates from the best 345	
  

model had about the same performance; using models where only 𝛽 varied performed better than 346	
  

models where 𝑣! varied. We investigated this, and other elements of the simulation, by doing a 347	
  

regression where we found importance and coefficients of parameters by dredging (using all 348	
  

subsets of the global model, and using Akaike weights to calculate importance). This suggested 349	
  

that choosing model-averaged or best model only parameter estimates did not matter much 350	
  

(importance of 0.27) but using models with 𝑣! fixed was important for estimating 𝑣!  351	
  

(importance of 1.00), less so for 𝛽 (importance of 0.27) [and important for the other three free 352	
  

parameters], but the sign of the coefficient, negative for both 𝑣! and 𝛽, suggested that limiting 353	
  

models to those with 𝑣! fixed reduced error in both 𝛽 and, oddly, 𝑣!. Tree type was not 354	
  

important. This surprised us: for ten hybrid taxa, having them the outcome of ten independent 355	
  

hybrid events should give much more information about the hybridization process than ten 356	
  

hybrids descended from one event in the past. However, inspecting the parameter estimates 357	
  

coming from trees with each simulation scenario also suggested they performed very similarly. 358	
  

Summaries later in the paper thus merge trees of both types. Flow and number of hybrid and 359	
  

nonhybrid taxa were found to be important. 360	
  

 361	
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Model-averaged parameter estimates for the most relevant parameters 𝛽 and 𝑣! in simulations 362	
  

are shown in Fig.3; following the information on importance, above, we grouped results 363	
  

regardless of hybridization type, and only show results with equal flow from both parent species 364	
  

(though results were similar with flow of 10% from one parent and 90% from the other, as well 365	
  

as, oddly, flow from only one parent). The estimates for all parameters, using model averages 366	
  

from the set of all models and from the set of models that had 𝑣! fixed at zero, are shown in 367	
  

Supp Fig 1.  368	
  

 369	
  

 370	
  

 371	
  

Figure 3 caption: Shown are estimates for 𝛽 (left) and 𝑣! (right) under the simulations. Gray bar 372	
  

shows the true values, dot shows the median model averaged estimate across simulations, and 373	
  

error bars show the range for 95% of the simulations. “i”, “v”, and “x” represent simulations 374	
  

with 1, 5, or 10 hybrid taxa; 30 or 100 refers to the number of non-hybrid taxa. Note 𝛽 estimates 375	
  

often centered on the true value, while 𝑣! was often very wrong. 376	
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 377	
  

Even for 𝛽, however, there is cause for concern. Though the median estimates across simulations 378	
  

were fairly close to the true values, the range across simulation replicates was still quite extreme. 379	
  

For example, for 100 taxon trees with 10 hybrids, the “best case” scenario we examined, if 𝛽 was 380	
  

truly 1.0, indicating no expected bias between the hybrid and the mean of its parents, estimates 381	
  

of beta ranged from 0.13 to 5.14; that is, if we were looking at an organism whose parent species 382	
  

were each 100g, and we used log(mass) as the trait undergoing Brownian motion, the expected 383	
  

mass of the hybrid would be anywhere from 13g (=exp(log(100) + log(0.13)) to 514g according 384	
  

to the estimates. Across the range of the 675 simulations that completed (some with 30 385	
  

nonhybrid taxa and only one hybrid taxon), where the true value of 𝛽 was 1, the expected mass 386	
  

of a hybrid of two 100g species based on the estimated 𝛽 could be anywhere from 0.00001 g to 387	
  

10,707,208 g.  388	
  

 389	
  

Assessing Model Identifiability through Jointly Estimating Parameters  390	
  

The shape of the likelihood surface provides the ability to estimate parameter values: if the 391	
  

surface is flat, there is little support for a parameter estimate. In some cases, like the trend 392	
  

parameter for Brownian motion with a trend for coeval taxa, no amount of data is adequate to 393	
  

estimate the parameter: this parameter is formally non-identifiable. There is also a softer 394	
  

definition of identifiability: given a particular dataset, is there enough data to estimate a 395	
  

parameter. We investigated both of these by creating contour maps of the likelihood surface for 396	
  

pairs of parameters under the cichlid and Nicotiana data sets. Results are shown in Figure 4. For 397	
  

these empirical datasets, parameters appear distinguishable: there are no ridges in the likelihood 398	
  

surface, even though the confidence intervals are wide. Thus, the parameters are formally 399	
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identifiable. The large confidence intervals, though, suggest that they can often be practically 400	
  

problematic. 401	
  

 402	
  

 403	
  

Figure 4: Likelihood surfaces for pairs of traits. Results from cichlids are shown above the 404	
  

diagonal, Nicotiana below. The red dot represents the maximum likelihood estimate; the inner 405	
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circle shows the ∆2 log likelihood unit region,  and the outer shows the ∆5 log likelihood unit 406	
  

region. Note the lack of ridges and the wide intervals. 407	
  

 408	
  

Model Selection and Parameter Estimation for the Empirical Data 409	
  

 410	
  

The best model for cichlids had no burst of variation at hybridization events nor a bias in hybrid 411	
  

size (Table 1). In models where 𝛽 was allowed to vary, the confidence interval included 1, and 412	
  

for 𝑣!, the confidence interval (and MLE in all models) included 0, again suggesting lack of 413	
  

evidence for evolutionary speed ups or mean changes with hybridization. Measurement error was 414	
  

estimated to be substantial; in fact, the model estimated no effective Brownian motion at all (𝜎! 415	
  

estimates of 0) with all observed variance being due to just measurement error at the tips. For 416	
  

Nicotiana, the best model (but only with 0.39 of the Akaike weight) had 𝛽 as a free parameter 417	
  

and 𝑣! constrained to be 0. There is weak evidence from this model that beta is greater than one 418	
  

(point estimate from best model is 1.97, but CI is 0.89 to 4.52; model averaged estimate is 1.49), 419	
  

suggesting that hybrids have higher success rates as seedlings under drought conditions than do 420	
  

their parents. There is again little evidence for increased variance at hybridization events. Given 421	
  

the tree height and its 𝜎! rate, we expect variance at the tips to be 0.50; from measurement error, 422	
  

there is an additional 0.37 variance (both in units of log((seedling survival)2)), suggesting 423	
  

meaningful Brownian motion on the tree but still quite important measurement variance.  424	
  

 425	
  

 426	
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 427	
  

TABLE 1: Model fitting for the cichlid and tobacco data. In this table, NegLogL is the negative 428	
  

log likelihood of the model, 𝐾 is the number of free parameters, ∆AICc is calculated by 429	
  

subtracting the AICc value from the lowest AICc value among the four models,  Akaike weight 430	
  

is calculated by  𝑤 = exp(−0.5∆AICc  ) and then normalizing the weights. Parameter estimates 431	
  

and their adaptive confidence intervals are reported. The model-averaged parameter estimate 432	
  

  𝜃 = 𝑤!𝜃!!
!!!  are reported where 𝑤!   is the Akaike weight for the ith model. 433	
  

 434	
  

 435	
  

 436	
  

Figure 5. The adaptive confidence intervals for the free parameters of the best model for 437	
  

cichlids (top) and for Nicotiana (bottom). In each plot the vertical axis represents the 438	
  

negative log likelihood value and the horizontal axis represents a wide parameter range. The 439	
  

red dot at the lowest y-axis value represents the MLE estimated from the overall search. 440	
  

Sampling works by proposing a set of parameters and estimating the likelihood for this set. 441	
  

This likelihood value is then plotted versus each of the parameters used in that set in a 442	
  

different subplot as a gray or black dots. Dots in black represent the desired likelihood value 443	
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(taken as those no more than 2 log likelihood units away from the maximum) and the width 444	
  

of the adaptive confidence intervals are measured by the left most and right model black dots.  445	
  

 446	
  

 447	
  

 448	
  

 449	
  

DISCUSSION 450	
  

Our new approach allows analysis of trait data on a phylogenetic network. We can now use 451	
  

comparative methods on general networks rather than just trees and it works well for estimating 452	
  

general Brownian motion parameters such as evolutionary rate   𝜎! and root state 𝜇. There are 453	
  

also hybridization-specific parameters where it performs variably. The method can estimate 454	
  

hybridization bias  β, the consistent increase or decrease in trait value upon hybridization that 455	
  

may lead to hybrid vigor or outbreeding depression, though with substantial uncertainty. It 456	
  

performs surprisingly poorly for estimating a burst of variance associated with hybridization 𝑣!; 457	
  

we would recommend caution interpreting any estimates of 𝑣!. Unfortunately, this may be the 458	
  

most biologically interesting question. 459	
  

 460	
  

Our empirical results for the cichlid dataset do not provide great biological insights, other than 1) 461	
  

the feasibility of running a model given a network and 2) quite extensive measurement 462	
  

uncertainty in the body length measurements. This latter could reflect real measurement 463	
  

uncertainty (fish have indeterminate growth (Dutta 1994)), so the notion of a true species mean 464	
  

for this trait is problematic) but errors in the tree topology or branch lengths would tend to result 465	
  

in this appearing as measurement error in this model, as well. Nicotiana also had substantial 466	
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measurement error, but not enough to wipe out the phylogenetic history. The results suggest that 467	
  

hybrids perform better in droughts than their parent species, though this is not statistically 468	
  

significant given the confidence interval. However, it might point the way to further studies 469	
  

about drought tolerance, an area that will be of increasing importance.  470	
  

 471	
  

Several approaches have been proposed for inferring different rates along the branch for a given 472	
  

phylogenetic tree (McPeek, 1991; O'Meara et al., 2006; Revell, 2008; and Beaulieu et al. 2012), 473	
  

and it would be useful to extend our work to allow for this heterogeneity. Another possible 474	
  

extension is to use a more parameter-rich Markovian process.  The model can be extended to 475	
  

allow trait evolution following the OU process (Hansen 1997; Butler and King 2004; Beaulieu et 476	
  

al. 2012). Putting the approach in a Bayesian context is also possible. In this case, parameters of 477	
  

multiple selective regimes, multiple rates of variation, and multiple rates of constraining forces 478	
  

could be embedded in the model. Developing a more complex model of this type could be very 479	
  

useful when analyzing fairly large data sets of hundreds of species or more, where heterogeneity 480	
  

is expected and there may be power to provide estimates for many parameters.  481	
  

 482	
  

In nature, approximately 10% of animal species and 25% of plant species hybridize (Mallet 2005, 483	
  

2007), suggesting that there is widespread gene flow between “species.” Some of this gene flow 484	
  

may lead to hybrid speciation in the manner assumed in our method, and hybrid speciation is 485	
  

widely suspected in many groups (Arnold 1996, Welch and Riesberg 2002). However, even in 486	
  

the absence of hybrids formed from two distinct parent species, such ongoing gene flow suggests 487	
  

a need for a network metaphor, as suggested by Morrison (2014). Our method cannot currently 488	
  

deal with this sort of gene flow: we represent the hybrid as being the result of a single event 489	
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between two parent lineages (though we do allow for one or both parents to be missing from the 490	
  

tree, making the event appear as if it is going forward in time from the nearest sampled 491	
  

relative(s)). Gene flow over continuous time periods is thus not modeled yet, though it would be 492	
  

a basic extension.  493	
  

 494	
  

This approach, especially the creation of the modified variance covariance matrix given 495	
  

hybridization and the potential for a modified matrix of expected species values, could form the 496	
  

core for multivariate approaches, in the same way the traditional Brownian motion tree model 497	
  

lies at the heart of methods as various as PGLS (Martins and Hansen 1997), PGLM (Ives and 498	
  

Helmus 2011), independent contrasts (Felsenstein 1985, 2008), phylogenetic linear regression 499	
  

(Ho and Ané 2014) and more. It is also trivial to use the existing approach to estimate ancestral 500	
  

states on a network. While network inference methods are advancing, it is important to make 501	
  

sure that comparative methods using these networks keep pace, of which this work is a start that 502	
  

we hope can be built upon.  503	
  

 504	
  

 505	
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