bioRxiv preprint doi: https://doi.org/10.1101/024034; this version posted August 6, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

DADAZ2: High resolution sample inference from amplicon data

Benjamin J Callahan"", Paul J McMurdie?, Michael J Rosen?, Andrew W Han?,
Amy Jo Johnson? and Susan P Holmes!

Department of Statistics, Stanford University
2Second Genome, South San Francisco, CA
3Department of Applied Physics, Stanford University
“Corresponding Author: benjamin.j.callahan@gmail.com


https://doi.org/10.1101/024034
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/024034; this version posted August 6, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Microbial communities are commonly characterized by amplifying and sequenc-
ing target genes, but errors limit the precision of amplicon sequencing. We
present DADAZ2, a software package that models and corrects amplicon errors.
DADA2 identified more real variants than other methods in Illumina-sequenced
mock communities, some differing by a single nucleotide, while outputting
fewer spurious sequences. DADA2 analysis of vaginal samples revealed a di-
versity of Lactobacillus crispatus strains undetected by OTU methods.

The importance of microbial communities to human and environmental health has moti-
vated methods for their efficient characterization. The most common, and cost-effective,
method is the amplification and sequencing of targeted genetic elements. Amplicon se-
quencing of taxonomic marker genes such as 16S rRNA [I], the ITS region [2] or 18S rRNA
[3] provides a census of a community. Functional diversity can be probed by targeting
functional genes [4].

Disentangling errors from biological variation in amplicon sequencing data presents unique
challenges, which has prompted the development of amplicon-specific error-correction meth-
ods [B, 6, [7, [§]. Most of these methods were designed for pyrosequenced amplicons, and
cannot be applied to Illumina sequencing.

Currently, errors in Illumina-sequenced amplicon data are most often addressed by filter-
ing low quality reads and constructing Operational Taxonomic Units (OTUs): clusters
of sequences that differ by less than a fixed dissimilarity threshold (typically 3%) within
which sequence variation is ignored [9, 10, [11]. Lumping similar sequences together reduces
the rate at which errors are misinterpreted as biological variation, but OTUs under-utilize
the quality of modern sequencing by precluding the possibility of resolving fine-scale (or
strain-level) variation [7, [12], 13, [14], 15]. Recent studies have shown that fine-scale variation
can be informative about ecological niches [12, [13], temporal dynamics [15], and popula-
tion structure [4]. Fine-scale variation differentiates pathogenic from commensal strains
in some cases [16, [17], and can contain clinically relevant information for more complex
microbiome-associated diseases [18 [19] 20].

DADA - the Divisive Amplicon Denoising Algorithm - was introduced to correct pyrose-
quenced amplicon errors without constructing OTUs [7]. DADA was shown to identify
real variation at the finest scales in 454-sequenced amplicon data while outputting few
false positives [7, 4].

Here we present DADA2, an extension and reimplementation of DADA adapted for use
with Ilumina sequencing and available as an open-source R package available at https:
//github.com/benjjneb/dada2. DADA2 implements a new model of lllumina-sequenced
amplicon errors that incorporates quality information. Banded alignments and a kmer-
distance screen improve computational performance. The DADA2 R package provides
light-weight tools for other key parts of the amplicon denoising workflow: filtering, derepli-
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cation, chimera identification, and merging paired-end reads.

We compared DADA2 to two other algorithms (Methods): UPARSE, an OTU-construction
algorithm with the best published false-positive results [11], and MED, an algorithm with
the best published resolution of fine-scale variation in Illumina-sequenced amplicon data
[14].

We used three test datasets: Balanced, HMP and Extreme (Methods, Table S1). These
data were sequenced at a depth of over 500,000 highly overlapping paired-end Illumina
MiSeq 2x250 reads. The Balanced community consisted of 57 bacteria and archaea mixed
at nominally equal frequencies [21]. The HMP community consisted of 21 well-separated
bacteria mixed at nominally equal frequencies [22]. The Extreme community consisted of
27 bacterial strains from the human gastrointestinal tract mixed at frequencies spanning
five orders of magnitude and with 16S sequences separated by as little as one nucleotide
(Methods, Table S2). Sequence quality varied: Balanced was higher (Mean Q = 35.9
forward/33.5 reverse), Extreme moderate (33.0/29.3), and HMP lower (32.3/28.7).

We evaluated specificity by BLAST-ing output sequences against the nr/nt database (Meth-
ods). Output sequences with an exact match (100% identity, 100% coverage) were classified
as a “Match”, those with a best hit containing one mismatch or one gap were classified as
“One Off”, everything else was classified as “Other”.

We evaluated sensitivity by matching output sequences to the 16S sequences from each ref-
erence strain. Of note, the number of reference strains did not typically match the number
of reference sequences: some reference strains were identical over the 16S region sequenced,
while the genomes of others contained multiple 16S variants. Within-genome variation was
useful diagnostically: fine-scale variation was present even in mock communities chosen to
be well-separated.

We compared the sample sequences output by DADA2 to the representative sequences
output by UPARSE (Figure 1). Almost all variants with Hamming separation greater than
the OTU radius (3%, dashed line) were identified by both algorithms (black). However,
DADA2 also revealed the fine-scale variation: DADA2 identified biological variants that
UPARSE did not (blue) within the OTU radius, in both the merged reads (Figure 1) and
the forward reads alone (Figures S1-S3). Both algorithms identified low-frequency variants
present in as few as two reads.

DADA2 identified more reference sequences and as many or more reference strains than
UPARSE in every dataset, whether merging reads or using forward reads alone (Table 1).
DADAZ?2 identified every reference strain in the Balanced and HMP datasets; the Extreme
reference strains it missed illustrate its limits (SI Note 1).

The sensitivity of DADA2 to fine-scale variation did not come at the cost of lower specificity.
DADA2 output fewer “Other” sequences than UPARSE in every dataset (Table 1). For the
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Balanced forward reads, DADA2 removed 99.998% of substitution errors remaining after
filtering. For the HMP forward reads, DADA2 removed 99.8% of errors after filtering, which
compares favorably to the best error-correction rate of 92.3% for that dataset reported in
Edgar 2015. DADAZ2 also discarded fewer reads than UPARSE or MED (Table 1).

DADAZ2 reported more accurate abundances for some variants than did UPARSE (Figure
S7). UPARSE greedily adds reads to the OTU of a more abundant sequence if those
reads differ from that sequence by less than the OTU radius (i.e. 3%). When biological
variants differ by ~ 3%, UPARSE splits the reads of the less-abundant variant between
the more-abundant variant’s OTU (< 3% separation) and a new OTU (> 3%). Thus, the
abundance reported by UPARSE is too high for the more-abundant variant, and too low
for the less-abundant variant. DADA2 does not have this problem because it lacks a hard
similarity threshold.

MED was developed to distinguish fine-scale diversity in amplicon data [14]. MED has
structural similarities to DADA2: both divide amplicon reads into partitions within which
the remaining variation is supposed to be artefactual. MED uses a modified single-site
minor-allele-frequency threshold to identify real variation, while imposing a minimum abun-
dance requirement to guard against false positives. As a result, while MED was sensitive
to fine-scale variation, it had a high false positive rate and did not detect low frequency
variants (Table 1, Figures S1-S6). MED’s specificity was better when analyzing merged
reads because most of MED’s false positives derived from repeated single site errors, which
are reduced in the overlap region by merging.

DADA2 was slower but of comparable speed to UPARSE, and DADA2 easily processed
[lumina-scale samples on a laptop. For the filtered Balanced dataset (~ 600k forward
reads with singletons) UPARSE ran in 10s, DADA2 in 35s, and MED in 2m30s on a 2013
MacBook Pro.

We applied DADA2 to a collection of 157 Illumina-sequenced samples of the vaginal com-
munity collected from 42 pregnant women [23]. The vagina is the least diverse human
body habitat [1]. It is often dominated by a single Lactobacillus OTU, and the species of
that OTU has been used to characterize the community’s state [24]. Lactobacillus crispa-
tus is the most common species, and has been associated with stability and good health
[24]. DADAZ2 revealed that the L. crispatus community state is more complex than gen-
erally recognized: six distinct L. crispatus strains were present in multiple samples and
substantial abundance (Figure 2a, Table S3).

L. crispatus dominated the community when present, but its total abundance was usually
split between several strains (Figure 2a). The strain composition of L. crispatus dominated
communities was stable over time, but substantially differed between women. Of note, the
differentiation of L. crispatus communities between women is imperceptible to standard
OTU analyses that lump together the 16S sequences of these strains that differ by 1-2
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nucleotides.

Distinct ecological relationships appear to exist between L. crispatus strains. L1 and L2
showed a pattern of mutual exclusion consistent with competition for a common niche (Fig-
ure 2b). But L1 and L3 showed a pattern more consistent with a lack of direct competition
(Figure 2c): The frequency of L1 was independent of the frequency of L3, which strongly
tended towards 20%.

These results show that DADA2 more accurately reconstructs amplicon-sequenced micro-
bial communities. DADA2 better detects fine-scale variation than the current best method
for that task, while also outputting fewer incorrect sequences than the most robust OTU
method. The precision of DADA2 improves downstream measures of diversity and dissim-
ilarity.

Marker gene sequencing is inherently limited, but the construction of OTUs unnecessarily
limits it further. OTUs are not species, and they are not necessitated by amplicon er-
rors. DADA2 makes amplicon sequencing more informative by inferring the composition
of amplicon-sequenced microbial communities at the highest resolution.

Methods

The Divisive Amplicon Denoising Algorithm

DADA is a divisive partitioning algorithm. All reads begin in a single partition. Reads with
the same sequence are grouped into unique sequences with an associated abundance (or
dereplicated). The abundance p-value (see next paragraph) is calculated for each unique
sequence. If the smallest p-value, after bonferroni correction, falls below the threshold €24,
a new partition is formed with that unique sequence as its center. Unique sequences are
then allowed to join the partition most likely to have produced them. Division continues
until all unique sequences are consistent with being produced as errors from the sequence
at the center of their partition, i.e. all abundance p-values are greater than 4. The
inferred composition of the sample is the set of central sequences of the final partition and
the corresponding number of reads in those partitions (alternatively: each read is denoised
by replacing it with the central sequence of its partition).

The abundance p-value quantifies the notion that there are too many reads of a unique
sequence ¢ for it to be explained by errors in amplicon sequencing. If sequencing errors
are independent across reads, the number of reads with sequence i that will be produced
from sample sequence j is poisson distributed with expectation equal to an error rate \;_;
(see next section) multiplied by the expected reads of sample sequence j. Let unique
sequence ¢ with abundance a; be in partition j containing n; reads. Then, conditional on i
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being read at least once, the abundance p-value pa(j — i) = Y .2, dpois(nj\ji,a)/(1 —
dpois(n;Aj;,0)). Singletons have an abundance p-value of 1. A low py4 indicates that
there are more reads of sequence i than can be explained by errors introduced during the
amplification and sequencing of n; copies of sequence j.

Error rates

DADA2 models errors as occurring independently between sites within a read, and in-
dependently between different reads. The probability of a substitution error may de-
pend on the original nucleotide, substituting nucleotide, and associated quality score, e.g.
p(A — C,35). The rate at which read i is produced by sequencing sample sequence j is

then \jy; = [[1-op(i (1) = i(1),q(1)).

While DADAZ2 depends on this parameterized error model, DADA2 does not require prior
knowledge of the parameters as it can infer them from the data. After sample inference the
substitutions within each partition are tallied and reported to the user by type, allowing the
error rates to be estimated. Furthermore, DADA2 implements a self-consist mode which
alternates between sample inference and estimating the error rates until the partition and
the estimated error rates are jointly consistent.

DADAZ2 pipeline

The DADA2 R package implements a complete pipeline to turn paired-end fastq files from
the sequencer into merged, denoised, chimera-free, inferred sample sequences. Parts of this
pipeline can be substituted with outside methods, but some key elements differ from other
approaches.

Filtering: fastqFilter () implements filtering of fastq files that largely recapitulates
the usearch filterfastq function. fastqPairedFilter() filters paired reads jointly, only
outputting reads where both the forward and reverse reads pass the filter.

Dereplication: derepFastq() takes an input fastq file and outputs a dereplicated list of
unique sequences and their abundances. derepFastq() also outputs position-by-position
quality scores for each unique sequence obtained by averaging the positional qualities of
the component reads. These averaged scores are used by the error model of the main dada
function.

Denoising: dada() implements the core denoising algorithm described above.
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Chimeras: isBimeraDenovo () identifies denoised sequences that are exact bimeras (two-
parent chimeras) of more abundant output sequences, or are one-away from an exact
bimera of parents that differ from the putative child sequence by at least four substitutions.
isShiftDenovo () identifies denoised sequences that are identical to a more abundant se-
quence up to a shift in starting position.

Merging: mergePairs() merges the denoised forward and reverse reads if they exactly
overlap. mergePairs() requires that the input forward and reverse reads were in the same
order, a feature which is maintained by fastqPairedFilter ().

Test datasets

The Balanced and HMP datasets were downloaded from publicly available sources at http:
//www.ebi.ac.uk/ena/data/view/PRJEB6244/and http://www.mothur.org/MiSeqDevelopmentData.
html. Their construction is described in Schirmer and Kozich respectively.

The Balanced community consists of 57 bacteria and archaea from a broad range of habi-
tats. The 16S sequences of most of these strains were well-separated (> 3%) over the
region sequenced. However, the 16S sequences of 5 strains were identical to other more
abundant strains, while 4 strains had a total of 5 additional distinguishable 16S variants
in their genomes that differed by 1 or 2 nucleotides. There were also two strains that were
less than 3% different from other more abundant strains.

The HMP community consists entirely of strains which are well-separated (> 3%) over the
region sequenced. Most of the HMP strains colonize the human body.

The Extreme dataset was generated for this study. The organisms for the Extreme commu-
nity include human gastrointestinal tract bacterial isolates (Table S2). Strains were chosen
to be distinguishable over the 16S region sequenced, but to include a significant amount of
fine-scale variation where strains differed by as little as 1 nucleotide from each other.

Extreme strains were grown overnight in liquid broth with the medium recommended from
the source culture collection for each respective strain (Table 1). An aliquot of the bacterial
culture was used to directly amplify the 16S rRNA gene. One microliter of the bacterial
culture was used as template to amplify the V4 region of the 16S rRNA gene using fusion
gene primers (515f/806r) that incorporate Illumina adapter sequences and indexing bar-
codes [25]. The PCR reaction was carried out in a 25 uL. mixture containing 1x HotMaster
Mix with 2.5 mM Mg2+ (5 PRIME, Gaithersburg, MD), 400 nM forward primer, 400 nM
reverse primer, along with the bacterial culture template. The following cycling parame-
ters were used: initial cell lysis and DNA denaturing at 95°C for 10 minutes, followed by
30 cycles of 95°C for 30 seconds, 50°C for 30 seconds, and 72°C for 30 seconds, ending
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with a final annealing step at 72°C for 10 min. PCR amplicons were cleaned using Agen-
court AMPure XP beads (Beckman Coulter, Pasadena, CA) following the manufacturer’s
instructions. Cleaned PCR, amplicons were analyzed and quantified using an Agilent 2100
Bioanalyzer.

Strains were grouped into two taxonomic groups, Firmicutes and Bacteroidetes. Within
each taxonomic group, strains were designated for one of six 10-fold dilution groups (Table
S2). PCR amplicons for each strain were first normalized to the same concentration.
From there, each amplicon was individually diluted to its respective dilution level and
then all amplicons were pooled. The concentration of the pooled library was quantified
using the Quant-iT PicoGreen dsDNA Assay kit (Life Technologies, Carlsbad, CA) and
analyzed on an Agilent 2100 Bioanalyzer. The pooled library was diluted to 4 nM and
then Illumina’s protocol for preparing libraries for sequencing on the MiSeq was followed.
The final concentration of the library was diluted to 6 pM with ~ 20% PhiX spiked in
to account for the low base-diversity library. The final pooled library was sequenced on
an [llumina MiSeq with a MiSeq Sequencing Reagent Kit v3 to obtain 250 bp paired end
reads utilizing custom sequencing primers as described in [25].

Workflow on test data

A common filtering and trimming was performed before running each algorithm: The
DADA2 fastqFilter command was used to remove sequences with Ns or more than two
“expected errors” [26], and to trim the first 20 and last 10 (forward) or 10-50 (reverse)
bases depending on the quality profile of the data.

The USEARCH command fastqmergepairs with a minimum overlap of 20 bases and
maximum differences of 1 was used to merge the filtered forward and reverse reads for
further analysis by UPARSE and MED. DADA?2 denoised the forward and reverse reads
independently, and then merged them with its mergePairs command.

UPARSE and DADA2 require a dereplication step before the main algorithm runs. For
UPARSE, the USEARCH command derep_fulllength was used for dereplication. For
DADAZ2, the derepFastq command in the R package was used for dereplication. Also, as
per the developer’s recommendation, all singletons were removed prior to running UPARSE
(but not prior to running DADA2 or MED).

A list of output sequences and associated abundances was obtained for each algorithm.
For DADA2 this was the inferred sample sequences, for UPARSE the representative OTU
sequences, and for MED the representative sequences of its “nodes”.

Finally, the post-processing tools isBimeraDenovo and isShiftDenovo from the DADA?2
R package were used to identify and remove chimeric and shifted sequences from the output
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sequences of DADA2 and MED. UPARSE does not require this post-processing as it has
built-in chimera checking.

Software versions used: USEARCH version 8.0.1623, MED version 2.0, DADA2 version
0.4.3.

Specificity

Specificity was measured by BLASTing output sequences against the nr/nt database. If
the best hit was an exact match covering the full output sequence, it was assigned as a
Match. If there was a single mismatch or indel, it was assigned as a One Off. Otherwise it
was assigned as Other.

We BLASTed against nr/nt rather than the reference sequences alone because even data
sequenced from communities with a putatively known reference composition will contain
contaminant sequences. Contaminants are real, albeit unwanted, biological variation, and
should be identified when correcting amplicon errors.

While the nr/nt database is imperfect, it is reasonable to expect that Matches are far
more likely to be real variants than are Others. Output sequences classified as Other,
and output sequences classified as One Off that differed by one substitution from another
denoised sequence, were considered as a proxy for false positives.

Sensitivity

We compiled the 16S sequences (reference sequences) for the intended members of each
mock community (reference strains). The presence of each reference strain was confirmed
by checking that at least one read of a 16S sequence from each strain was present in the
filtered dataset. If no such read existed, that strain was removed from the reference list
(two strains were removed from the listed Balanced reference for this reason).

Output sequences were compared to the list of reference sequences. If any output sequence
matched any 16S sequences for a given strain, that reference strain was considered to have
been identified.

Analysis of Vaginal Samples:

The samples from MacIntyre 2015 were analyzed with the DADA2 pipeline outlined above.
First the fastq files were filtered and trimmed in the same manner as the test datasets. Then
each sample was dereplicated, and dada () was run with all samples pooled when estimating
the error rate parameters. isBimeraDenovo() was used to remove chimeras.
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Those taxa that appeared in at least two samples and at least 0.01% of the total reads
were taxonomically identified by BLAST. Further analysis focused on the six L. crispatus
strains identified by this procedure.
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Figure 1. Sample sequence inferred by DADA2 relative to the OTUs constructed by
UPARSE. The sequences output by DADA2 are plotted for three Illumina-sequenced amplicon datasets:
(a) Balanced, (b) HMP, and (c) Extreme. Frequency is plotted on the y-axis. Hamming distance from
each sequence to its closest more-abundant neighbor is plotted on the x-axis. Sample sequences inferred
by DADA2 highly overlap with the OTU representative sequences output by UPARSE (black). DADA2
also detects additional biological variation (blue), especially within the OTU radius (dashed line), while
outputting fewer spurious sequences (Other).
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Figure 2. Lactobacillus crispatus strains in the human vaginal community. DADA?2 identified
six Lactobacillus crispatus strains present in multiple samples and at a significant fraction of all reads
(L1: 19.2%, L2: 10.9%, L3: 6.4%, L4: 3.0%, L5: 1.3%, L6: 0.3%). (a) The relative abundance of these
strains in each sample. Samples from the same woman are consecutive. The frequency of (b) L1 vs. L2,
and (c) L1 vs. L3, for each sample. The dashed line indicates a total frequency of 1.
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Denoised Sequences Reference

Reads Denoised Total Match One Off Other| Sequences Strains (%)

DADA?2 (forward) 99.2% 94 93 1 0 57 100.0%

— |DADA2 (merged) 96.2% 87 86 1 0 55 96.5%
ch UPARSE(forward) 95.5% 81 77 2 2 53 84.2%
= |UPARSE (merged) 91.7% 76 72 2 2 50 78.9%
@ I MED (forward) 94.4% 85 65 20 0 57 100.0%
MED (merged) 91.0% 64 63 1 0 54 94.7%
DADA2? (forward) 94.2% 151 135 9 7 23 100.0%
DADA2 (merged) 92.2% 67 64 1 2 23 100.0%

% UPARSE(forward) 85.4% 164 141 11 12 20 100.0%
T [UPARSE (merged) 63.1% 93 81 1 11 20 100.0%
MED (forward) 81.1% 88 49 39 0 23 100.0%
MED (merged) 64.9% 33 27 5 1 23 100.0%
DADA2 (forward) 99.5% 68 61 3 4 25 85.2%

o |DADA2 (merged) 97.6% 26 26 0 0 23 77.8%
GE) UPARSE(forward) 86.4% 74 61 0 13 21 77.8%
£ |UPARSE (merged) 67.6% 23 22 0 1 18 66.7%
* IMED (forward) 89.2% 95 44 50 1 15 48.1%
MED (merged) 67.9% 32 23 7 2 16 51.9%

Table 1. The output of DADA2, UPARSE and MED on the test datasets Balanced, HMP
and Extreme. Algorithms were applied to the forward reads alone, and the merged forward and reverse
reads for each filtered dataset. Output sequences were evaluated by BLAST: Match indicates an exact
hit, One Off indicates the top hit has one mismatch, Other indicates larger differences. Mock communities
consist of a mixture of reference strains. The number of unique 16S sequences from those strains output
by each algorithm and the percentage of the reference strains detected by each algorithm are listed.
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