Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Life history effects on the molecular clock of autosomes and sex chromosomes

Guy Amster, Guy Sella
doi: https://doi.org/10.1101/024281
Guy Amster
1Department of Biological Sciences, Columbia University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: ga2373@columbia.edu gs2747@columbia.edu
Guy Sella
1Department of Biological Sciences, Columbia University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: ga2373@columbia.edu gs2747@columbia.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

One of the foundational results of molecular evolution is that the rate at which neutral substitutions accumulate on a lineage equals the rate at which mutations arise. Traits that affect rates of mutation therefore also affect the phylogenetic “molecular clock”. We consider the effects of sex-specific generation times and mutation rates in species with two sexes. In particular, we focus on the effects that the age of onset of male puberty and rates of spermatogenesis have likely had in extant hominines (i.e., human, chimpanzee and gorilla), considering a model that approximates features of the mutational process in most mammals and birds and some other vertebrates. As we show, this model helps explain and reconcile a number of seemingly puzzling observations. In hominines, it can explain the puzzlingly low X-to-autosome ratios of substitution rates and how the ratios and rates of autosomal substitutions differ among lineages. Importantly, it suggests how to translate pedigree-based estimates of human mutation rates into split times among apes, given sex-specific life histories. In so doing, it helps bridge the gap between estimates of split times of apes based on fossil and molecular evidence. Finally, considering these effects can help to reconcile recent evidence that changes in generation times should have small effects on mutation rates in humans with classic studies suggesting that they have had major effects on rates of evolution in the mammalian phylogeny.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted August 10, 2015.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Life history effects on the molecular clock of autosomes and sex chromosomes
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Life history effects on the molecular clock of autosomes and sex chromosomes
Guy Amster, Guy Sella
bioRxiv 024281; doi: https://doi.org/10.1101/024281
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Life history effects on the molecular clock of autosomes and sex chromosomes
Guy Amster, Guy Sella
bioRxiv 024281; doi: https://doi.org/10.1101/024281

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (3597)
  • Biochemistry (7563)
  • Bioengineering (5517)
  • Bioinformatics (20777)
  • Biophysics (10316)
  • Cancer Biology (7973)
  • Cell Biology (11629)
  • Clinical Trials (138)
  • Developmental Biology (6602)
  • Ecology (10197)
  • Epidemiology (2065)
  • Evolutionary Biology (13605)
  • Genetics (9537)
  • Genomics (12842)
  • Immunology (7919)
  • Microbiology (19536)
  • Molecular Biology (7653)
  • Neuroscience (42050)
  • Paleontology (307)
  • Pathology (1257)
  • Pharmacology and Toxicology (2199)
  • Physiology (3266)
  • Plant Biology (7036)
  • Scientific Communication and Education (1294)
  • Synthetic Biology (1951)
  • Systems Biology (5426)
  • Zoology (1115)