
Fasta-O-Matic: a tool to sanity check and if

needed reformat FASTA files

Jennifer Shelton

Kansas State University

August 11, 2015

Abstract

As the shear volume of bioinformatic sequence data increases the only
way to take advantage of this content is to more completely automate ro-
bust analysis workflows. Analysis bottlenecks are often mundane and
overlooked processing steps. Idiosyncrasies in reading and/or writing
bioinformatics file formats can halt or impair analysis workflows by in-
terfering with the transfer of data from one informatics tools to another.
Fasta-O-Matic automates handling of common but minor format issues
that otherwise may halt pipelines. The need for automation must be
balanced by the need for manual confirmation that any formatting error
is actually minor rather than indicative of a corrupt data file. To that
end Fasta-O-Matic reports any issues detected to the user with optionally
color coded and quiet or verbose logs.

Fasta-O-Matic can be used as a general pre-processing tool in bioin-
formatics workflows (e.g. to automatically wrap FASTA files so that they
can be read by BioPerl). It was also developed as a sanity check for
bioinformatic core facilities that tend to repeat common analysis steps on
FASTA files received from disparate sources. Fasta-O-Matic can be set
with format requirements specific to downstream tools as a first step in a
larger analysis workflow.

Fasta-O-Matic is available free of charge to academic and non-profit in-
stitutions at https://github.com/i5K-KINBRE-script-share/read-cleaning-format-conversion/
tree/master/KSU_bioinfo_lab/fasta-o-matic.

1 Introduction

Sequence data can be stored as text with each letter representing a nucleic acid
(DNA and RNA) or amino acid (protein). The linear nature of these molecules
makes it natural to represent them as strings, finite sequences of characters.
Although it has been argued that a graph, a network of edges connected by
vertices, is a more accurate way to store genomic sequences because graphs

1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 13, 2015. ; https://doi.org/10.1101/024448doi: bioRxiv preprint

https://github.com/i5K-KINBRE-script-share/read-cleaning-format-conversion/tree/master/KSU_bioinfo_lab/fasta-o-matic
https://github.com/i5K-KINBRE-script-share/read-cleaning-format-conversion/tree/master/KSU_bioinfo_lab/fasta-o-matic
https://doi.org/10.1101/024448
http://creativecommons.org/licenses/by/4.0/

allow the inclusion of alternate alleles and alternate possible assemblies [3] all of
the most common methods for storing sequences (FASTA, FASTQ, SAM/BAM)
use a linear strings.

Other decisions about how to represent sequence data can be more arbitrary.
For example, any character that is not used as base or an amino acid can
be used to indicate the beginning of a new sequence. Additionally text can
be wrapped to limit the information content in any one line of a file. The
advantage of wrapping text is that some programs can then be designed to
work one line at time limiting the burden of each step (e.g. the program would
never have to process an entire chromosome of sequence data in a single step).
The disadvantage is that code must be slightly more complex to load an entire
sequence record into the working memory.

1.1 FASTA file format specifications versus recommenda-
tions

FASTA file format requirements are very minimal [7]. Each sequence is preceded
by a header/description line that begins with a > symbol. Sequence lines can
include any standard IUB/IUPAC single character symbols for nucleic acids or
amino acids or the ambiguous codes that indicate possible residues or bases
[2]. They can also include - to indicate alignment gaps and * to indicate stop
codons.

NCBI recommends wrapping FASTA file sequences lines [7]. It is also com-
mon practice to use the first ‘word’ in a header (i.e. any character string to
the left of the first space in the header) as the unique sequence id. Although
these features are common they are not required leading to format compatibility
issues with tools that treat these conventions as required.

1.2 Customizing FASTA files to ensure that information
is properly interpreted by downstream tools

Regardless of whether a FASTA file is technically improperly formatted or it’s
format merely violates a popular convention, it is critical to quality analysis
workflows that data is converted into a format that will be correctly interpreted
by downstream tools. Formatting issues can fall into multiple categories includ-
ing actual format errors and formats that are not technically wrong but are
non-standard that cause some tools to throw an error.

Some format errors indicate a major problem like an attempt to use the
wrong data format (e.g. the first line is not a FASTA header because it does
not begin with a > character). These types of errors will be subsequently re-
ferred to as fatal. Alternately, some formatting issues occur commonly without
indicating the FASTA file is corrupt (e.g. improperly wrapped/unwrapped se-
quence lines, missing final new line characters, unusual new line characters like
\r). These issues will be referred to as non-fatal. Fatal formatting issues should
cause processing to stop. Non-fatal formatting issues should be automatically
corrected according to the most common resolution for this type of error. While

2

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 13, 2015. ; https://doi.org/10.1101/024448doi: bioRxiv preprint

https://doi.org/10.1101/024448
http://creativecommons.org/licenses/by/4.0/

downstream processing continues the analyst can double check the automated
decision to reformat non-fatal issues. This way workflow would not be slowed
for trivial reformatting steps and the more rare problems (e.g. when a missing
last new line was caused by incomplete file transfer) could still be caught.

1.3 Existing tools

Existing bioinformatics tools address FASTA format inconsistencies. However
many tools either halt and exit with an error (e.g. BioPerl [9], [11], [10]) or
can produce reformatted output FASTA but cannot determine if there is a
formatting issue to begin with (e.g. EMBOSS Seqret [8]).

The BioPerl module DB::Fasta will halt if a FASTA is inconsistently wrapped
or if a line of sequence is too long (as in an unwrapped genome FASTA). This
has the disadvantage of requiring intervention to wrap and restart analysis.

Code:

#!/usr/bin/perl

use Bio::Seq;

use Bio::SeqIO;

use Bio::DB::Fasta; #makes a searchable db from FASTA file

my $out_file_temp = ’/home/bionano/test_db/all.fa’;

#Create new FASTA outfile object

my $seq_out = Bio::SeqIO->new(’-file’ => ">$out_file_temp",’-format’ => ’fasta’);

#Load FASTA file as DB

my $db = Bio::DB::Fasta->new("/home/bionano/test_db/miswrapped.fa");

my $seq_obj = $db->get_Seq_by_id(’seq’); # get FASTA records using headers

#(where header = first ’word’ so really header whitespace should also be

#removed for this file)

$seq_out->write_seq($seq_obj);

Input:

>seq 1

ACTGTGTGCAATCGCTGNNNNCTCTCATCGGATCTTGCAATCGCTNNNCTCTCATCGGATTGCAATCGCTNNNCTtcatcCGGAT

CGCTGNNNNCTGTGTGCAATCGCTGNNNNCTCCTGATCGCTGNNNNCTGTGTGCAATCGCTGNNNNCTCCTGCAATCGCTGNNNN

CTCCTGTTCGNATCGatcctctgtttatgcttatagctagctgatcgtagnnntcaacgt

CTAGAGCGCAGCTCTGGGGGATTACTACTCACTACATCATTAGATCAGATacgactcann

>seq 2

cttatagctagctgatAATCGCTGNNTCATCGGATCTTGCCTTGCAATCGtcatcCGtcC

CGCTGNNNNCTGTGTGCAnnnnnnnnnnncgtaaaacgcctcctccgactcgTCTCTAGG

CTAGAGCGCAGCTCTGGGGGATTACTACTCACTACATCATTAGATCAGATacgactcann

nnnctacgCTATCAGGTCTCGAG

>seq 3

ATCAGCGCTCTATATGGCTCTGATTATAGTTTGCATTCATATGCTGATCTTctcagnntc

cttgacgctcgctATCTGTAGATCTGTACTtcagacagctcTCAGCAGNNNCTCAGCAGC

CTACGACAGTcatgcagactagcagt

Output:

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 13, 2015. ; https://doi.org/10.1101/024448doi: bioRxiv preprint

https://doi.org/10.1101/024448
http://creativecommons.org/licenses/by/4.0/

------------- EXCEPTION -------------

MSG: Each line of the fasta entry must be the same length except the last.

Line above #5 ’CTAGAGCGCAGCTCTGGGGG..’ is 61 != 86 chars...

EMBOSS seqret was designed as a very flexible tool to convert from one
properly formatted file to another properly but distinctly formatted file. It
also was designed to accept poorly formatted data (e.g. a FASTA missing the
final new line that is improperly wrapped) and export a reformatted file (e.g.
wrapped after 60 bases with a final newline).

Code:

seqret -stdout -sequence test.fa -outseq test_reformat.fa

Input:

>my header

AAAAAAAAAAAATTTTTTCCCCGGCGCGCGCGCTATAGCGCTATANNNNNNNNNNNNNNN

ATATATATATAT

ATTATTATATATATATTCTCTCTGGGCTCGCGTCTCGCTATTTATATATATATATATATTGCGCTCTCGTCTCCT

Output:

>my header

AAAAAAAAAAAATTTTTTCCCCGGCGCGCGCGCTATAGCGCTATANNNNNNNNNNNNNNN

ATATATATATATATTATTATATATATATTCTCTCTGGGCTCGCGTCTCGCTATTTATATA

TATATATATATTGCGCTCTCGTCTCCT

However, seqret does not log the detected errors in the format. Another
feature of Seqret is that an output file is created even if the output is identical
to the input. Storing two identical files is an inefficient use of disk space. Seqtk
[5] is another example of a tool that can automate FASTA reformatting but
does not first check original format or report format issues.

Another case to note is when an improperly formatted FASTA file is actually
distributed as a component of a bioinformatics tool. Trimmomatic adapter
sequences [1], for example, are distributed versions of the proprietary Illumina
sequencing adapters but the FASTA files are missing final new lines. This can
cause issues downstream if a workflow includes common analysis techniques like
FASTA file concatenation.

The process of restarting analysis manually after wrapping a FASTA file
may only take minutes. The time consuming aspect of this interruption is the
time it takes the analyst to become available and the number of jobs this step
must be repeated for. Likewise, storage of one extra FASTA file is trivial unless
the FASTA file in question stores a whole genome in which case the burden
can add up for a bioinformatics core. Efficiency and automation are crucial
as bioinformatic analysis projects become more numerous and time consuming.
Many tools can either detect a format issue or repair a format issue. No existing
tool was found that both validates FASTA format and reformats automatically
only where required for a user defined list of non-fatal FASTA format issues.

4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 13, 2015. ; https://doi.org/10.1101/024448doi: bioRxiv preprint

https://doi.org/10.1101/024448
http://creativecommons.org/licenses/by/4.0/

2 Implementation

Fasta-O-Matic was designed to fit seamlessly into an analysis workflow. It de-
tects which format issues are actually present in the FASTA file. Then only
produces a reformatted file if the current file violates the user defined format
requirements.

2.1 Portability

Where possible Fasta-O-Matic was designed to be easy to distribute and use.
Fasta-O-Matic is distributed on GitHub under a the MIT license to allow for
easy access to or customization of the code. The tool was also built and tested
on both Python2.7 and and Python3.3 to minimize incompatibility with existing
linux environments. The script generates complete help menus when called from
the command line with the --help command and from within python with
help(fasta_o_matic). Additionally, Fasta-O-Matic includes a sample FASTA
file with missing newlines, inconsistent wrapping and spaces in headers and a
tutorial which describes how to reformat the sample. These features ensure that
Fasta-O-Matic is easy to incorporate into existing workflows.

2.2 Automate where appropriate

The script was designed to efficiently execute the most likely solution given the
presence or absence of format issues. Fasta-O-Matic returns the filename of
the FASTA file that conforms to the user defined format. If the original file
already conforms then Fasta-O-Matic returns the original filename rather than
outputting a redundant FASTA file under a new name.

Fasta-O-Matic will exit and report an error if the FASTA file cannot be read,
the default or defined output directory cannot be written to, the input FASTA
file does not begin with a > or if the any sequence line includes a non-IUPAC
character. The last two errors are considered the fatal FASTA format errors.

Inconsistent or unwrapped sequence lines, spaces in headers and missing or
non-standard new lines are considered non-fatal errors. Testing for these issues
is optional. If they are detected the decision is made to reformat as requested,
report the issue to the analyst and continue the workflow.

The script also automatically adjusts to run the minimal number of steps
sufficient to fix and report format issues. If it is included in the set of QC steps
then wrapping is the first format issue tested because while repairing FASTA
wrapping both headers and new lines can be corrected. New lines are given
priority after wrapping because while repairing new lines it is also trivial to
repair headers. Finally, headers are evaluated for format issues. If an early test
returns a format issue and launches a reformatting that automatically repairs
any remaining format issues then Fasta-O-Matic still tests for any additional
format errors in the original file.

All format issues are reported in the programs logs in case they indicate
an unexpected issue with the data. Logs can be optionally color coded so

5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 13, 2015. ; https://doi.org/10.1101/024448doi: bioRxiv preprint

https://doi.org/10.1101/024448
http://creativecommons.org/licenses/by/4.0/

that red indicates errors, yellow indicates warnings (e.g. a non-fatal issue was
found and automatically reformatted) and green indicates status information.
This method of logging is designed to draw the attention of the bioinformatics
analyst to relevant warnings or errors even if they have grown accustomed to
seeing Fasta-O-Matic output frequently.

2.3 Workflow integration

Sequence FASTA files are often passed as arguments to commandline tools.
For example FASTA files can be passed as an argument to bowtie2-build to be
indexed as an alignment reference [4] or passed to trimmomatic as adapters to
detect sequencing artifacts. The output filename used by Fast-O-Matic varies
to reflect the reformatting performed. For seamless integration into automated
workflows Fasta-O-Matic returns the full path of the new properly formatted
FASTA file or the original file (if it is already formatted properly). This can be
captured as a variable and used as an argument in subsequent commands. The
Bash commands below show and example of capturing the FASTA file name as
a variable.

Code (backslashes are used to indicate a new line that is for display in the
article rather than the new lines being included in the actual code):

filename="$(python fasta_o_matic.py -f NC_010473_mock_scaffolds.fna \

-o ~/out_fasta_o_matic -c)"

echo $filename

3 Results

3.1 Data

FASTA format tools were tested on the Vicugna pacos-2.0.1 whole genome shot-
gun sequence scaffolds because the 2.17 Gb Vicugna pacos genome is large (> 1
Gb) and has many scaffolds (276727) [6]. The large genome size and high num-
ber of individual sequences should approximate a typical large FASTA file. The
FASTA file was downloaded from the NCBI FTP as NW 005882702.1 Vicugna
pacos isolate Carlotta (AHFN-0088) Vicugna pacos-2.0.1 assembly scaffolds. An
additional unwrapped sequence was added to the end of the file. This sequence
was also missing a newline. Each FASTA record in the file also had spaces
within the text of the headers.

The additional simulated FASTA record is available on github.

3.2 Reformatting tests

No tool was found with all of Fasta-O-Matic’s functions. Therefore sequence
line wrapping was compared between Fasta-O-Matic and two other common re-
formatting tools, seqtk and seqret. Fasta-O-Matic was run with the --qc_steps
flag set to either wrap new_line header_whitespace (all), wrap (W) new_line

6

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 13, 2015. ; https://doi.org/10.1101/024448doi: bioRxiv preprint

https://github.com/kstatebioinfo/Fasta-O-Matic-a-tool-to-sanity-check-and-if-needed-reformat-FASTA-files/blob/master/simulated_unwrapped.fa
https://doi.org/10.1101/024448
http://creativecommons.org/licenses/by/4.0/

(NL) or header_whitespace (HW). Seqtk was run with the arguments seq -l 60.
Seqret was run using only the -sequence and -outseq arguments. Code used in
tests or to produce figure can be found on github. Run time and max memory
was reported for each tool. Tests were run on a Xeon Phi server with 48x12-core
Intel Xeon CPUs, 256GB of RAM, Linux CentOS 7 and Python2.7.

3.3 Comparison between results

All tools could reformat the improperly wrapped FASTA file. Fasta-O-Matic
had the lowest maximum memory requirements (Figure 1, Table 1). This may
be useful if working on a large genome on a local machine or cluster headnode
where memory usage is restricted. Fasta-O-Matic took several minutes rather
than seconds (seqtk and seqret took < 13 s) (Figure 2, Table 1).

Fully re-formatted simulated FASTA record (backslashes are used to indicate
a new line that is for display in the article rather than the new lines being
included in the actual FASTA record):

>NW_000000000.0_Vicugna_pacos_isolate_Carlotta_(AHFN-0088)_FAKE_genomic_scaffold,_\

Vicugna_pacos-2.0.1_Scaffold-,_whole_genome_shotgun_sequence

ATACAACCATAAAGGTGCTATTCAGTCCATGGTTACAGGACATAACTACAACACACACCC

ACGTACACATGCGCATGCGCATGCACACACCCACGTACACGTACACGTACGCATACACAC

CCACGTACACGTACACGTACGCATACACACCCACGTACACGTACACGTACGCATACACAC

CCACGTACACGTACACGTACGCATACACACCCACGTACACGTACACGTACGCATACACAC

CCACGTACGCACACACGTACACGTGTAGGCACGCATTTAGCAAGTATTTAGCTTGCTTAA

ACAAACCCCCCCTACCCCCCACGAGCCCCACCTTATATACCAGACAGTCTTGCCAAACCC

CAAAAACAAGACATAGCGCATAAGCTATAGAACCCGGACAAACCTTTGCCCACAAACCCA

ACTTCTTAAATAATCACATGGCCAAATCGTACCAATGTGTTACTCTAGTATATTAAAAAT

ATACAGACAGCTATCTCCCTAGATCCGCCAAAATTTTTAAAACAGAATTCAACAACCTTT

TTAATGGCACCCCCCCCCCCCATAAATGACC

Figure 1: Figure 1 - Max memory used by various FASTA tools. Tools
were run on the Vicugna pacos isolate Carlotta (AHFN-0088) Vicugna pacos-
2.0.1 whole genome shotgun sequence NW 005882702.1 with additional un-
wrapped FASTA sequence record.

7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 13, 2015. ; https://doi.org/10.1101/024448doi: bioRxiv preprint

https://github.com/kstatebioinfo/Fasta-O-Matic-a-tool-to-sanity-check-and-if-needed-reformat-FASTA-files/tree/master/figures
https://doi.org/10.1101/024448
http://creativecommons.org/licenses/by/4.0/

Figure 2: Figure 2 - Run time for various FASTA tools. Tools were run
on the Vicugna pacos isolate Carlotta (AHFN-0088) Vicugna pacos-2.0.1 whole
genome shotgun sequence NW 005882702.1 with additional unwrapped FASTA
sequence record.

Program Max mem (kbytes) Run time (s)
Fasta-O-Matic (HW) 7064 111.67
Fasta-O-Matic (NL) 7068 93.20
Fasta-O-Matic (all) 10980 146.03
Fasta-O-Matic (W) 11096 140.90

seqtk 38352 3.17
seqret 137840 12.50

Tables

4 Conclusions

Overall, both memory and run time requirements were small for all three pro-
grams. However, the extra minutes taken by Fasta-O-Matic to test for fatal
and non-fatal format issues may prevent hours lost waiting for an analyst to
manually restart analysis or worse discover that a file was corrupt only after
analysis is complete. Fasta-O-Matic was also the only tool identified that skips
reformatting if none is required balancing the need to prepare data to be prop-
erly interpreted by bioinformatics tools with the practical need to conserve disk
space. Fasta-O-Matic is a portable and easy to use tool to facilitate bioinfor-
matics analysis by automating FASTA file inspection in busy bioinformatics
cores.

5 Acknowledgements

Thanks to Sheldon McKay https://github.com/mckays630 for contributing the
editing of Fast-O-Matic.

This project was supported by an Institutional Development Award (IDeA)
from the National Institute of General Medical Sciences of the National Insti-
tutes of Health under grant number P20 GM103418. The content is solely the
responsibility of the authors and does not necessarily represent the official views

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 13, 2015. ; https://doi.org/10.1101/024448doi: bioRxiv preprint

https://doi.org/10.1101/024448
http://creativecommons.org/licenses/by/4.0/

of the National Institute of General Medical Sciences or the National Institutes
of Health.

6 Availability and requirements

Project name: Fasta-O-Matic tool
Project home page: The Fasta-O-Matic script and tutorial are available at

https://github.com/i5K-KINBRE-script-share/read-cleaning-format-conversion/

tree/master/KSU_bioinfo_lab/fasta-o-matic.
Operating system(s): Linux (tested on CentOS 7, Gentoo and Ubuntu).
Programming language: Python2.7+, Python3.3+
License: Tool and tutorial are available free of charge to academic and

non-profit institutions.
Any restrictions to use by non-academics: Please contact authors for

commercial use.
Dependencies: Fasta-O-Matic requires the python modules Colorer and

general which are distributed in the same git repository.

References

[1] Anthony M Bolger, Marc Lohse, and Bjoern Usadel. Trimmomatic: a
flexible trimmer for Illumina sequence data. Bioinformatics, page btu170,
2014.

[2] IUPAC-IUB Comm. Abbreviations and symbols for nucleic acids, polynu-
cleotides, and their constituents. Biochemistry, 9(20):4022–4027, 1970.

[3] DB Jaffe et al. The FASTG Format Specification (v1.00). http. 2012.

[4] Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with
Bowtie 2. Nature methods, 9(4):357–359, 2012.

[5] H. Li. seqtk, 2013.

[6] Kerstin Lindblad-Toh, Manuel Garber, Or Zuk, Michael F. Lin, Brian J.
Parker, Stefan Washietl, Pouya Kheradpour, Jason Ernst, Gregory Jor-
dan, Evan Mauceli, Lucas D. Ward, Craig B. Lowe, Alisha K. Holloway,
Michele Clamp, Sante Gnerre, Jessica Alföldi, Kathryn Beal, Jean Chang,
Hiram Clawson, James Cuff, Federica Di Palma, Stephen Fitzgerald, Paul
Flicek, Mitchell Guttman, Melissa J. Hubisz, David B. Jaffe, Irwin Jun-
greis, W. James Kent, Dennis Kostka, Marcia Lara, Andre L. Martins,
Tim Massingham, Ida Moltke, Brian J. Raney, Matthew D. Rasmussen,
Jim Robinson, Alexander Stark, Albert J. Vilella, Jiayu Wen, Xiaohui
Xie, Michael C. Zody, Jen Baldwin, Toby Bloom, Chee Whye Chin, Dave
Heiman, Robert Nicol, Chad Nusbaum, Sarah Young, Jane Wilkinson,
Kim C. Worley, Christie L. Kovar, Donna M. Muzny, Richard A. Gibbs,

9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 13, 2015. ; https://doi.org/10.1101/024448doi: bioRxiv preprint

https://github.com/i5K-KINBRE-script-share/read-cleaning-format-conversion/tree/master/KSU_bioinfo_lab/fasta-o-matic
https://github.com/i5K-KINBRE-script-share/read-cleaning-format-conversion/tree/master/KSU_bioinfo_lab/fasta-o-matic
https://doi.org/10.1101/024448
http://creativecommons.org/licenses/by/4.0/

Andrew Cree, Huyen H. Dihn, Gerald Fowler, Shalili Jhangiani, Vandita
Joshi, Sandra Lee, Lora R. Lewis, Lynne V. Nazareth, Geoffrey Okwuonu,
Jireh Santibanez, Wesley C. Warren, Elaine R. Mardis, George M. Wein-
stock, Richard K. Wilson, Kim Delehaunty, David Dooling, Catrina Fronik,
Lucinda Fulton, Bob Fulton, Tina Graves, Patrick Minx, Erica Sodergren,
Ewan Birney, Elliott H. Margulies, Javier Herrero, Eric D. Green, David
Haussler, Adam Siepel, Nick Goldman, Katherine S. Pollard, Jakob S. Ped-
ersen, Eric S. Lander, and Manolis Kellis. A high-resolution map of human
evolutionary constraint using 29 mammals. Nature, 478(7370):476–482, oct
2011.

[7] NCBI. Accepted input formats, Accessed: 2015-08-06.

[8] P Rice, I Longden, and A Bleasby. EMBOSS: the European Molecular
Biology Open Software Suite. Trends in genetics : TIG, 16(6):276—277,
June 2000.

[9] J. E. Stajich, D. Block, K. Boulez, S. E. Brenner, S. A. Chervitz, C. Dagdi-
gian, G. Fuellen, J. G. Gilbert, I. Korf, H. Lapp, H. Lehvaslaiho, C. Mat-
salla, C. J. Mungall, B. I. Osborne, M. R. Pocock, P. Schattner, M. Senger,
L. D. Stein, E. Stupka, M. D. Wilkinson, and E. Birney. The Bioperl
toolkit: Perl modules for the life sciences. Genome Res, 12(10):1611–8,
2002.

[10] Jason E. Stajich and Matthew W. Hahn. Disentangling the effects of de-
mography and selection in human history. Molecular biology and evolution,
22(1):63–73, jan 2005.

[11] L. D. Stein, C. Mungall, S. Shu, M. Caudy, M. Mangone, A. Day, E. Nick-
erson, J. E. Stajich, T. W. Harris, A. Arva, and S. Lewis. The generic
genome browser: a building block for a model organism system database.
Genome Res, 12(10):1599–610, 2002.

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted August 13, 2015. ; https://doi.org/10.1101/024448doi: bioRxiv preprint

https://doi.org/10.1101/024448
http://creativecommons.org/licenses/by/4.0/

	Introduction
	FASTA file format specifications versus recommendations
	Customizing FASTA files to ensure that information is properly interpreted by downstream tools
	Existing tools

	Implementation
	Portability
	Automate where appropriate
	Workflow integration

	Results
	Data
	Reformatting tests
	Comparison between results

	Conclusions
	Acknowledgements
	Availability and requirements

