Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Using Ancient Samples in Projection Analysis

Melinda A. Yang, Montgomery Slatkin
doi: https://doi.org/10.1101/025015
Melinda A. Yang
*Department of Integrative Biology, University of California, Berkeley, CA 94720-3140
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: mel.yang@berkeley.edu
Montgomery Slatkin
*Department of Integrative Biology, University of California, Berkeley, CA 94720-3140
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Projection analysis is a useful tool for understanding the relationship of two populations. It compares a test genome to a set of genomes from a reference population. The projection’s shape depends on the historical relationship of the test genome’s population to the reference population. Here, we explore the effects on the projection when ancient samples are included in the analysis. First, we conduct a series of simulations in which the ancient sample is directly ancestral to a present-day population (one-population model) or the ancient sample is ancestral to a sister population that diverged before the time of sampling (two-population model). We find that there are characteristic differences between the projections for the one-population and two-population models, which indicate that the projection can be used to determine whether a test genome is directly ancestral to a present day population or not. Second, we compute projections for several published ancient genomes. We compare three Neanderthals, the Denisovan and three ancient human genomes to European, Han Chinese and Yoruba reference panels. We use a previously constructed demographic model and insert these seven ancient genomes and assess how well the observed projections are recovered.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
Back to top
PreviousNext
Posted August 20, 2015.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Using Ancient Samples in Projection Analysis
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Using Ancient Samples in Projection Analysis
Melinda A. Yang, Montgomery Slatkin
bioRxiv 025015; doi: https://doi.org/10.1101/025015
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Using Ancient Samples in Projection Analysis
Melinda A. Yang, Montgomery Slatkin
bioRxiv 025015; doi: https://doi.org/10.1101/025015

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genomics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4095)
  • Biochemistry (8786)
  • Bioengineering (6493)
  • Bioinformatics (23386)
  • Biophysics (11766)
  • Cancer Biology (9167)
  • Cell Biology (13290)
  • Clinical Trials (138)
  • Developmental Biology (7422)
  • Ecology (11386)
  • Epidemiology (2066)
  • Evolutionary Biology (15119)
  • Genetics (10413)
  • Genomics (14024)
  • Immunology (9145)
  • Microbiology (22108)
  • Molecular Biology (8793)
  • Neuroscience (47445)
  • Paleontology (350)
  • Pathology (1423)
  • Pharmacology and Toxicology (2483)
  • Physiology (3711)
  • Plant Biology (8063)
  • Scientific Communication and Education (1433)
  • Synthetic Biology (2215)
  • Systems Biology (6021)
  • Zoology (1251)