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Abstract

Large-scale sequencing of cDNA (RNA-seq) has been a boon to the quantitative analysis of tran-

scriptomes. A notable application is the detection of changes in transcript usage between experimental

conditions. For example, discovery of pathological alternative splicing may allow the development of

new treatments or better management of patients. From an analysis perspective, there are several ways

to approach RNA-seq data to unravel differential transcript usage, such as annotation-based exon-level

counting, differential analysis of the ‘percent spliced in’ measure or quantitative analysis of assembled

transcripts. The goal of this research is to compare and contrast current state-of-the-art methods, as well

as to suggest improvements to commonly used workflows.

We assess the performance of representative workflows using synthetic data and explore the effect

of using non-standard counting bin definitions as input to a state-of-the-art inference engine (DEXSeq).

Although the canonical counting provided the best results overall, several non-canonical approaches were

as good or better in specific aspects and most counting approaches outperformed the evaluated event-

and assembly-based methods. We show that an incomplete annotation catalog can have a detrimental

effect on the ability to detect differential transcript usage in transcriptomes with few isoforms per gene

and that isoform-level pre-filtering can considerably improve false discovery rate (FDR) control.

Count-based methods generally perform well in detection of differential transcript usage. Controlling

the FDR at the imposed threshold is difficult, mainly in complex organisms, but can be improved by

pre-filtering of the annotation catalog.
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Background

High-throughput sequencing of cDNA fragment populations, commonly known as RNA-seq, has rapidly

become a default standard for profiling the composition of the transcriptome and quantify the expression

of individual transcriptional units (such as genes, transcripts or exons). One of the key analysis challenges

with RNA-seq data is to infer a set of such units that change their expression level or expression pattern

between conditions. For example, identifying transcriptional changes that occur between normal and disease

states may lead to markers of progression or prognosis, knowledge of molecules that can be pharmaceutically

corrected, or to an understanding of the cascade of molecular events that have occurred. Typically, in

unraveling interesting biological phenomena, inferring changes in expression is a critical, yet initial step of

the discovery pipeline and the results often feed into downstream interpretive analyses.

Several reports have recently provided snapshots of the performance of gene-level differential expression

analysis methods, using both synthetic and experimental data [1, 2, 3, 4, 5]. As an example of the latter, Ra-

paport et al. [3] used large-scale experimental data from the SEQC (Sequencing Quality Control) consortium,

consisting of replicates of well-known cell lines, to evaluate the performance of differential gene expression

methods and the effects of modifying sequencing depths and the number of biological replicates. As an

extension to this, the SEQC Consortium and Association of Biomolecular Resource Facilities recently fin-

ished comprehensive comparison studies with respect to accuracy, sensitivity and reproducibility of gene-level

measurements across sites, platforms and algorithms [6, 7].

We focus our attention here on a related, important gene expression detection problem: differential

transcript (or isoform) usage, or DTU. Previous studies have shown that most multi-exon human genes

are affected by alternative splicing and thus can express a variety of different transcripts from the same

genomic sequence [8, 9]. Differences in the relative expression of these isoforms between tissues and species

are naturally occurring between cell types and allow cells to adapt to the environment, but aberrations from

this “normal” splicing pattern can have detrimental consequences for the organism [10]. It is important

to distinguish DTU from gene-level differential expression and from transcript-level differential expression

(DTE). In particular, DTU considers changes in the proportions of the isoforms of a gene that are expressed

as opposed to changes of the individual transcript levels. As shown in Figure 1, DTU implies DTE but

not necessarily the reverse. Although the main transcriptional units of interest are the transcripts, it has

been difficult to obtain accurate and precise transcript-level expression estimates due to the extensive overlap

between different transcripts. This has prompted researchers to develop alternative ways of representing and

analyzing the observed data. One such approach, which has been used as a surrogate for DTU, is differential

exon usage (DEU), where data are represented on the level of disjoint “counting bins”. These bins are

transcript “building blocks” similar to exons, and each transcript consists of a combination of counting

bins. However, since the counting bins are constructed to be disjoint, bin expression quantification is more

straightforward than quantification of the expression of overlapping exons. Preferential inclusion or exclusion

of given counting bins points to changes in the expression level of one or more associated transcript(s).

A well-placed recent review lists close to 100 computational methods that have been developed in the

space of RNA-seq data and splicing analyses [11] and a few comparisons of DTU detection methods have been

conducted. For example, a recent software review gives an overview of the features and interfaces available

from recent tools to detect DTU, but no critical assessment of empirical performance is given [12]. An

early simulation study across a handful of popular mapping-DTU pipelines highlighted that: i) the presence

of DTU can increase false positive rates for standard gene-level differential expression analyses, which is

perhaps not surprising; ii) in some cases, DTU simply cannot be detected with current methods [13]. In that

study, receiver operating characteristic (ROC) curves were presented, but this gives little sense of the FDR

control during typical usage. More recently, Liu et. al [14] conducted a wide-ranging comparison of eight

DTU detection methods using both simulated and experimental data. They compared performance across

different alternative splicing ratios, read depths, dispersion patterns, types of splice changes and sample sizes

and explored the influence of annotation, highlighting that no single method dominates in performance and

that they often give conflicting results. In the current study, we augment earlier studies in several important

ways: we explore a spectrum of counting approaches, highlight striking differences in false discovery rate
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Figure 1: Schematic illustration of differential transcript expression (DTE) and differential

transcript usage (DTU) between conditions 1 and 2, for a gene with two isoforms. DTE implies

that we can observe expression changes for at least one transcript between condition 1 and condition 2.

However, the expression proportion of each transcript (as a percentage of the total expression of all transcripts

of the same gene) does not necessarily change between conditions, and thus DTE does not necessarily imply

DTU. In DTU, on the other hand, the relative expression of the isoforms of a gene changes between the

conditions, whereas the total expression of the gene may or may not remain constant. Since at least one

isoform must change expression in DTU, it also implies DTE. The numbers indicated on the transcripts in

the figure represent expression levels (in arbitrary units) for easier interpretation. Note that in practice,

many genes will have more than two isoforms, but the principal difference between DTE and DTU carries

over.

(FDR) control between simple and complex organisms, improve existing workflows by applying carefully

designed filtering criteria and explore the effect of incomplete annotation catalogs. The simulated data are

available from ArrayExpress with accession number E-MTAB-3766.

Methods for differential transcript usage

Broadly speaking, there are three major classes of methods designed to detect DTU. First, the assembly-

based (or “isoform deconvolution”) methods (e.g., the cufflinks/cuffdiff pipeline [15, 16, 17]), which reconstruct

and quantify the expression of a set of transcripts that best explain the observed reads. The cuffdiff test

for differential transcript usage within a gene is based on the Jensen-Shannon divergence, measuring the

similarity between two probability distributions. The second class of methods focuses on specific types of

alternative splicing (e.g., retained introns or alternative exons) and identifies the number of observed reads

that unambiguously support the presence or absence of each splicing event (e.g., rMATS [18]). Comparing

these read counts gives an estimate of the “percent spliced in”, or psi value, which can then be compared

between conditions for each event.

The third type of DTU detection methods do not directly quantify the transcript expression, but rather use

differential exon usage as a surrogate to infer DTU. The genome is divided into (typically disjoint) counting

bins and the number of observed reads overlapping each bin is counted. To infer differential exon (bin) usage

between conditions, these methods often make use of (general or generalized) linear models containing an

interaction term between the bin identifier and the condition of interest to search for non-proportionality of

the bin counts within a gene between the conditions. Arguably the most widely used differential exon usage

detection method is implemented in the DEXSeq R package [19] but alternatives, such as the diffSplice

function from the limma R package, are available [20]. Since DEXSeq infers differential exon usage, it is left

to the user to interpret which transcripts are differentially used, given the evidence for a particular exon bin-

condition interaction. However, already knowing which exons are affected can lead to biologically meaningful

interpretation of the functional impact of their differential usage (e.g., [19]).
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Bin read counting

The read counting function distributed with the DEXSeq package splits the coding parts of the genes into

non-overlapping exon bins and counts the number of reads overlapping each of these bins. Reads that overlap

multiple bins are assigned to all of them, which increases the correlation between the bin counts and implies

that the sum of the bin counts can significantly exceed the number of sequencing reads in the experiment.

With default settings, genes that overlap each other are aggregated into a composite gene complex containing

all exon bins of the original genes. The identifier of this complex is obtained by combining the identifiers of

the aggregated genes. In practice, this could lead to difficulties in result interpretation, and the differential

splicing detection could potentially be affected by overall differential gene expression of a subset of the genes

involved in a complex. In this study, we examine whether using alternative definitions of the counting bins,

while keeping the interaction inference engine fixed, could provide benefits to the overall performance of

DEXSeq. In total, we compare nine variants of counting bins. In this section, we give a brief description of

the used methods and define the name that will be used to identify each method in the evaluations (given

in parentheses). More details regarding the application of these methods can be found in Additional file 1,

as well as in the project GitHub repository (https://github.com/markrobinsonuzh/diff_splice_paper).

For more details regarding their theoretical underpinnings and implementation, we refer to the original

publications.

In addition to the default DEXSeq exon bin counting (DEXSeq-default) (DEXSeq R package v1.14.0) [19],

we explore the effect of circumventing the merging of overlapping genes in two ways (see Supplementary Fig-

ures 3 and 4 for illustrations). First, we change the arguments to the DEXSeq annotation preparation function

to exclude overlapping exon parts on the same strand rather than aggregate genes (DEXSeq-noaggreg). This

eliminates the composite feature identifiers, but may leave out important genomic regions that can not be

unambiguously assigned to one gene. This is particularly problematic if the annotation catalog is “overpop-

ulated” with irrelevant transcripts. Second, we use functions from Bioconductor [21] to “manually” split the

genes into disjoint counting bins, excluding overlapping parts even if they are on different strands and count

the reads using the featureCounts function from the Rsubread R package (v1.18.0) (featureCounts-flat) [22,

23], allowing reads to be assigned to multiple features. We also explore the effect of completely circumvent-

ing the division of exons into disjoint bins and assign the reads to the original exons, again allowing a read

to be assigned to multiple exons (featureCounts-exon). The SplicingGraphs R package (v1.8.1) provides a

counting method where splicing graphs are constructed from the provided gene models and the reads are

assigned to the edges of the graph (representing exons or introns) (SplicingGraph). Since the reads spanning

exon junctions are expected to be the most informative for identifying DTU, we also explicitly evaluate the

use of the junction counts generated by the TopHat aligner (v2.0.14), ignoring all reads that fall completely

within exons (TopHat-junctions). Using MISO (v0.5.3) [24], we define the counting bins as combinations

of isoforms and count the number of reads that align in positions compatible with each given combination

(MISO). Yet another way of defining counting bins is provided by an intermediate representation from the

casper R package (v2.2.0) [25], which defines the bins as the exon paths traced out by the two reads in a

pair (casper). Finally, we define the counting bins as the isoforms themselves and use kallisto (v0.42.1) [26]

to estimate the number of reads assigned to each isoform (kallisto).

Each of the counting methods generates a count matrix, where the rows correspond to counting bins and

the columns to samples. These count matrices are used as the input to DEXSeq in order to search for bins

showing evidence of differential usage between conditions. Since each approach defines bins in a different

way, and not all bins are possible to unambiguously associate with a given isoform, we evaluate them in

terms of their ability to detect differential isoform usage at the gene-level.

Conceptually, each of the different counting bin definitions has advantages and disadvantages when used

in conjunction with an inference engine such as DEXSeq, and ultimately the optimal choice likely depends on

aspects such as the level at which interpretation can most easily be made, and the confidence in the annotation

catalog. DEXSeq allows the user to determine which bin(s) are preferentially included or excluded in a given

condition. In some situations, where the differential regulation of specific isoforms are expected to be involved

in the phenotype determination, it can be advantageous to define the bins as the isoforms themselves. In

other situations, however, the key phenotypic determinant may be the inclusion of a specific exon containing
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important genetic material, and the precise isoform contributing this exon is less important. In such cases,

(sub)exon-specific bins may be preferable. In addition, exon-level bins allows the detection of events (such

as exon skipping) that are not annotated as part of an existing isoform, and isoform-level bins will not allow

detection of splicing aberrations in genes with a single isoform. On the other hand, exon-level bins could lead

to spurious findings in terms of significantly differential bins that could not be the result of a true change in

isoform usage.

Also other aspects, such as the degree of “multi-counting”, could lead to performance differences between

the bin definition approaches. Typically, transcript abundance estimation methods, such as kallisto, attempt

to distribute reads overlapping multiple transcripts in order to optimize a likelihood function. In contrast,

the DEXSeq counting script assigns reads overlapping multiple bins to each of them, potentially increasing

the correlation between bin counts within a gene. This multi-counting increases the count for the individual

bins, particularly in situations where the bins are much shorter than the reads, and thus potentially leads to

higher statistical power. On the opposite side of the spectrum, methods that consider only junction-spanning

reads (such as TopHat-junctions) excludes a potentially large fraction of the reads and can thus be expected

to lose power, especially when the exons are relatively long compared to the reads.

For methods based on the original (non-disjoint) exons (such as featureCounts-exon), we expect a lower

power to detect switches between isoforms where the critical region (the genomic region that is unique

to one or the other isoform) is small. The reason for this is that the reads from the critical region will

contribute relatively little to the counts of the exons (bins). Thus, even dramatic relative changes in this

small contribution may pass unnoticed, whereas it would be apparent if the critical region formed a bin in

itself (such as, for example, with DEXSeq-default, DEXSeq-noaggreg and featureCounts-flat).

Results

We evaluated the counting methods outlined in the previous section (using DEXSeq as the inference en-

gine) as well as cuffdiff (v2.2.1) and rMATS (v3.0.9) using simulated data based on fruit fly and human as

described in the Methods section. The characteristics of the two organisms are outlined in Additional file

1:Supplementary Figure 1 and Supplementary Table 1. For each organism, we simulated reads for 3 replicates

in each of two conditions. DTU was introduced for 1,000 genes by reversing the relative abundances of the

two most abundant isoforms in one of the conditions, while keeping the total number of transcripts gener-

ated from the gene constant (that is, no gene-level differential expression). This generated truly differential

genes with a range of “effect sizes” (the difference in relative abundance between the two differentially used

isoforms). The simulation framework is outlined in Additional file 1:Supplementary Figure 2. In Additional

file 1:Supplementary Figures 7-8, we also provide a comparison of the overall count patterns for the different

methods.

The performance evaluation is based on gene-level q-values (adjusted p-values) calculated as described

in the Methods section. After thresholding the gene-wise q-values at three common values (0.01, 0.05 and

0.1), we evaluated the true positive rate (TPR, the fraction of genes with true differential isoform usage that

show q-values below the threshold) and the observed false discovery rate (FDR, the fraction of all genes with

q-value below the threshold where there is no true differential isoform usage). Any gene identifiers that were

not present in the list of simulated genes were excluded from the evaluation, since these genes could not be

classified as either true positive, true negative, false positive or false negative. This affected the performance

estimates for casper and DEXSeq-default counts, as well as cuffdiff, since these methods sometimes form

gene complexes, with identifiers that are combinations of the identifiers of the merged genes. The number

of features (genes + complexes) and the number of complexes for these methods are given in Additional file

1:Supplementary Table 1.

Overall performance and effect of transcriptome complexity

Overall, the observed TPRs were similar between the two studied organisms, while the achieved FDRs were

higher in the human simulation (Figure 2). We hypothesized that the difference in performance between the
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fruit fly and human simulation was associated with the higher level of complexity of the human transcriptome,

with many more isoforms per gene. Indeed, stratifying the results by the number of isoforms for each

gene showed a clear association between the number of isoforms and the observed FDR in both organisms

(Figure 3). On a global scale, only cuffdiff managed to satisfactorily control the FDR in any of the organisms,

but at the price of much lower power than most other methods. The conservative nature of cuffdiff has

been previously described in the context of differential transcript expression [27]. One major reason for

the conservativeness in the current study is that only genes where the coding output differs between the

differentially used isoforms can be detected. Applying cuffdiff with an artificial annotation file where CDS

and protein ID entries were replaced by exon and transcript IDs, respectively, considerably improved the

power of cuffdiff (Additional file 1:Supplementary Figures 18-19). Another contributing reason to the low

power could be that the sampling scheme used by cuffdiff to evaluate significance currently does not yield

nominal p-values below 5 · 10−5.
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Figure 2: Overall performance of the evaluated methods. The three circles for each method indicate

the observed false discovery rate (FDR) and true positive rate (TPR) when the gene-wise q-values are

thresholded at three commonly used thresholds: 0.01, 0.05 and 0.1. Ideally each circle should fall to the left

of the corresponding vertical line, since this would indicate that the FDR is controlled at the imposed level.

A circle is filled if the FDR is controlled and open otherwise. The total number of genes (n) as well as the

number affected by differential isoform usage (n.ds) are given in the panel headers. Overall, only cuffdiff

manages to control the FDR, but at the cost of a reduction in power (TPR). The FDR control is worse in

the human simulation than in the fruit fly simulation, potentially due to the larger number of isoforms in

the human transcriptome.

The second lowest power was obtained by rMATS, mostly since it is only able to detect simple splicing

events (for these, however, the power was comparable to the other methods, see Additional file 1:Supplemen-

tary Figure 12). Among the counting methods used with DEXSeq, the exon path counts from casper showed

the lowest power for both organisms. This could be attributed to a combination of the relatively low read

count for the individual bins and the merging of features into complexes, which could not be directly matched

with the list of truly differential or non-differential genes. The same merging effect was seen for cuffdiff and

for DEXSeq-default (which therefore showed a lower TPR than DEXSeq-noaggreg), albeit not as strong since

DEXSeq and cuffdiff only merge genes if they are on the same strand, while casper merges also overlapping

genes on different strands. The merging effect was particularly pronounced in the human data, where a larger

fraction of the genes are overlapping to some extent and thereby were aggregated into complexes (Additional

file 1:Supplementary Table 1). An alternative could be to evaluate the methods only based on the genes
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Figure 3: Performance stratified by number of isoforms per gene. The ability to control the false

discovery rate (FDR) at an imposed level depends on the number of isoforms of the genes (indicated in the

panel headers as e.g. [2, 4)). The FDR control for genes with many isoforms is worse than that for genes

with few isoforms. The total number of genes (n) as well as the number of genes affected by DTU (n.ds) in

each category are indicated in the panel headers.

for which a true status indicator as well as a q-value were available (that is, to subset the truth and result

tables to only these genes before the performance evaluation). This approach is explored in Additional file 1

(Supplementary Figure 17). As expected, it improved the power of casper and DEXSeq-default substantially.

In the fruit fly simulation, the count matrices generated by featureCounts-exon and TopHat-junctions

performed relatively poorly, while their results in the human simulation were more on par with the other

methods. The performance difference between the organisms may be associated with the relatively low

junction counts in fruit fly and with the observed inability of featureCounts-exon to detect switches between

genetically similar isoforms, where the critical regions (the regions that are unique to one of the isoforms)

are very small (see Additional file 1:Supplementary Figure 11 for an illustration). In both organisms, the

SplicingGraph, DEXSeq-noaggreg and featureCounts-flat counts performed similarly. This was not surprising

since the counting bins were similar between these methods (exons and introns). The transcript-level counts

obtained by kallisto also appeared to give good results when combined with the DEXSeq inference engine,

especially for relatively simple genomes such as the fruit fly. Similarly, MISO counts provided good results in

the fruit fly simulation, but showed a relatively high FDR for the human data. In addition to its low power

due to the inability to detect complex splicing events, rMATS showed a higher FDR than the other methods.

A closer examination of the false positive events revealed that these are enriched with rare events (inclusion

levels close to 0) and relatively depleted of events with inclusion levels in the middle range between 0 and 1

(see Additional file 1:Supplementary Figure 20).
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Performance stratified by gene characteristics

To better understand the results shown in Figure 2, we evaluated the performance within given gene strata,

defined by various annotations. In Figure 4, we show the effect of stratifying by the difference between the

relative abundances of the two most highly abundant isoforms (which are also the ones that are differentially

used for the genes affected by DTU). Additional file 1 (Supplementary Figures 9 and 11-12) contains similar

figures stratified by other gene annotations, such as overall gene expression level, compositional similarity

between the differentially used isoforms and the type of alternative splicing event. Differential isoform usage

was introduced by reversing the two most abundant isoforms for the 1,000 genes selected and as expected,

the larger this difference, the easier we could detect alternative usage (Figure 4). The performance of all

methods, for both organisms, increased dramatically between the group of genes where the relative abundance

difference was below 33% and the group with relative abundance differences between 33% and 67%. For the

genes with one highly dominant transcript (relative abundance difference above 67%), although almost all

truly differential genes were found, the FDR control was very poor, especially in the human simulation.
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Figure 4: Performance stratified by isoform dominance. The degree of isoform dominance (the dif-

ference in relative abundance between the two most highly expressed isoforms of a gene, indicated in the

panel headers as e.g. [0.000,0.333)) is the main determinant of the methods’ ability to detect differential

isoform usage in our simulations (recall that the differential isoform usage was introduced by switching the

abundances of the two most dominant transcripts of 1,000 selected genes). DTU for genes where the two

differentially used isoforms are expressed at almost the same level (left panels) is more difficult to detect than

genes with one dominant isoform (right panels). On the other hand, the FDR control in the latter category

is very poor for most methods. The total number of genes (n) as well as the number of genes affected by

DTU (n.ds) in each category are indicated in the panel headers.
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Effect of annotation catalog incompleteness on counting methods

All methods evaluated in this study rely on known annotations. While both organisms chosen here have

well-characterized transcriptomes, this is far from true for many non-model species. Here, we studied the

effect of an incomplete annotation catalog on the power of detecting differential isoform usage, by excluding

20% of the known transcripts from the reference gtf file (randomly chosen, but proportionally split between

differentially used and non-differentially used). We then re-ran the analysis of the simulated data, starting

from the TopHat read alignment step. We restricted this analysis to the counting methods combined with

DEXSeq, since they provided the best performance above.

Excluding isoforms led to a reduction in the number of counting bins for all methods (Table 1) and

for most of the methods a slight increase in the average read count per bin. The methods assigning reads

to (combinations of) transcripts (MISO and kallisto) showed the largest relative increase in the average

read count per bin. The incomplete annotation catalog had a much greater impact on the detection power

of the various counting methods in the fruit fly simulation than in the human simulation (Figure 5). A

likely explanation for this effect is the low number of isoforms per gene for the fruit fly, implying that

there will be many genes with only one (or even zero) isoform remaining in the annotation catalog after the

exclusion. Indeed, stratifying the results by the number of excluded differentially used isoforms and the total

number of retained isoforms showed that the number of remaining isoforms was the strongest determinant

of the performance (Additional file 1:Supplementary Figures 13-16). Many of the counting methods were

able to detect the differential isoform usage even after excluding both the differentially used isoforms from

the annotation, as long as the total number of remaining isoforms was large enough. The methods using

the transcript structure to define the counting bins (kallisto, MISO and SplicingGraph) were most strongly

negatively affected when only one isoform was retained. This can be attributed to the default exclusion of

genes with a single isoform by SplicingGraph and MISO, and that kallisto only generates a single counting

bin for these genes. Conversely, featureCounts-exon and TopHat-junctions were least affected.

Isoform pre-filtering improves the observed FDR

We noted above that the empirical FDR was often much higher than the imposed FDR threshold, especially

for genes with one largely dominating isoform and that this effect was consistent across most counting meth-

ods. In an attempt to better understand the reasons behind this high FDR, we compared the characteristics

of the genes falsely called differentially spliced (the false positives, FP) to those of the true positives (TP,

correctly called genes with true DTU), the false negatives (FN, non-significant genes with true underlying

DTU) and true negatives (TN, genes correctly called non-differential). We focused on the counts obtained by

DEXSeq-noaggreg, due to their intrinsic link to the DEXSeq framework and their overall good performance

in the previous evaluations. The most notable observation was that the FP genes showed a larger variance

among the dispersion estimates for their respective exon bins than the other gene categories (Additional

file 1:Supplementary Figures 21-22). The effect was more pronounced for genes with many counting bins

and genes with one highly dominant isoform. We hypothesized that reducing the number of bins by an

initial filtering step, eliminating the non-expressed isoforms from the annotation catalog used to generate

the counting bins, could improve the FDR control. Based on the RSEM-estimated isoform percentages from

which the individual sample isoform percentages were derived, we thus generated four new annotation files

for the DEXSeq counting by excluding all isoforms with relative abundance below (in turn) 5%, 10%, 15%

and 25% in both conditions. Then, we performed the counting and differential exon usage testing as before.

Other filtering paradigms could be imagined, such as successively excluding the lowest expressed isoforms

as long as their total relative abundance does not exceed a fixed threshold. For all the thresholds we eval-

uated, the reduction in the number of bins was substantially larger than the relative reduction in total bin

counts (Additional file 1:Supplementary Tables 2-3), which suggests a high degree of redundancy and/or

that few reads were assigned to the excluded bins. The human simulated data contained a larger fraction

of non-expressed isoforms (Additional file 1:Supplementary Table 1) and thus the reduction in the number

of retained isoforms was larger than for the fruit fly simulation. It is worth highlighting that isoform-level

filtering is not equivalent to filtering bins out of the count table (see Additional file 1 for a comparison to
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Table 1: The number of features (genes + gene complexes), the number of genes covered by any of the features

(# incl. genes), the number of counting bins and the sum of all bin counts for various counting methods

and for the complete and reduced annotation catalog. Randomly excluding 20% of the transcripts from the

annotation catalog generally led to a slight increase in the average bin count, with the most pronounced

effects seen for the methods defining the counting bins as (combinations of) transcripts (kallisto and MISO).

MISO and SplicingGraph consider only genes with at least two isoforms, which explains the lower number of

features for these methods.
Fruit fly Human

complete incomplete complete incomplete

casper

# features 11,505 10,282 12,544 12,636

# incl. genes 13,284 11,615 15,577 15,157

# bins 555,346 491,188 3,523,252 3,076,596

tot count 18,583,949 16,621,279 38,024,617 35,159,482

tot count/# bins 33.46 33.84 10.79 11.43

featureCounts-flat

# features 13,690 11,955 20,092 19,318

# incl. genes 13,690 11,955 20,092 19,318

# bins 73,745 64,787 463,496 404,205

tot count 24,169,605 21,986,549 82,341,874 74,183,344

tot count/# bins 327.75 339.37 177.65 183.53

featureCounts-exon

# features 13,937 12,138 20,410 19,552

# incl. genes 13,937 12,138 20,410 19,552

# bins 159,182 127,516 1,069,500 855,182

tot count 74,482,826 59,612,563 356,461,786 280,317,425

tot count/# bins 467.91 467.49 333.30 327.79

DEXSeq-default

# features 13,569 11,848 19,099 18,482

# incl. genes 13,937 12,138 20,410 19,552

# bins 75,162 65,842 478,504 415,121

tot count 24,608,190 22,367,584 83,047,366 74,720,668

tot count/# bins 327.40 339.72 173.56 180.00

DEXSeq-noaggreg

# features 13,709 11,969 20,147 19,353

# incl. genes 13,709 11,969 20,147 19,353

# bins 73,981 64,927 468,722 407,779

tot count 24,015,599 21,873,688 81,568,776 73,488,445

tot count/# bins 324.62 336.90 174.02 180.22

SplicingGraph

# features 5,437 4,265 16,854 15,956

# incl. genes 5,437 4,265 16,854 15,956

# bins 87,400 70,987 737,058 647,915

tot count 22,311,721 18,777,082 100,549,202 86,827,817

tot count/# bins 255.28 264.51 136.42 134.01

TopHat-junctions

# features 11,663 10,306 18,918 18,355

# incl. genes 11,663 10,306 18,918 18,355

# bins 56,670 50,413 290,956 266,070

tot count 6,542,180 6,048,594 31,447,564 29,616,532

tot count/# bins 115.44 119.98 108.08 111.31

MISO

# features 5,259 4,153 12,767 12,225

# incl. genes 5,259 4,153 12,767 12,225

# bins 29,371 22,040 280,521 214,608

tot count 11,163,878 9,535,328 35,387,627 32,451,761

tot count/# bins 380.10 432.64 126.15 151.21

kallisto

# features 13,937 12,138 20,410 19,552

# incl. genes 13,937 12,138 20,410 19,552

# bins 26,951 21,561 145,342 116,274

tot count 23,734,377 21,363,780 37,908,846 35,073,753

tot count/# bins 880.65 990.85 260.83 301.65
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Figure 5: TPR and FDR stratified by incompleteness of annotation. The circles indicate the

performance of the different methods using the complete annotation catalog. The triangles indicate the

performance achieved when the analysis was performed using an incomplete annotation catalog, where 20%

of the transcripts were excluded. The overall impact of the incompleteness of the annotation catalog is

larger for the fruit fly simulation (left panel) than for the human simulation (right panel). This appears

to be mainly due to the larger number of isoforms in the human transcriptome and the associated larger

redundancy. Additional file 1:Supplementary Figures 13-16 stratify the results further and provide additional

insight.

bin filtering approaches).

Excluding lowly abundant isoforms from the catalog before forming the counting bins provided a sub-

stantial performance improvement compared to unfiltered data (Figure 6), in particular for the previously

problematic genes with one largely dominant transcript. Already excluding isoforms with relative abundance

less than 5% provided a tangible improvement in FDR control. Comparing the FPs found with the original

annotation file to those found after filtering at the 5% level revealed that in the human simulation, 184

genes were called FP exclusively with the original file, while 30 were called FP exclusively after filtering.

Studying these genes in more detail revealed that many of the 30 FPs exclusive to the filtered setting were

likely significant mainly due to a less stringent correction for multiple comparisons (fewer counting bins)

and showed evidence of differential usage also with the original annotation (Additional file 1:Supplementary

Figures 23-25). Conversely, the 184 genes called FP exclusively with the original annotation were correctly

classified after the filtering mainly since the bins contributing to the significance of the gene were filtered

out (Additional file 1:Supplementary Figures 26-28). Notably, the strategy of excluding lowly expressed

transcripts is of general utility, since it also significantly reduces the rate of false discoveries for DEXSeq

combined with kallisto estimated counts (Additional file 1:Supplementary Figures 34-35). Likewise, setting a

higher threshold on the absolute change in percent-spliced-in reduced the false discoveries called by rMATS

with a modest drop in power (Additional file 1:Supplementary Figures 36).
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Figure 6: TPR and FDR for DEXSeq-noaggreg, with various degrees of isoform-guided anno-

tation filtering. The performance evaluation is stratified according to the degree of isoform dominance

(the difference in relative abundance between the two most highly expressed isoforms of a gene, indicated in

the panel headers as e.g. [0.000,0.333)). Excluding lowly expressed transcripts from the annotation catalog

before defining the DEXSeq-noaggreg counting bins improves the control of FDR, with negligible loss (or

even a slight gain) of power. The total number of genes (n) as well as the number of genes affected by DTU

(n.ds) in each category are indicated in the panel headers.

In our simulation study, we were able to use the underlying isoform abundances to perform the filtering.

Of course, in experimental data sets, the true relative isoform abundances are not known and they may vary

between samples and conditions. A possible approach in a real-data setting could be to first estimate the

relative isoform abundance using, e.g., kallisto [26] or RSEM [28] and exclude isoforms where the relative

abundance estimate does not exceed a certain fraction in any of the studied samples. This approach is

evaluated in Additional file 1, along with several other filtering paradigms based on the observed exon bin

counts (Additional file 1:Supplementary Figures 29-33). There, we show that the isoform-guided filtering,

based on estimated abundances, performs equally well. Another potential complication in experimental data

is that also lowly abundant isoforms can be subject to differential usage and so already a low filtering threshold

may exclude differentially used isoforms. However, depending on the experiment, the reduction in FDR may

compensate for this loss.

Discussion and Conclusions

In this study, we have used simulated data to evaluate nine counting methods in terms of their compatibility

with the DEXSeq inference engine for detection of differential transcript usage. The main motivation was to

evaluate whether a non-standard counting approach could improve the performance of a well-established sta-
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tistical inference method and to what extent the counting protocol influences the performance. Importantly,

we did not attempt to quantify or compare the “correctness” of the counts obtained by the different methods,

or their potential compatibility with other inference frameworks. We also compared the counting methods to

one assembly-based method (cuffdiff) and one event-based method (rMATS). Our results show that the infer-

ence framework provided by DEXSeq, testing for the differential inclusion of particular counting bins, works

well in conjunction with many different bin definitions, from sub-exonic bins quantified using data aligned to

the genome (e.g., DEXSeq-noaggreg) to full-length transcript bins quantified using alignment-free approaches

(e.g., kallisto). DEXSeq-noaggreg has the distinct advantage that some types of unannotated events (e.g.,

exon skipping) can still be detected with default settings, whereas kallisto has a definite speed advantage.

We expect that despite the recent excitement around ultrafast alignment-free quantification methods, many

researchers will still elect to place reads in genomic context using alignment-based methods for visualization

and interpretation. Ultimately, the choice of bin type should be guided by the level (exon, transcript) at

which relevant inference about the underlying biology can be made.

The characteristic that most strongly influenced the power to detect differential isoform usage was, not

surprisingly, the magnitude of the change in proportions between the differentially used isoforms. Also the

complexity of the gene, that is, the number of isoforms, had a noticeable impact on the specificity and many

complex but truly non-differentially spliced genes were falsely considered differential. Taken together, the

count-based methods showed strong performance compared to the other methods. The best performance was

obtained with the exon bin counts from DEXSeq-noaggreg (that, is the standard DEXSeq counting pipeline

but without the default aggregation of overlapping genes) and featureCounts-flat. These methods provided a

solid performance independently of the alternative splicing event type, the degree of similarity between the

differentially used isoforms, the overall expression level and the number of isoforms for the genes and the

distribution of relative isoform abundances. The default DEXSeq counting, which aggregates overlapping

genes into complexes, showed worse performance than counting without the aggregation step. This was

mostly due to problems matching the identifiers of the detected differentially spliced genes (complexes) with

the list of truly differentially spliced ones, which could also be a problem when interpreting results from an

experimental data set.

SplicingGraph, MISO and kallisto, which explicitly make use of the transcript structure to generate the

counting bins, worked as well as the exon bin counts as long as the annotation catalog was complete, but

the default exclusion of genes with a single annotated isoform (SplicingGraph and MISO), or the generation

of only a single counting bin for those genes (kallisto) was detrimental in the situation with a relatively

simple transcriptome (fruit fly) and an incomplete transcript catalog. The exon path counts from casper

showed low true positive rates, due to a combination of the low counts for each path and an aggregation

of identifiers for overlapping genes similar to the one by DEXSeq-default. TopHat-junctions counts showed

poor performance in the fruit fly simulation, especially for genes with few isoforms, which may be due to the

relatively long fruit fly exons, implying a low number of reads spanning exon junctions. Using featureCounts

on the original exon level (that is, without “flattening” the reference annotation) gave poor results when

the counts were analyzed with DEXSeq, especially for the fruit fly simulation. These counts were not able

to capture differential isoform usage when the differentially used isoforms were similar and were generally

unable to detect most common simple alternative splicing event types.

By comparing the results from the human and fruit fly simulations, we have shown that the performance

of the counting methods as well as the inference framework in general is dependent on characteristics and

annotation completeness of the underlying transcriptome. The higher complexity of the human transcriptome

led to a higher overall false discovery rate than for the fruit fly simulation, especially for genes with one

dominant transcript. In the fruit fly genome, with long exons and few transcripts per gene, incomplete

annotation had a detrimental effect on the power to detect differentially used isoforms while in the human

simulation, where the exons are shorter and the number of transcripts per gene is much larger, the redundancy

dampened the effect of missing annotations considerably. The negative impact of missing annotation entries

could potentially be remedied by extending the annotation catalog using tools such as cufflinks [29], although

it may not always be unambiguously clear if a newly assembled isoform represents a variant of a gene already

existing in the annotation (and if so, which one) or if it should be considered separately.
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Finally, we showed that the high false discovery rate obtained especially for genes with one largely

dominant isoform could be substantially improved by a simple pre-filtering of the isoform catalog before the

construction of the counting bins, with negligible loss of power. Excluding lowly abundant isoforms in this

way led to a tangible reduction in the number of counting bins, with only a small reduction in the number

of reads assigned to the genes. This type of filtering can also be biologically justified, given previous studies

that have suggested that “noisy” or erroneous splicing is responsible for the majority of very low-abundance

isoforms [30, 31]. Our evaluations suggest that the proposed isoform-guided filtering leads to better results

than filtering of counting bins after the counting, which is the current standard procedure.

The analyses in this study are based on simulated data, due to the lack of publicly available, extensively

validated experimental data sets for splicing analyses. By using experimental data to estimate the transcript

abundances underlying the simulation, we capture aspects such as the number and relative expression of

isoforms within each gene, and the correlation structure of expression levels between genes. The choice of

RSEM as the simulator of transcript expression was motivated by its speed, ease of use and flexibility, as

well as the ability to estimate and incorporate sequencing biases and error structure from experimental data.

However, experiments with other simulation engines (not shown) gave very similar results and we do not

expect the choice of simulator to have a major impact on the presented results. All comparisons between

methods are performed on the gene level, since this is the “least common denominator” of the different

bin definition approaches and since, as discussed in the introduction, the choice of bin definition in a real

scenario depends largely on the level at which relevant interpretation can be made. It it also worth noting

that differential transcript usage (DTU), which is the topic of this paper, could affect also transcripts that

are not themselves differentially expressed, since it focuses on the relative abundance of a gene’s isoforms.

The simulated data we used is made available in standard formats with accompanying metadata (see

’Availability of supporting data’ below), and thus our performance benchmark can be readily extended as

new method innovations are made. The Supplementary website also gives a link to a web application that

facilitates the recreation of the performance comparisons shown in our study.

Methods

Simulation

This section describes in detail the simulation procedure employed to generate the fastq files that are the

basis for the evaluation of the various methods (see Additional file 1:Supplementary Figure 2 for a schematic

illustration). We performed one simulation for human and one for fruit fly, following the same principles.

For each organism, we simulated data from two conditions, each with three biological replicates. These

two organisms were chosen since their transcriptomes show different characteristics, which could potentially

have a large impact on the performance of the evaluated methods (Additional file 1:Supplementary Figure

1 and Supplementary Table 1). Most strikingly, fruit fly has considerably longer exons and transcripts than

the human, while human genes typically have a much larger number of isoforms per gene. Moreover, they

are model organisms for which the transcriptome catalog can be expected to be at least reasonably well

characterized and, as such, the results translate to many real studies. However, we emphasize that the

results are not expected to be restricted to these organisms, and we make our code available to facilitate

extensions to other organisms.

Reference files

The simulation was performed using RSEM (v1.2.21) [28] which, given TPM (transcripts per million) expres-

sion values for each isoform in a given reference annotation catalog, simulates the sequencing process and

generates fastq files. In order to get realistic values for the expression levels and relative isoform abundances,

as well as for the sequencing parameters, we used RSEM to estimate these values from real RNA-seq data sets

(by means of the rsem-calculate-expression module). For the human simulation, we used the fastq files

from the sample SRR493366 (http://www.ebi.ac.uk/ena/data/view/SRR493366) and for the fruit fly sim-

ulation we used those from the sample SRR1501444 (http://www.ebi.ac.uk/ena/data/view/SRR1501444).
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These samples both represent paired-end sequencing experiments with a read length of 101 bp. The tran-

scriptome catalogs used as the basis for the expression estimation and simulation were Ensembl GRCh37.71

for human (using only the chromosomes in the primary genome assembly) and BDGP5.70 for the fruit fly

simulation. For both organisms, we restricted the simulation to protein coding genes. Applying the RSEM

expression estimation to the real data files provided us with a model file (detailing the sequencing settings

and error model) and an isoform summary file (containing, among other things, the estimated TPM, expected

count and relative abundance for each isoform). We modified the model file slightly to avoid simulating reads

where most bases are of very low base quality.

TPM estimation

We used the isoform-level count and TPM estimates provided by RSEM as the basis for the generation of

sample-wise TPM values for the six samples. First, we summed the estimated counts for all isoforms of

each gene, scaled to the desired library size (40 million for human and 25 million for fruit fly) and used a

mean-dispersion relationship derived from real data (see [2]) to generate a matching negative binomial (NB)

dispersion value for each gene. The gene count for each sample was sampled from a NB distribution with

the estimated mean and dispersion parameters. We also calculated the gene-level read count per kilobase

(RPK) by dividing the simulated read count by the effective gene length estimated by RSEM. Next, we

simulated relative isoform abundances for each sample using a Dirichlet distribution with parameters set to

the isoform fractions estimated by RSEM multiplied by a scale factor of 100. We selected 1,000 genes to

be affected by differential isoform usage between the two conditions. These genes were selected randomly

among the genes with at least two expressed isoforms (with relative isoform abundance above 10%) and a

high enough expression level (expected gene count above 500). For each of these 1,000 genes, the relative

isoform abundances of the two most abundant isoforms were reversed in the second condition (samples 4-6).

This type of “switch events” was studied in detail in a previous publication [32] where it was shown that

many genes underwent this type of modification between conditions. From the isoform percentages and the

previously estimated gene RPKs, we estimated the isoform RPKs by multiplication. Finally, the isoform

TPM was obtained by scaling of the RPK value. These transcript TPM values were used as the input to

RSEM for simulating fastq files.

Generation of fastq files and mapping

Given the TPM estimates for the individual samples and the modified RSEM model file, we used the

rsem-simulate-reads module of RSEM to generate paired fastq files for the six samples. We simulated

40 million read pairs for each human sample and 25 million pairs for each of the fruit fly samples. Of these

reads, 5% were simulated to come from a non-specific “background” (and thus not stem from any transcript).

The fastq files were aligned to the reference genome and transcriptome using TopHat (v2.0.14) [33], provided

with the reference gtf file.

Incomplete annotation

To mimic the situation where the full transcriptome catalog of a studied organism is not known, we gener-

ated incomplete reference gtf files by excluding 20% of the transcripts (proportionally distributed between

differentially used and non-differentially used). The entire data analysis pipeline, starting from the TopHat

alignment, was re-run with these incomplete gtf files (using the same set of simulated data files).

Detection of differential counting bin usage

Each of the counting methods applied in this study (see Additional file 1 for a more detailed description)

generates a count matrix, where each row corresponds to a counting bin and each column corresponds to

one of the six samples. They also contain information grouping the counting bins together based on their

gene of origin. Each count matrix is submitted to the DEXSeq R package (v1.14.0) to test for changes in

relative usage of each counting bin between the two simulated conditions. A difference in relative counting
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bin usage is interpreted as a preferential inclusion or exclusion of that bin in one condition compared to the

other, which we interpret as evidence in favor of differential isoform usage between the conditions. More

technically, for each counting bin, given the number of reads assigned to the bin and the sum of the reads

assigned to all other bins of the gene in each of the samples, DEXSeq fits generalized linear models to test for

the presence of an interaction between the condition and the “counting bin” factor (this bin vs all others).

The bin counts are assumed to follow a negative binomial distribution and the dispersion parameters are

estimated from the data and subjected to shrinkage using the method implemented in the DESeq2 R package

[34]. Finally, a p-value for each bin summarizes the evidence in favor of differential usage of the bin between

the conditions.

Given the statistical test results for each counting bin, we use the perGeneQValue function from the

DEXSeq package to summarize the results on the gene level. This function associates a q-value to each gene

by examining the number of genes for which at least one bin null hypothesis is rejected. DEXSeq applies an

independent filtering step (adapted from DESeq2) and excludes counting bins with too low expression values

from the testing. Genes for which all bins are filtered out are not assigned a q-value and are therefore not

included in our evaluations. Depending on the number and structure of the counting bins, the collections of

genes for which DEXSeq can assign a q-value differ between the counting methods. However, this does not

affect the calculation of the observed TPR and FDR, since the excluded genes are not called differential.

Similarly to DEXSeq, rMATS provides one p-value per evaluated event (there may be multiple events for

the same gene). These sub-gene structure p-values were summarized into gene-level q-values, quantifying the

statistical evidence in favor of any differential usage of the counting bins of the gene, using the perGeneQValue

function from DEXSeq. For cuffdiff, we used the gene-wise FDR estimates from the cds.diff output file.

Importantly, this file records only differences in coding output between conditions and genes where the coding

sequences of the differentially used isoforms are identical will therefore not be detected with cuffdiff.

Availability of supporting data

The data sets supporting the results of this article are available in the ArrayExpress repository with ac-

cession number E-MTAB-3766 [http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3766/]. All

code needed to reproduce the results are available from the project GitHub repository: https://github.

com/markrobinsonuzh/diff_splice_paper. The list of truly differential genes, as well as the final results

(gene q-values) for each method, are available from the accompanying website: http://imlspenticton.

uzh.ch/robinson_lab/splicing_comparison/. The webpage also holds a link to a Shiny app that can

take these summary files and reproduce the main figures of the manuscript.
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Supplementary Materials

Additional file 1 — Supplementary Figures, Tables and Methods (.pdf)

Additional file 1 contains Supplementary Figures and Tables referred to in the text. It also contains a

description of the counting methods and a comparison of the isoform-guided filtering with bin-level filtering.
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