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Abstract 
 

Single-cell RNA-Sequencing (scRNA-Seq) has become the most widely used high-throughput 

method for transcription profiling of individual cells. Systematic errors, including batch effects, 

have been widely reported as a major challenge in high-throughput technologies. Surprisingly, 

these issues have received minimal attention in published studies based on scRNA-Seq 

technology. We examined data from five published studies and found that systematic errors can 

explain a substantial percentage of observed cell-to-cell expression variability. Specifically, we 

found that the proportion of genes reported as expressed explains a substantial part of observed 

variability and that this quantity varies systematically across experimental batches. Furthermore, 

we found that the implemented experimental designs confounded outcomes of interest with batch 

effects, a design that can bring into question some of the conclusions of these studies. Finally, we 

propose a simple experimental design that can ameliorate the effect of theses systematic errors 

have on downstream results. 
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Single-cell RNA-Sequencing (scRNA-Seq) has become the primary tool for profiling the 

transcriptomes of hundreds or even thousands of individual cells in parallel. Our experience with 

high-throughput genomic data in general, is that well thought-out data processing pipelines are 

essential to produce meaningful downstream results1-3. We expect the same to be true for 

scRNA-seq data. Here we show that while some tools developed for analyzing bulk RNA-Seq 

can be used for scRNA-Seq data, such as the mapping and alignment software, other steps in the 

processing, such as normalization, quality control and quantification, require new methods to 

account for the additional variability that is specific to this technology.  

 

One of the most challenging sources of unwanted variability and systematic error in high-

throughput data are what are commonly referred to as batch effects. Given the way that scRNA-

Seq experiments are conducted, there is much room for concern regarding batch effects4. 

Specifically, batch effects occur when cells from one biological group or condition are cultured, 

captured and sequenced separate from cells in a second condition. Although batch information is 

not always included in the experimental annotations that are publicly available, one can extract 

surrogate variables from the raw sequencing (FASTQ) files5. Namely, the sequencing instrument 

used, the run number from the instrument and the flow cell lane. Although the sequencing is 

unlikely to be a major source of unwanted variability, it serves as a surrogate for other 

experimental procedures that very likely do have an effect, such as starting material, PCR 

amplification reagents/conditions, and cell cycle stage of the cells6-8. Here we will refer to the 

resulting differences induced by different groupings of these sources of variability as batch 

effects. 

 

In a completely confounded study, it is not possible to determine if the biological condition or 

batch effects are driving the observed variation. In contrast, incorporating biological replicates 

across in the experimental design and processing the replicates across multiple batches permits 

observed variation to be attributed to biology or batch effects (Figure 1). To demonstrate the 

widespread problem of systematic bias, batch effects, and confounded experimental designs in 

scRNA-Seq studies, we surveyed several published data sets. We discuss the consequences of 

failing to consider the presence of this unwanted technical variability, and consider new 

strategies to minimize its impact on scRNA-Seq data.  
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Batch and outcomes of interest are confounded in published scRNA-Seq experiments 

We examined five publicly available scRNA-Seq data sets to investigate the extent of 

confounding biological variation with batch effects. For each study, we downloaded the 

processed data available on GEO9 and reconstructed the study design from the sequence 

identifiers provided in the FASTQ files. We used the standardized Pearson contingency 

coefficient to assess the experimental design between processing batches and outcome of interest 

and found values ranging from 92.7% to 100% (perfect cofounding) (Table 1). Note that with 

this level of confounding it is nearly impossible to parse batch effects from biological variation.  

 

Proportion of detected genes is a major source of technical cell-to-cell noise 

Most, if not all, published studies using scRNA-Seq rely explicitly or implicitly on computing 

distances between the cell expression profiles. Principal component analysis is used explicitly to 

quantify biological or molecular distance10 or implicitly to approximate distance between 

individual cells. We used the processed expression data available on GEO, applied principal 

components analysis on the log (base 2) transformed values (adding 1 to avoid logs of 0), and 

computed the proportion of detected genes from the same data set with the exception of one 

study10. In this exception, the processed expression data available on GEO excluded most non-

detected genes and the values for each gene were centered by removing the average. For this 

case, we computed the proportion of detected genes from the raw data. We found wide variation 

in the proportion of detected genes across cells: from 1% detected to 60%. Furthermore, we 

found strong correlation between the first principal component and the proportion of detected 

genes within each data set (Figure 2, Supp Fig 1).  

 

To determine if the variability in the proportion of detected genes was biologically or technically 

driven we compared the variability across biological groups to the variability across batches. For 

most cases in which the experimental design permitted this comparison (Tables S1-S3), we 

found that batch explained more variability than biological group (Supp Figures 2-4). In the two 

studies for which batch was completely confounded with biological group (Table S4 and S5) we 

also observed variability across batch (Supp Figure 5). However, in these cases it is impossible 

to separate variability due to biology or to batch.  
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Batch effects lead to differences in detection rates, which lead to apparent differences 

between biological groups 

To illustrate potential down stream effects, we examined 430 single-cells from five biological 

groups of interest for one of the studies in which at least one biological condition was split across 

two batches (Table S1). We confirmed that cells cluster by biological group (Figure 3A) as 

reported in the original publication. However, four of the five biological groups were 

confounded with batch (Table S1) and batches can also explain the clustering (Figure 3B). The 

one group that was not confounded with batch confirms the high level of variability explained by 

processing cells in different batches (Figure 3C). As expected from the previous results, different 

batches lead to different proportions of detected genes (Figure 3D) which we have shown to be 

correlated with the first principal component.  

 

Detection rate has indirect effects on reported gene expression measurements 

Using the processed scRNA-Seq data available on GEO, we computed the median of the non-

zero measurements for each cell. For each study, we noticed a strong non-linear relationship 

between the median expression and the proportion of detected genes (Figure 4). The overall level 

of expression changing with the proportion of detected genes could be biologically driven, but 

there is a reasonable explanation of how it can be a technical artifact, which we explain using 

statistical notation. Let 𝑋!" be the unobserved expression level for sample 𝑖 and gene 𝑗. Let us 

consider only expressed genes (𝑋!" > 0). In the sequencing experiment, each expressed gene has 

a probability of being amplified, which means we observe a quantity proportional to 𝑋!"𝑍!" 

where 𝑍!" = 1  if the gene was expressed at a high enough level to be detected and amplified and 

0 otherwise. This implies that the expected amount of RNA we will obtain is a quantity 

proportional to  

𝐸 𝑋!"𝑍!" = Pr 𝑍!" = 1 𝐸(𝑋!"|𝑍!" = 1) 

Because we know technical variation affects the probability detection Pr 𝑍!" = 1 = 𝑝!, which 

depends on the sample 𝑖, we assume that, within a homogenous population for example, the 

expected level of a gene that is detected, 𝐸(𝑋!"|𝑍!" = 1), is the same across cells. Then, the total 

amount of RNA is proportional to the detection rate of the expressed genes 𝑝!. Now because 
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experimentally we amplify to have roughly the same total amount of RNA for each sample, this 

implies that we have to amplify in a way that is equivalent to multiplying by !
!!

, with 𝐾 the total 

we aspire to reach. Thus the median expression of the expressed genes will be proportional to !
!!

, 

which is consistent with the data (Figure 4). To confirm this, we implemented an adjustment 

based on these derivations. Specifically, for each study we computed Counts Per Million (CPM)  

CPM = 𝑌!" / 
!!
!"!

, 

which scales the raw read counts 𝑌!" for the 𝑗!! gene (or transcript) in the 𝑖!! cell by the total 

number of reads 𝑁! in the sample.  Using the CPM normalized data, filtered for cells passing a 

data-driven filter (Supplementary Figure 6), we multiplied the 𝑖!! cells by an adjustment factor 
!!

!"#$%& !!,!,…,!!
  motivated by derivations above. This adjustment removed much of the 

dependence between the median expression values and the proportion of detected genes 

(Supplementary Figure 7).  

 

Finally, we also noted that the entire distribution of the non-zero genes changed with the 

proportion detected (Supplementary Figure 8). An important consequence of this indirect effect 

of experimental noise is that even after removing all genes with at least one 0, there was a strong 

correlation between the first principal component of this smaller subset with no 0s, and the 

proportion of detected genes (Supplementary Figure 9) 

 

Experimental design solutions 

There are currently no published general statistical solutions to the problem of batch effects in 

scRNA-Seq data. For the specific application of differential expression, a proposed solution is to 

account for differences in the proportion of detected genes by explicitly including it as a 

covariate in a linear regression model11. However, given the current levels of confounding and 

experimental designs, this approach will not be able to distinguish biological from technical 

effects. Because of the nature of the experimental protocol needed to run scRNA-Seq 

experiments imposed by the way cells are captured and sequenced in batches, standard balanced 

experimental designs are not possible. An experimental design solution is to use biological 

replicates, namely independently repeating the experiment multiple times for each biological 
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condition (Figure 1). This approach allows for multiple batches of cells to be randomized across 

sequencing runs, flow cells and lanes as in bulk-RNA-Seq. With this design we can then model 

and adjust for batch effects due to systematic experimental bias. 

 

Discussion 

Batch effects and unwanted technical cell-to-cell noise remains a challenge in the analysis of 

scRNA-Seq data. The challenge is more complex than in previous sequencing experiments since 

experimental batches lead to different detection rates, which in turn lead to different transcription 

level estimates. In addition, detection of a gene or transcript in scRNA-Seq experiments is 

heavily dependent on the experimental protocol, which leads to systematic differences in the 

proportion of detected genes between batches of cells.  The development of statistical methods 

that account for these systematic biases will therefore be essential in the analysis of scRNA-Seq 

data. Incorporating biological replicates in the experimental study design provides a solution to 

reducing confounding between biological condition and batch effects and will permit modeling 

of the technical variability that relates to processing the cells in different batches.  
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Study 

Num

ber of 

cells 

Number of 

genes or 

transcripts 

Processed 

data 

available 

Confounding 

(%):  

Correlation between 

PC1 and proportion of 

detected genes or 

transcripts 

Ref 

Patel et al. (2014) 430 5,948 TPM 98.9 0.54* 10 

Treutlein et al. (2014) 198 23,745 FPKM 92.7 0.91 12 

Deng et al. (2014) 286 22,958 RPKM 96.6 0.69-0.82** 13 

Trapnell et al. (2014) 372 47,192 FPKM 100 0.90 14 

Shalek et al. (2014) 383 27,723 TPM 100 0.93 6 

 

Table 1: Description of processed single-cell RNA-Seq data sets. Column 1 shows the 

publications. Column 2 shows the number of cells (samples) included in the study. Column 3 

shows the number of genes included in the data uploaded to the public repository. Column 4 

indicates the units in which the values were reported. Column 5 shows the level of confounding 

between biological condition and batch effect quantified using the standardized Pearson 

contingency coefficient as a measure of association. The percentage ranges from 0% (no 

confounding) to 100% (completely confounded).  Column 6 shows the Pearson correlation 

between the first principal component of the log transformed data and the proportion of detected 

genes. Column 7 provides the citation for the study. 

 
*The available processed data was previously filtered by the authors and excluded the majority of 

non-detected genes, which partially explains the lower correlation (0.54 compared to 0.69-0.93). 
**The biological conditions in this study were split into four groups for this analysis each with its 

own corresponding correlation coefficient.  
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Figure 1: The problem of confounding biological variation and batch effects. The top section 

depicts a completely confounded study design of processing individual cells from three 

biological groups (represented by shapes) in three separate batches (represented by colors). In 

this case, we cannot determine if biology or batch effects drive the observed variation. The 

bottom section depicts a balanced study design consisting of multiple replicates (rep) split and 

processed across multiple batches. The use of multiple replicates allows observed variation be 

attributed to biology (cells cluster by shape) or batch effects (cells cluster by color).  
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Figure 2: First principal component is strongly correlated with the proportion of detected. The 

principal components from the processed data available on GEO. (A) Patel et al. (2014). (B) 

Trapnell et al. (2014). (C) Shalek et al. (2014). (D) Treutlein et al. (2014). (E) The 4-cell, 8-

cell, 16-cell groups (Group C) from Deng et al. (2014). (F) The Early, Mid and Late 

blastocyst  groups (Group D) from Deng et al. (2014). Note: The proportion of detected genes 

was calculated using the publicly available processed data from GEO for all studies except for 

Patel et al. (2014). In this case, because most non-detected genes were excluded from the 

publicly available processed data, we computed the proportion of detected genes from the raw 

data.  
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Patel et al., 2014 (corr: 0.54)A
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Trapnell et al., 2014 (corr: 0.9)B
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Shalek et al., 2014 (corr: 0.93)C
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Treutlein et al., 2014 (corr: 0.91)D
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Deng et al., 2014 (Group D) (corr: 0.79)F



 

 
Figure 3: Illustration with public data10 of how batch effects lead to differences in detection 

rates, which lead to apparent differences between biological groups. (A) Using principal 

components analysis, scRNA-Seq samples cluster by biological group, but the observed 

biological variation across groups is confounded with (B) technical variation from processing the 

cells in different batches. (C) Within one group (Group 5), the cells cluster by batch. (D) 

Furthermore, individual batches of cells have different proportions of detected genes, which may 

be driving the observed biological variation across groups. 
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Figure 4: Non-linear relationship between the median gene expression and the proportion of 

detected genes using processed scRNA-Seq data available on GEO. Failure to account for 

differences of the proportion of detected genes between cells over-inflates the gene expression 

estimates of cells with a low proportion of detected genes. The blue curves were obtained by 

fitting a locally weighted scatter plot smoothing (loess) with a degree of 1 and span of 0.75 for 

all figures. Because the range of proportion of detected genes varied from study to study, the 

range of the x-axis differs across plots. (A) Trapnell et al. (2014). (B) Shalek et al. (2014). (C) 

Treutlein et al. (2014). (D) Deng et al. (2014) (Group C). (E) Deng et al. (2014) (Group D). 

Note: We could not include Patel et al. (2014) because of the row-standardization applied by the 

authors in the processed data available on GEO.  
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