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Abstract 
 

Until recently, high-throughput gene expression technology, such as RNA-Sequencing (RNA-

seq) required hundreds of thousands of cells to produce reliable measurements. Recent technical 

advances permit genome-wide gene expression measurement at the single-cell level. Single-cell 

RNA-Seq (scRNA-seq) is the most widely used and numerous publications are based on data 

produced with this technology. However, RNA-Seq and scRNA-seq data are markedly different. 

In particular, unlike RNA-Seq, the majority of reported expression levels in scRNA-seq are 
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zeros, which could be either biologically-driven, genes not expressing RNA at the time of 

measurement, or technically-driven, gene expressing RNA, but not at a sufficient level to 

detected by sequencing technology. Another difference is that the proportion of genes reporting 

the expression level to be zero varies substantially across single cells compared to RNA-seq 

samples. However, it remains unclear to what extent this cell-to-cell variation is being driven by 

technical rather than biological variation. Furthermore, while systematic errors, including batch 

effects, have been widely reported as a major challenge in high-throughput technologies, these 

issues have received minimal attention in published studies based on scRNA-seq technology. 

Here, we use an assessment experiment to examine data from published studies and demonstrate 

that systematic errors can explain a substantial percentage of observed cell-to-cell expression 

variability. Specifically, we present evidence that some of these reported zeros are driven by 

technical variation by demonstrating that scRNA-seq produces more zeros than expected and that 

this bias is greater for lower expressed genes. In addition, this missing data problem is 

exacerbated by the fact that this technical variation varies cell-to-cell. Then, we show how this 

technical cell-to-cell variability can be confused with novel biological results. Finally, we 

demonstrate and discuss how batch-effects and confounded experiments can intensify the 

problem.  
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1. Introduction 

Single-cell RNA-Sequencing (scRNA-seq) has become the primary tool for profiling the 

transcriptomes of hundreds or even thousands of individual cells in parallel. In contrast to the 

standard RNA-seq approach, which is applied to samples containing hundreds of thousands of 

cells and therefore measures average gene expression level across cells, scRNA-seq measures 

gene expression in a single cell. To distinguish these two technologies we refer to the latter as 

bulk RNA-seq. Today scRNA-seq is increasingly being used across a diverse set of biomedical 

applications such as profiling the transcriptomes of differentiated cell types1-4, profiling the 

changes in cell states5, 6, identifying allele-specific expression7, 8, spatial reconstruction9, 10 and 

the classification of subtypes11-13.  

 

While scRNA-seq data provides a new level of data resolution, it also results in a larger number 

of genes reporting the expression level to be zero, or practically zero, as compared to using bulk 

RNA-seq14. A gene reporting the expression level to be zero can arise in two ways: (1) the gene 

was not expressing any RNA at the time the cell was experimentally isolated and processed prior 

sequencing (referred to as structural zeros15) or (2) the gene was expressing RNA in the cell at 

the time of isolation, but not at a sufficient level to be detected in the experimental procedure to 

capture and process the RNA prior to sequencing (referred to as dropouts15, 16). While the former 

is a type of biological event, the latter is purely technical as it stems from the limitations of 

current experimental protocols to detect low amounts of RNA in a cell, referred to as capture 

efficiency17.  
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Batch effects are commonly found in high-throughput data18 and given the way that scRNA-seq 

experiments are conducted, there is much room for concern regarding confounding18. 

Specifically, batch effects in scRNA-seq experiments occur when cells from one biological 

group or condition are cultured, captured and sequenced separate from cells in a second 

condition (Figure S1). However, due to the nature of certain experimental scRNA-seq protocols, 

which restrict the way cells are captured and sequenced separately, sometimes standard balanced 

experimental designs are not possible14, 18-20. 	This reality makes it particularly important to be 

cautious about the potential for correlated variability induced by technical factors.  

 

The unwanted variability introduced by batch effects can be particularly troublesome in scRNA-

seq data because one of the most common applications has been the use unsupervised learning 

methods21-26 such as data exploration after dimensionality reduction or clustering to identify 

novel or rare subpopulations of cells11-13. Although a diverse set of techniques are used in these 

papers, both linear dimensionality reduction techniques, such as principal component analysis 

(PCA)21, and non-linear ones, such as t-Stochastic Neighbor Embedding (t-SNE)26, rely on 

computing distances between the cell expression profiles. Given that the majority of genes in a 

cell report the expression level to be zero and that the proportion of zeros varies greatly from cell 

to cell, it is not surprising that the distance estimates between cells are greatly influenced by the 

proportion of zeros27, 28. However, it remains unclear to what extent this cell-to-cell variation is 

being driven by technical rather than biological variation.  

 

We begin this article by describing the publicly available scRNA-seq data sets we used, which 

includes studies with only scRNA-seq data and studies with scRNA-seq and a matched bulk 
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RNA-seq sample measured on the same population of cells. In the next section, we survey a 

large number of published scRNA-seq studies and illustrate the wide range of variation in the 

proportion of genes reporting the expression level to be zero across cells and studies (Section 

3.1). Then, we present evidence that some of these reported zeros are driven by technical 

variation by demonstrating that scRNA-seq produces more zeros than expected and that this bias 

is greater for lower expressed genes (Section 3.2). In addition, we show that the consequences of 

this missing data problem are exacerbated by the fact that the technical variation of the 

probability of a gene being detected varies from cell to cell. Then, we illustrate that the 

proportion of genes reporting the expression level to be zero is a major source of cell-to-cell 

variation and this variability is partly driven by a mathematical artifact related to the 

transforming data in the original scale, but computing distances in the log scale (Section 3.3). 

Finally, we consider several case studies showing how differences in the detection rates can be 

driven by batch effects, which in turn can result in the false discovery of new groups (Section 

3.4).  

2. Data Description 

A scRNA-seq experiment typically involves randomly sampling and capturing single cells from 

a population of cells, isolating the mRNA from the individual cells, reverse transcribing the RNA 

into cDNA, and sequencing the cDNA using massively parallel sequencing technologies19, 29, 30. 

Strengths and weaknesses of different scRNA-seq experimental protocols vary31-33 in the cost per 

cell, the sensitivity to capture and convert RNA to cDNA and the accuracy to quantify the 

concentration of RNA, leading to differences in the number of cells sequenced per study and the 

number of features detected per cell. This experimental process is particularly challenging and 

laboratory protocols are still under intense development. 
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2.1 scRNA-seq data sets 

We examine fifteen publicly available scRNA-seq data sets that included at least 200 samples 

with preprocessed and normalized expression data available on GEO34 (Table 1). These data sets 

were created using six different scRNA-seq protocols for sequencing1, 12, 35-39 and five studies 

include the use of unique molecular identifiers40 (UMIs) for counting specific cDNA molecules. 

For the ten studies not using UMIs we examine the data as submitted to GEO, with one 

exception11. These ten studies reported measurements in either Transcripts per Million41 (TPM), 

Reads Per Kilobase of transcript per Million mapped reads42 (RPKM) or Fragments Per Kilobase 

of transcript per Million mapped reads43 (FPKM), so each sample was corrected for gene length 

and library size. The one exception11 uploaded data that was de-trended so that measurements for 

each gene averaged to zero across cells. For this particular study, we downloaded the raw 

sequencing files data from the Sequence Read Archive (SRA)44 and computed expression in 

TPM units using Kallisto45. In the studies that used UMIs for molecule counting1, 3, 9, 12, 46, the 

data uploaded to GEO was not normalized for library size, so to assure that these data were in 

similar units to the rest of our studies, we followed a published procedure1 that normalizes each 

gene or transcript count by dividing by the total number of UMIs per cell and multiplies by a 

scaling factor (10!). We refer to this unit as Counts Per Million (CPM). 

 

Although details of the experimental protocols, which can help define groupings that may lead to 

technical batch effects, are not always included in the annotations that are publicly available, one 

can extract informative variables from the raw sequencing (FASTQ) files47. Namely, the 

sequencing instrument used, the run number from the instrument and the flow cell lane. 

Although the sequencing is unlikely to be a major source of unwanted variability, it serves as a 
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surrogate for other experimental procedures that very likely do have an effect, such as the 

starting amount of RNA in a cell, capture efficiency, PCR amplification reagents/conditions, and 

cell cycle stage of the cells6, 48-50. Here we will refer to the resulting differences induced by 

different groupings of these sources of variability as batches.  

 

2.2 scRNA-seq data sets with matched bulk RNA-seq data 

To help determine if the increased proportion of zero in scRNA-seq is explained by biology or 

technical biases, we examined three publicly available scRNA-seq data sets5, 51, 52 that included a 

matched bulk RNA-seq sample measured on the same population of cells with preprocessed and 

normalized expression data available on GEO. One of these studies5 is one of the 15 studies 

described in the previous subsection. The other two studies51, 52 sequenced only 18 and 96 cells, 

respectively, thus were not included in the 15 large studies.  

 

3. Results 

3.1 The proportion of reported zeros varies from cell to cell and from study to study 

We define the detection rate as the proportion of genes in a cell reporting the expression levels 

greater than a predetermined threshold δ. In this paper, we used δ=1 based on exploratory data 

analysis as this revealed two clear modes in the gene expression distribution (Figure S2), which 

we interpreted to be associated with background noise and signal respectively, with the lower 

mode defined as values below or equal to a TPM, FPKM, RPKM or CPM threshold of δ=1. This 

threshold has been previously used by Shalek et al. (2014)6 and accommodates the bimodality6, 

16, 51, 53, 54 of scRNA-seq data that is not found in bulk RNA-Seq. We found wide variation in the 

detection rate across cells in all studies: from <1% detected to 65% (Figure 1). Similar results 
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were obtained if we set δ=0 (Figure S3). For studies including groups known to have different 

gene expression profiles, we stratified by biological group to minimize the possibility of a 

biological explanation and also found wide variation (Figures S4-S9). We also note the detection 

rate is not necessarily dependent on sequencing depth (Figure S10).  

 

3.2 scRNA-seq data contains more zeros than what is expected from biological variation  

To demonstrate that there are more zeros in scRNA-seq data than what is expected from 

biological variation, we examined the gene expression of cells measured both on scRNA-seq and 

bulk RNA-seq. We found a bias consistent with a technical explanation. The details follow.  

 

Denote the expression level for the 𝑔!! gene and 𝑖!! cell as 𝑥!" where 𝑖 = 1,… ,𝑛. The 

expression for the 𝑔!! gene in bulk tissue composed of these cells will then be: 

𝑒! = 𝑥!"

!

!!!

. 

Bulk RNA-seq produces an estimate proportional to this quantity and includes measurement 

error (𝜀!):  

𝑌! = 𝐾!"#$𝑒! + 𝜀!. 

Here 𝐾!"#$ is a normalizing constant needed to account for the fact that experimental protocols 

and normalization procedures are adjusted to assure that the average or sum of measurements 

from each experiment are approximately the same. Since a tissue sample will have millions of 

cells, we consider n to be large enough to be treated as infinity. Note that some of these 𝑥!" can 

be zero even when 𝑒! is a large number. In fact, this is part of the biological explanation for why 
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single cell measurements have more zeros: an gene appearing expressed in bulk RNA-seq need 

not be expressed in every single cell at the time the cells were isolated and measured. 

 

In a single cell experiment, we take a random sample of 𝑁 cells from the population. We denote 

the expression values for these as 𝑋!" where 𝑖 = 1,… ,𝑁. Using scRNA-seq technology, we 

obtain measurements: 

𝑍!" = 𝐾!"𝑋!" + 𝜂!"        if 𝑋!" > 0 and 0 otherwise. 

Here 𝐾!"  is the normalizing constant and 𝜂!" is measurement error. Because the single cell data 

is a random sample, it follows that 

𝐸 𝑋!"

!

!!!

= 𝑒! 

and therefore, if there is no biased induced from dropouts,  

𝐸 𝑍!"| 𝑌! = 𝑒
!

!!!

= 𝛽! + 𝛽!𝑒 

is a linear function with 𝛽! and 𝛽! determined by the normalization constants and the variance of 

the measurement error, which has been reported to be relatively low. While in a typical scRNA-

seq experiment, bulk RNA-seq measurements from the same tissue is not available, the three 

studies described in Section 2.2 with both bulk RNA-seq and scRNA-Seq from the same 

biological specimens permits us to check if this relationship holds. 

 

As evidence that scRNA-Seq technology is working as expected, previous publications plot 

!
!

𝑍!"!
!!!  versus 𝑌! for each gene to show it generally follows a linear relationship with reported 

correlations around 0.80 (see, for example, Figure 1C in Shalek et al. (2013)51 which we 
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reproduced in Figure 2A). However, a closer look at this plot reveals a problem: the linear 

relationship does not appear to hold for lowly expressed genes (Figure 2B). This same pattern is 

observed in the other two studies with bulk and scRNA-seq data (Figure S11). 

 

To further explore this apparent bias, we stratified the values of 𝑌! and estimated the conditional 

expectations of 𝐸 𝑍!"| 𝑌! = 𝑒!
!!!  by averaging the scRNA-seq data in each strata. Plotting 

these against each other revealed a bias that increases as 𝑒 becomes closer to zero (Figure 3). 

These results are very much consistent with the theory that some of the observed zeros are due to 

technical and not biological differences with the actual relationship being: 

𝐸 𝑍!"| 𝑌! = 𝑒
!

!!!

= 𝑝 𝑒 ∗ 𝛽! + 𝛽!𝑒  

with 𝑝(𝑒) the probability of a gene with expression 𝑒 being detected. A crude estimate of 𝑝(𝑒) 

can be obtained by  

𝑝 𝑒 = 𝐸 𝑍!"| 𝑌! = 𝑒
!

!!!

/ 𝛽! + 𝛽!𝑒  

This estimate suggests 𝑝(𝑒) follows a logistic function (Figure S12) as others have previously 

noted16. In other words, genes with a lower expression 𝑒 are less likely to be detected, which 

suggests the zeros can be considered missing not at random as the probability of the missing 

value depends on the level of expression.  

 

Motivated by Figure S12 we fit a logistic curve to determine the relationship between 𝑍!" > δ 

and 𝑌! for each cell 𝑖. We found that the biases induced by this missing data problem is 

exacerbated by the fact that the probability of a gene being detected varies cell to cell, as the 
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estimates for the logistic curve’s intercept parameter are highly related to the detection rate 

(Figure S13). We also note that the slope estimates are between 0.53 and 1.31. For example, the 

slopes estimated using the Trapnell et al. (2014)5 data has an average of 0.82 and a standard 

deviation of 0.6 demonstrating the strong effect overall expression has on detection: note for 

example that a slope of 0.82 means that if the expression level is cut in half, the detection odds 

decrease by more than two fold since 𝑒!.!" = 2.27. 

 

3.3 Detection rate is a major source of cell-to-cell variation 

Finak et al. (2015)53 showed that detection rates correlate with the first two principal components  

(PCs) in two scRNA-seq data sets6, 53. We confirmed this relationship on the fifteen publicly 

available scRNA-seq datasets we studied (Figures S14-S15). From this strong correlation it 

follows that estimated distances between cells are affected by differences in detection rate. We 

note that for five of these studies3, 8, 55-57, the primary variation along the first two principal 

components was correlated strongly with the biological groups known to have different gene 

expression patterns. For these studies, we stratified the data into these groups and found the same 

strong relationship between detection rates and first principal component. In this section, we 

present results that demonstrate that (1) this variability is partly driven by a mathematical artifact 

related to scaling the original data but computing distances in the log transformed data and that 

(2) that differences in detection rate can be completely driven by technical reasons which can in 

turn result in false discoveries. 

 

Currently the most widely used unit for reporting expression values is the Transcripts per Million 

(TPM) unit. Using this unit guarantees that the sum of gene expression measurements are 
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constant. This is also true for CPM and approximately true with the RPKM42 and FPKM43 units. 

However, distance calculations are performed after log transformations and cell expression 

profiles are not always reported as being centered (centered by removing overall mean 

expression from the 𝑖!! cell) in published analyses1, 2, 57, 58. We can show, mathematically, that if 

we normalize expression profiles to have the same mean across cells, the mean after the 

𝑓 𝑥 = log (𝑥 + 𝑐) transformation used for RNA-Seq data will not be the same and it will 

depend on the detection rate (Figure S16).   

𝐸 log 𝑋!" + 𝑐 ≈ (1 − 𝑝!)log(𝑐) + 𝑝! log 
𝑀

𝐺 ∗ 𝑝!
+ 𝑐                   (1) 

 

where 𝑋!" is the expression value for the 𝑔!! gene and 𝑖!! cell, 𝑐 is a pseudo count, 𝐺 is the number 

of genes (or features), 𝑀 is sequencing depth, and 𝑝! is the marginal probability of detection for 

the 𝑖!! cell (mathematical details are provided in the Supplement). The implication of this result 

is that although the means are constant using across cells 𝑖, the means of the log-transformed 

data depend on the detection rate. In fact, when the sequencing depth is large, the mathematical 

relationship above is approximately a linear function of the detection rate. Because these mean 

values affect the entire vector, they can result in large overall variability and therefore be 

correlated with the first principal component PC. Therefore, the result in Figures S14-S15 can be 

explained by differences in mean values that correlated with the detection rate.  

 

Not surprisingly, if we center the data before computing the PCs, then the correlation between 

the detection rate and the first PC decreases. However, despite the decrease, even after the 

centering the correlation is strong (Figures S17-S18). This also is not surprising given that not 
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only the mean expression depends of the detection rate, but also the entire distribution of the 

non-zero measurements using (Figure 4).  

 

To demonstrate that technical variability can lead to differences in detection rates, which in turn 

can lead to false discoveries, we used a dataset composed of a group of cells from the same 

biological specimen, but processed at different times. Specifically, we used a subset of 118 

single cells data from Patel et al. (2014), which were isolated from one tumor, but processed in 

two different sequencing instruments11. For these data, there are no biological reasons for the two 

groups, defined by the sequencing instrument used, to be different since the cells were randomly 

selected from the same tumor. If we apply an unsupervised clustering algorithm to these data, 

two clusters strong clusters appear (Figure S19) even after removing the cell mean before 

computing distances. A PCA plot shows that a batch effect drives the clustering (Figure 5A). We 

then note that the first PC strongly correlates with the detection rate (Figure 5B), which is 

substantially different between the two batches (Figure 5C). In addition, the differences in 

detection rates are highly related to the logistic curve’s intercept parameter when estimating the 

probability of a gene being detected, which varies cell to cell (Figure S20). Therefore, we see 

how a batch effect can produce differences in detection rate that drive distances between 

transcription profiles and leads to false discoveries.  

 

3.4 The impact of the detection rate in applications of unsupervised learning methods  

In the previous sections, we demonstrated how the detection rate is a major source of observed 

cell-to-cell variation, which can be driven by technical variation. For example, we considered 

cells from the same biological specimen for which we knew no differences should be discovered, 
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but we found a batch effect that had differences in the detection rate and could drive the variation 

between the cells. In this section, we examine detection rates in data used in published studies as 

evidence for the discovery of new cell types. 

 

In the first case-study57, we found differences in the detection rate between two groups of 

discovered cell types (Figure S21A), which was associated with how the cells were processed in 

different batches (Figure S21B) (Fisher’s Exact test: p = 0.002). For example, 12 out of 13 cells 

from one discovered cell types were processed in the same batch (Figure S21C), which had a 

smaller median detection rate than the other batches. Furthermore, the detection rate was 

associated with the first principal component (Figure S21D), which could be partly driving the 

variation across the two groups of discovered cell types. Similarly, we found differences in the 

detection rate between groups of discovered cell types in another other study3 (Figure S22), 

which was associated with how the cells were processed in different batches (Chi-squared test: p 

< 0.001).   

 

4. Discussion 

We have demonstrated how detection varies substantially across scRNA-seq experiments. We 

presented evidence that part of this variability is technically driven. Given the logistics of how 

scRNA-Seq experiments are performed and that fact that this technology is being used to 

discover new cell-types, batch effects are of particular concern. Specifically, when two groups of 

cells are cultured, captured and sequenced separately from another group of cells in a second 

condition, correlated measurements may lead to the incorrect conclusion that these groups have 

different expression profiles. This experimental limitation presents a challenge in distinguishing 
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biologically driven differences from technical ones because it is logistically difficult to avoid 

processing cells from different biological specimens in different batches. For the eight studies 

that were interested in comparing predefined biological groups, we used the standardized 

Pearson contingency coefficient to assess the level of confounding between the run number from 

the sequencing instrument and outcome of interest and found values ranging from 82.1% to 

100% (perfect confounding) (Table 1; Tables S1-S8). Note that with this level of confounding it 

difficult to impossible to parse technical from biological variation.  

 

Furthermore, explicitly modeling confounding factors as in published batch correction 

methods59-61 is not appropriate in this context because the biological variation or signal of 

interest is often confounded with the unwanted technical variability. For the specific application 

of differential expression, a proposed solution is to account for differences in the proportion of 

detected genes by explicitly including it as a covariate in a linear regression model53. However, 

given the current levels of confounding, this approach will not be able to distinguish biological 

from technical effects. For example, some studies have demonstrated cells with different 

biological phenotypes can express a different number of genes62.  

 

An experimental design solution is to use biological replicates, namely independently repeating 

the experiment multiple times for each biological condition (Figure S1). This approach allows 

for multiple batches of cells to be randomized across sequencing runs, flow cells and lanes as in 

bulk RNA-Seq. With this design we can then model and adjust for batch effects due to 

systematic experimental bias. A more detailed discussion of how these factors affect the 

experimental design has been recently published14, 18, 19.  
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 5. Conclusions 

Technical variability is considered to be a major challenge in the analysis of data measured on 

next-generation sequencing platforms. For example, amplification bias leading to batch effects 

has been shown to induce false positives in differential expression studies with bulk RNA-seq 

data63, 64. By examining three assessment experiments containing both bulk and single cell RNA-

Seq data, we demonstrated that technical variability is a challenge in scRNA-Seq as well, with a 

major problem arising due to differences in capture inefficiencies. Using public data from fifteen 

studies, we showed that these inefficiencies lead to substantial differences in detection rates that 

lead to distortion in distance calculations, which in turn can lead to false discoveries when using 

unsupervised clustering. 
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Study Organism 
Single-cell  
RNA-Seq  
protocol 

Number 
of cells 

Number of 
genes or 

transcripts 

Processed 
data 

available 

Confounding 
(%):  Ref 

Deng et al. (2014) Mouse SMART-Seq 286 22,958 RPKM 96.6+ 8 

Guo et al. (2015) Human Tang et al. (2009) 154 23,394 FPKM 82.1 55 

Kowalczyk et al. (2015) Mouse SMART-Seq 533 8,422 TPM 84.8 58 

Kumar et al. (2014) Mouse SMART-Seq 361 22,443 TPM 97.1 56 

Patel et al. (2014) Human SMART-Seq 430 5,948 TPM 98.9 11 

Treutlein et al. (2014) Mouse SMART-Seq 198 23,745 FPKM 92.8 2 

Shalek et al. (2014) Mouse SMART-Seq 383 27,723 TPM 100 6 

Trapnell et al. (2014) Human SMART-Seq 306 47,192 FPKM 100 5 

Burns et al. (2015) Mouse SMART-Seq 249 26,585 TPM NA 57 

Leng et al. (2015) Human SMART-Seq 458 19,804 TPM NA 65 

Bose et al. (2015) Human CEL-Seq 247 17,450 UMI NA 46 

Jaitin et al. (2014) Mouse MARS-Seq 4,466 20,190 UMI NA 12 

Macosko et al. (2015) Mouse Drop-Seq 49,300 16,961 UMI NA 1 

Satija et al. (2015) Zebrafish SMART-Seq 1,152 13,902 UMI NA 9 

Zeisel et al. (2015) Mouse STRT-Seq 3,004 19,972 UMI NA 3 

 
Table 1: Description of processed single-cell RNA-Seq data sets. Column 1 shows the publications. 
Column 2 shows the organism. Column 3 shows the single-cell technology used for sequencing. Column 
4 shows the number of cells (samples) included in the study. Column 5 shows the number of genes 
included in the data uploaded to the public repository. Column 6 indicates the units in which the values 
were reported. Column 7 shows the level of confounding between biological condition and batch effect 

quantified using the standardized Pearson contingency coefficient as a measure of association. The 
percentage ranges from 0% (no confounding) to 100% (completely confounded). Column 8 provides the 
citation for the study. 
+ The main purpose of this study was to investigate monoallelic gene expression in mouse embryos, but 
here we consider the different developmental stages (oocyte to blastocyst) as the biological condition as 
an example. 
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Figure 1: Boxplots of the detection rate, or the proportion of genes in a cell reporting expression 
values greater δ=1 calculated for each cell across fifteen publicly available scRNA-seq studies. 
The detection rate across cells and studies ranges from less than 1% to 65%.  
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Figure 2: RNA-seq profiles compared to averaged scRNA-seq profile (A) Scatter plot 
comparing a bulk RNA-seq profile and an averaged scRNA-seq profile, which we reproduced 
from Figure 1C in Shalek et al. (2013)51. (B) The MA plot demonstrates there is a bias between 
the bulk profile and the single cell profile averaged across cells as the single cell profile averaged 
across cells is smaller than the bulk profile for low expressed genes.   
 
 
 
 
 
 
 

 
Figure 3: Plots comparing bulk and averaged scRNA-seq profiles that demonstrate evidence of 
more zeros in in scRNA-seq data for low expressed genes than what is expected. Data was 
obtained from three publicly available scRNA-seq studies that included a matched bulk RNA-seq 
sample measured on the same population of cells5, 51, 52. The red points are averages of the single 
cell profiles computed in strata defined by the bulk RNA-seq values. The black solid line is what 
we expect if there is no bias. 
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Figure 4: The distribution of gene expression changes with the detection rate using processed 
scRNA-seq data available on GEO. Failure to account for differences of the proportion of 
detected genes between cells over-inflates the gene expression estimates of cells with a low 
detection rate. The curves were obtained by fitting a locally weighted scatter plot smoothing 
(loess) with a degree of 1. Because the range of detection rate varied from study to study, the 
range of the x-axis differs across plots. 

 

 
 
 

 
Figure 5: Illustration of how technical variation can lead to differences in detection rates, which 
in turn can lead to false differences. (A) Boxplots of detection rates from cells stratified by 
sequencing instrument used to sequence cells. (B) Using principal components analysis, scRNA-
seq samples cluster by sequencing instrument. (C) Detection rate is associated with the first 
principal component.  
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