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Abstract. State-based Cormack-Jolly-Seber (CJS) models have become
an often used method for assessing states or conditions of free-ranging
animals through time. Although originally envisioned to account for dif-
ferences in survival and observation processes when animals are moving
though various geographical strata, it has evolved to model vital rates
in di↵erent life-history or diseased states. We further extend this useful
class of models to the case of multivariate state data. Researchers can
record values of several di↵erent states of interest; e.g., geographic lo-
cation and reproductive state. Traditionally, these would be aggregated
into one state with a single probability of state uncertainty. However,
by modeling states as a multivariate vector, one can account for partial
knowledge of the vector as well as dependence between the state vari-
ables in a parsimonious way. A hidden Markov model (HMM) formu-
lation allows straightforward maximum likelihood inference. The pro-
posed HMM models are demonstrated with a case study using data
from a California sea lion vital rates study.

Key words and phrases: Capture-recapture, Cormack-Jolly-Seber, Hid-
den Markov Model, Multivariate, Partial observation, State uncertainty.

1. INTRODUCTION

The seminal papers by Cormack (1964), Jolly (1965), and Seber (1965) initiated
50 years of active development of capture-recapture theory and application. The
Cormack-Jolly-Seber (CJS) model for survival estimation and the Jolly-Seber
model for survival and abundance estimation and their extensions are still the
most widely used capture-recapture models. They have been implemented in
the computer software MARK (White and Burnham, 1999), POPAN (Arnason and
Schwarz, 1999), SURGE (Lebreton et al., 1992), M-SURGE (Choquet et al., 2004),
E-SURGE (Choquet, Rouan and Pradel, 2009), and, more recently, marked (Laake,
Johnson and Conn, 2013) and multimark (McClintock, 2015).

Expansion of CJS models to account for movement between areas (multistate)
was initiated by Darroch (1958) and Arnason (1973) and further developed by
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2 JOHNSON ET AL.

Hilborn (1990), Hestbeck, Nichols and Malecki (1991), Schwarz, Schweigert and
Arnason (1993) and Brownie et al. (1993). Nichols et al. (1992) used the multistate
model to describe survival with state transitions based on mass and this has been
followed by numerous other examples using the multistate model (Lebreton and
Pradel, 2002; Nichols and Kendall, 1995; White, Kendall and Barker, 2006). An
important advance to the multistate CJS generalization was made by Kendall
et al. (2004) who considered models with state uncertainty (unknown state) and
Pradel (2005) who cast a multistate model with state uncertainty as a hidden
Markov model (Zucchini and MacDonald, 2009). The state uncertainty models are
often termed multievent models. In a further step, Kendall et al. (2012) combined
a robust design with a multistate hidden Markov model to improve precision in
the face of state uncertainty. We use the general term state-based to refer to all
of these types of CJS models.

For traditional CJS analysis, the detection portion of the model is often consid-
ered to be a nuisance with little scientific interest and often determined largely by
the resampling methods used by researchers to resight individuals. The achieve-
ment made by the development of the original CJS model was that it permitted
estimation of survival even when individuals were not observed on every occasion.
The state-based extensions allowed survival inference to account for time-varying
heterogeneity or deviations from CJS model assumptions induced by states as
well make inference to the state process itself (Lebreton and Pradel, 2002). With
the recently developed extensions, one can often find state-based CJS analyses
where survival is also considered a nuisance process and primary scientific interest
lies with the transitions between states. See Gourlay-Larour et al. (2014) for a
recent example. With this in mind, practicing ecologists are using the state-based
CJS framework and the associated HMM formulation to analyze complex state
transitions such as the combination of geographic location and reproductive or
disease status. This presents the problem that a state may be only partially ob-
served when an individual is resighted. For example, location will be known but
reproductive status may not be observed. To further generalize the state-based
CJS models, King and McCrea (2014) developed a closed form likelihood expres-
sion to handle partial knowledge of the state of an individual. However, a general
framework for parametrizing complex state-based CJS models is not examined.
Laake et al. (2014) made initial strides into multivariate state CJS models by
proposing a bivariate state model to account for dependence in double-mark loss.
Here we seek to augment the work of King and McCrea (2014) and Laake et al.
(2014) to provide a general method to construct complex state-based CJS models.

In this paper, we propose a general modeling framework for multivariate state-
based CJS models in which the state is defined by one or more discrete categorical
variables and each variable maybe unknown when the animal is resighted. The
modeling framework extends the state-based models in MARK by allowing any
or all of the state variables to be uncertain rather than just a single uncertain
state. We have implemented the model in the marked package (Laake, Johnson
and Conn, 2013) for the R statistical environment (R Development Core Team,
2015) using a hidden Markov model for maximum likelihood estimation of the
parameters which are cast in a log-linear framework (Cormack, 1989; Darroch
and Ratcli↵, 1980) to easily allow dependence among state variables. We provide
an example using 18 years of annual resighting data collected on a single cohort
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MULTIVARIATE STATE CAPTURE-RECAPTURE MODELS 3

of California sea lion (Zalophus californianus) pups that were both branded and
double tagged on their flippers in 1996 at San Miguel Island o↵ the west coast
near Santa Barbara, California (Melin et al., 2011). The animal’s state was defined
based on the animal’s location (San Miguel or Año Nuevo Islands) which were
always known when the animal was resighted and the, possibly unknown, states
of the two flipper tags (present or absent due to tag loss).

2. METHODS

To begin the description of multivariate state modeling of mark-recapture data,
we must begin with the state and data structure. The general structure is based on
the capture histories of individuals, indexed i = 1, . . . , I, over capture occasions,
indexed j = 1, . . . , J . The state of an individual on a particular occasion is
determined by the cross-classification of that individual to a cell in a multiway
table where the margins represent state variables of interest. Specifically, the
state, s = (s1, . . . , sK) is a vector where the entries correspond to K classification
criteria, e.g., location, reproductive status, or disease presence. Each state variable
has a set of possible values s

k

2 S
k

= {1, . . . ,m
k

}, k = 1, . . . ,K. The space of the
state vector, s, is thus S = S1⇥· · ·⇥S

K

. The number of possible states is denoted
M = |S| =

Q

k

m
k

. We also need to augment the state-space, S, with a “death”
state, such that the individual can transition between all s 2 S as well as death.
We represent the death state with s = 0, so the augmented state space is S† =
S
S

{0}. The observed data for an individual on a particular (re)capture occasion
is denoted as c = (c1, . . . , cK). The observed state can di↵er from the true state
in two ways. First, an individual may not be observed (detected) on a particular
capture occasion. Second, it is possible, and highly probable in many situations,
that even if an individual is physically observed, state specification may not
be completely determined by the researcher. Thus, the space of the observation
vector is augmented with two additional levels corresponding to “not observed”
and “unknown,”, i.e., c

k

2 {0, 1, . . . ,m
k

,m
k

+ 1}, where 0 is for undetected
individuals and m

k

+1 is associated with an unknown level for that state variable.
In heuristic descriptions we will use c

k

= u to be clear we are referring to the
unknown state. In addition, we take the convention that if c

k

= 0 for any k, it
is assumed that all c

k

= 0. We use c

ij

to denote the observed state of individual
i on occasion j. Table A.1 of Supplement A (Johnson et al., 2016a) provides a
glossary of the notation used in this paper.

2.1 Two state variable model

Specifying a model for a general multivariate discrete state is notationally
cumbersome due to the complex dependence structure. Therefore, we begin with
a description for a bivariate state model, and then follow up in the next sec-
tion with a general model formulation for > 2 state variables with additional
covariates. The general parameter types are the same as in any state-based CJS
model: survival (�), detection (p), and state transition ( ) from one occasion
to the next. In addition, we have parameters associated with the inability to
fully assess the state of an individual (�) and the probability that an individual
is in a particular state at first capture (⇡). Typically, each of these parameter
types depends on the state of the individual; e.g., survival of individual i from
occasion j to occasion j + 1 depends on the state of the individual on occasion
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4 JOHNSON ET AL.

Table 1
Example transition probabilities,  (s; r), for a hypothetical bivariate state s composed of state

variables s1 2 {1, 2, 3} and s2 2 {1, 2}. Here we use the reference cell s⇤ = (1, 1). The  
probabilities are presented in their unnormalized form as in equation (2.1). The necessary

normalizing constant is the sum over all the table entries.

s2
1 2

1 1 exp{�(2)(2; r)}
s1 2 exp{�(1)(2; r)} exp{�(1)(2; r) + �(2)(2; r) + �(1,2)(2, 2; r)}

3 exp{�(1)(3; r)} exp{�(1)(3; r) + �(2)(2; r) + �(1,2)(3, 2; r)}

j. Each multivariate state variable may contribute independently to survival, or
may interact at various levels to further enhance or degrade survival. Thus, mod-
els for these parameters must accommodate this interaction (dependence) when
modeling state transition. We take a log-linear approach (Christensen, 1997) for
modeling multiway contingency tables which allows for all levels of dependence
between state variables.

We begin with modeling state transitions from one occasion to the next. Sup-
pose individual i is alive on occasion j < J , then the probability of a transition
from state r = (r1, r2) 2 S on occasion j to state s = (s1, s2) 2 S on occasion
j + 1 is given by the conditional log-linear model,

(2.1)  (s; r) / exp
n

�(1)(s1; r) + �(2)(s2; r) + �(1,2)(s1, s2, r)
o

,

where, for each r 2 S, �(1)(s1; r), �(2)(s2; r), and �(1,2)(s1, s2; r) are parameters
which depend on the previous state, r, and are indexed by the values of s1, s2,
and the double index of (s1, s2), respectively. For example, the collection of �(1)

parameters is {�(1)(1; r), . . . ,�(1)(m1; r)}. If we denote  to be the transition
matrix describing the probability of transitioning from any state on occasion
j to any other state on occasion j + 1, equation (2.1) evaluated for all s 2 S
would form the rows associated with each possible current state r. There are
m1 + m2 + m1m2 parameters for each r. Thus, there are m1m2 ⇥ (m1 + m2 +
m1m2) � parameters within the m1m2 ⇥ m1m2 transition matrix  . Hence,
the model is overparameterized. To alleviate this problem it is customary to
pick a reference cell say, s⇤ 2 S, and fix all � parameters to 0 when s1 = s⇤1
or s2 = s⇤2. For example, if s

⇤ = (r1, r2) (the current state), �(1)(r1; r) ⌘ 0,
�(2)(r2; r) ⌘ 0, �(1,2)(s1, r2; r) ⌘ 0 for any s1 value, and �(1,2)(r1, s2; r) ⌘ 0 for
any s2 value. Of course it is not necessary to use the current state as the reference
state, but it has some advantages, namely, the � parameters are interpreted as
controlling movement away from the current state and the current state is usually
an acceptable possibility for a realization at the next occasion (i.e., non-zero
probability of occurring). This may not be the case if you define a fixed state as
the reference (see Section 3 for example). See Table (1) for an example of  (s; r)
specification with the reference cell constraint.

Markovian dependence in time is explicitly included by allowing the � parame-
ters to depend on the previous state. In addition, dependence between state vari-
ables is accommodated via the �(1,2) interaction parameters. If �(1,2)(s1, s2; r) = 0
for all values of s1 and s2 then this is a necessary and su�cient condition for s1
and s2 to be independent given the previous state r. Su�ciency is easily observed

imsart-sts ver. 2014/10/16 file: multivariate_mark_recapture.tex date: August 28, 2015

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2015. ; https://doi.org/10.1101/025569doi: bioRxiv preprint 

https://doi.org/10.1101/025569
http://creativecommons.org/licenses/by/4.0/


MULTIVARIATE STATE CAPTURE-RECAPTURE MODELS 5

by the fact that under that assumption

 (s; r) / exp
n

�(1)(s1; r) + �(2)(s2; r)
o

/  (1)(s1; r)⇥  (2)(s2; r).
(2.2)

Thus, the probability of transition to state s is the product of independent tran-
sitions from r1 ! s1 and r2 ! s2. Proof of necessity is quite cumbersome and
beyond the scope of this paper. See Lauritzen (1996) for more theoretical details
of log-linear modeling. One caveat of these independence results is that they as-
sume there are no structural zeros (impossible state transitions). If there are, one
should check that independence still holds if it is a desirable property. Otherwise,
zero valued interaction terms can just be used for parsimonious modeling.

The next set of parameters of scientific interest is survival. Given that indi-
vidual i is in state s on occasion j the probability of survival from occasion j to
j + 1 is described by

(2.3) �(s) = `�1{⌘; + ⌘(1)(s1) + ⌘(2)(s2) + ⌘(1,2)(s1, s2)},

where ` is a link function such as logit or probit, and the ⌘ parameters are
functions of (indexed) by the current state, s. The ⌘ parameters have the same
structure and reference cell constraints as the � parameters in the  model.
Readers should also observe that there is a ⌘; vector. This term is not indexed by
the state and represents baseline survival. Even though the notation may appear
di↵erent for some readers, it should also be noted that this � model is identical
to a model with s1 and s2 being thought of as known categorical covariates with
interaction e↵ects included. So, as far as the survival model is concerned, s1 and
s2 are equivalent to (individual ⇥ occasion) indexed factor covariates.

We now move to the observation and detection portion of the model. Given
that individual i is in state s on occasion j, the probability that the individual is
detected (i.e., recaptured or resighted) by the researcher is given by

(2.4) p(s) = `�1{⇣; + ⇣(1)(s1) + ⇣(2)(s2) + ⇣(1,2)(s1, s2)},

as with the survival model, the state variables can be considered as factor vari-
ables for the purposes of conceptualizing the model. There is one more set of
parameters working in concert with p, these are related to the ability of the
researcher to jointly classify a detected individual according to all of the state
variables. If an individual i is detected on occasion j, then the joint probability
of the state observation, c = (c1, c2)0, conditioned on the true state is modeled
via,

(2.5) �(c; s) / exp{↵(1)(c1, s) + ↵(2)(c2, s) + ↵(1,2)(c1, c2, s)}, c 6= 0.

Note that we do not consider misidentification of states; a state variable is ei-
ther observed correctly (c

k

= s
k

) or it is not observed and the value is un-
known (c

k

= m
k

+ 1 or u). As with the multivariate transition model,  , a
reference cell, say c

⇤ is necessary for parameter identifiability. One could use
c

⇤ = (m1 + 1,m2 + 1), the completely unknown state, to be consistent with pre-
vious univariate state uncertainty models (e.g., Laake 2013; Kendall et al. 2012),
but it is not necessary and maybe undesirable if the completely unknown state is
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6 JOHNSON ET AL.

not observable; e.g., double-tag studies where no third permanent mark is avail-
able. We suggest using the current state, c⇤ = s, as the reference. As with the
 models, one can incorporate dependence in recording the level of each state
variable. That dependence implies, for example, that if the researcher is able
to record the level for one state variable, the researcher is more (less) likely to
record the level of the other. There may be some state variables which are always
recorded with certainty, e.g., location. So, for any c that contains c

k

= m
k

+1 for
those state variables, we can also fix the � ⌘ 0 and remove the corresponding ↵
parameters from the overall parameter set. As with the state transition probabil-
ities,  , if these structural zeros exist, then the dependence interpretation needs
to be investigated because conditional dependence can be induced by the zeros.

Finally, the last set of parameters is associated with the initial capture of
the individual. We are considering only CJS type models here, thus, we are still
conditioning the model on the occasion when an individual is first observed. When
an individual is first captured (marked), however, the researcher may not be able
to observe all state variables, i.e., some c

k

= u. Therefore, we need to model the
probability that individual i, who is first marked on occasion j, is in state s. So,
we describe this probability via,

(2.6) ⇡(s) / exp
n

�(1)(s1) + �(2)(s2) + �(1,2)(s1, s2)
o

.

Here, there is no previous cell from which to form the reference cell. Therefore
the researcher will have to decide on the most appropriate state to serve as the
reference. The ⇡ model parameters, however, may not necessarily have to be
estimated. For example, if it is certain that all state variables will be observed at
first marking then it can be fixed to ⇡(s) = 1, where s is the state individual i
was in when it was first marked, and ⇡(r) = 0 for all r 6= s (see Section 3). Or,
a researcher might specify, say, ⇡(s) = 1/M , where M is the number of cells in
S. The ⇡ probabilities can be interpreted as a prior distribution, in the Bayesian
sense, on the state of a newly marked individual, thus, 1/M would be a uniform
prior over the state-space.

2.2 General multivariate state model

In this section we generalize the bivariate state models presented in the previ-
ous section. Here, researchers can consider state specifications that index a cell
in a general K dimensional hypercube and models can depend on covariates, as
well. To accomplish this we introduce the notation V = {1, . . . ,K} to be the set
which indexes the collection of K state variables and v ✓ V is a subset. The
partial state s

(v) represents only those elements of s whose index is contained in
v ✓ V. The state subspace S(v) denotes the set of all possible values of s(v).

Now, the full specified model describing the transition of individual i in state
r = (r1, . . . , rK) on occasion j to state s = (s1, . . . , sK) on occasion j+1 is given
by,

(2.7)  
ij

(s; r) / exp

8

<

:

X

v✓V
x

(v)
ij

· �(v)
ij

(s; r)

9

=

;

,

where x(v)
ij

is a vector of covariates, the notation “x·�” represents the dot product

x

0�, and �(v)
ij

(s; r) is a coe�cient vector that depends on the state, s 2 S, only
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MULTIVARIATE STATE CAPTURE-RECAPTURE MODELS 7

through the value of the sub-state s

(v) 2 S(v) and r 2 S. As with the bivariate
model in the previous section, we must satisfy the reference cell constraint to have
an identifiable set of parameters. Therefore, all �(v)(s; r) ⌘ 0 if any element of
the sub-state s

(v) is equal to the corresponding elements of the reference cell, s⇤.
Independence of state variables is more complex than described in the previous
section due to a number of possible interactions between di↵erent sets of variables.
To provide a generalization, let v1, v2, and v3 be subsets of state variables that
partitions V. Then s

(v1) and s

(v3) are conditionally independent of one another
given s

(v2) (and r) if and only if �(v)(s; r) = 0 for all s, where v contains elements
of both v1 and v3 (i.e., v \ v1 6= ; and v \ v3 6= ;) (Frydenberg, 1990). For
example, suppose V = {1, 2, 3}, then s1 is conditionally independent of s3 given
s2 (and r) if �(1,3)(s; r) = �(1,2,3)(s; r) = 0 for all s. Further, if we assume that
�(1,2)(s; r) = 0, then s

(1) = s1 is independent (given r) of s(2,3) = (s2, s3). In that
case, we can follow the example in (2.2) and write

(2.8)  
ij

(s; r) =  (1)
ij

(s; r(1)) (2,3)
ij

(s; r(2,3)).

This independence factorization can extend to more than two groups using the
Gibbs factorization theorem (see Frydenberg 1990). Again, independence theo-
rems are based on the absence of structural zeros.

We can progress through the other parameter groups in a similar fashion to
produce a general multivariate state model. The survival portion of the model
can be generalized to

(2.9) �
ij

(s) = `�1

8

<

:

X

v✓V
x

(v)
ij

· ⌘(v)
ij

(s)

9

=

;

,

where, the covariate vector x(v)
ij

need not be the same as that shown in equation
(2.7), we use the same notation simply to avoid extra clutter. Cycling through
the remaining parameters, we have:

(2.10) p
ij

(s) = `�1

8

<

:

X

v✓V
x

(v)
ij

· ⇣(v)
ij

(s)

9

=

;

, s 6= 0,

(2.11) �
ij

(c; s) / exp

8

<

:

X

v✓V
x

(v)
ij

·↵(v)
ij

(c; s)

9

=

;

, c 6= 0 and s 6= 0,

where, we suggest the reference cell c⇤ = s. In general, there will be 2d possible
values of c associated with each s, where d is the number of state variables for
which a u can be recorded. Finally, the probability distribution of states upon
first capture is

(2.12) ⇡
ij

(s) / exp

8

<

:

X

v✓V
x

(v)
ij

· �(v)
ij

(s)

9

=

;

.

This completes the general model for a K dimensional state vector. In the next
section we focus on methods for e�cient parameter estimation and inference.
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8 JOHNSON ET AL.

Similar to the  models, the � and ⇡ parameters can be factored into indepen-
dent products as well. This will facilitate easier overall model construction if
certain states variables can be assumed to be independent, making it easier to
parameterize dependence over a small subset of variables.

2.3 Statistical inference

Statistical inference for multistage mark-recapture models can be challenging
(McCrea and Morgan, 2014). We take the approach described by Laake (2013)
who uses a hidden Markov model (HMM) formulation. By framing a state-based
CJS model as a specific HMM the e�cient forward algorithm can be used to
maximize the likelihood (Zucchini and MacDonald, 2009). Laake (2013) provides
a detailed description of HMM formulated mark-recapture models and likelihood
calculation, but we briefly revisit it here to place the forward algorithm in the
context of multivariate state CJS models.

To begin the description of the forward algorithm in the multivariate state CJS
model case, we must define a few matrices. The transition probability matrix for
movement within S† is given by,

(2.13) �
ij

=

2

6

6

6

4

�
ij

(r1) ij

(s1; r1) · · · �
ij

(r1) ij

(s
M

; r1) 1� �
ij

(r1)
...

...
...

�
ij

(r
M

) 
ij

(s1; rM ) · · · �
ij

(r
M

) 
ij

(s
M

; r
M

) 1� �
ij

(r
M

)
0 0 · · · 1

3

7

7

7

5

,

where M is the size of the state-space, r
m

, m = 1, . . . ,M , refers to the current
state on occasion j, s

m

refers to the state transitioning to on occasion j +1, and
the last column (row) is associated with transition to (from) the death state. In
addition to the state-space augmentation, we define the observation probability
matrix which describes the probability of observing state c

n

, n = 0, . . . , N , for
animal i on occasion j (rows) given it was actually in state s 2 S† (columns),

(2.14) D

ij

=

2

6

6

6

4

p
ij

(s1)�ij(c1; s1) · · · p
ij

(s
M

)�
ij

(c1; sM ) 0
...

...
...

p
ij

(s1)�ij(cN ; s1) · · · p
ij

(s
M

)�
ij

(c
N

; s
M

) 0
1� p

ij

(s1) · · · 1� p
ij

(s
M

) 1

3

7

7

7

5

,

where, observed state c0 = (0, . . . , 0), the undetected state, is represented by the
last row. For use in the forward algorithm, we also define the K ⇥ K matrix,
P(c

ij

) to be a diagonal matrix with the row of D

ij

associated with observed
state for individual i on occasion j as the diagonal entries.

Using the �
ij

and P(c
ij

) matrices we can describe the forward algorithm spe-
cific to maximum likelihood estimation in the multivariate state MR model. The
algorithm proceeds as follows for individual i = 1, . . . , I.

1. Initial conditions:

• Set w
ifi = ⇡0

ifi
P(c

ifi)1 where f
i

= 1, . . . , J � 1, is the occasion on
which individual i was first captured/marked, ⇡

ifi = (⇡
ifi(s1), . . . ,⇡ifi(sM ))0,

and 1 is a vector of all 1s.

• Set µ0
ifi

= ⇡
ifiP(c

ifi)/wifi

• Set L
i

= logw
ifi

imsart-sts ver. 2014/10/16 file: multivariate_mark_recapture.tex date: August 28, 2015

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2015. ; https://doi.org/10.1101/025569doi: bioRxiv preprint 

https://doi.org/10.1101/025569
http://creativecommons.org/licenses/by/4.0/


MULTIVARIATE STATE CAPTURE-RECAPTURE MODELS 9

2. For j = f
i

+ 1, . . . , J :

• Set w
ij

= µ0
i,j�1�ij

P(c
ij

)1

• Set µ0
ij

= µ
i,j�1�ij

P(c
ij

)/w
ij

• Set L
i

= L
i

+ logw
ij

The forward probabilities, µ
ij

represent the conditional probability distribution
of the state of individual i on occasion j, given the observed states up to and
including occasion j and the parameters. After the algorithm has been run for
every individual, the log-likelihood is given by,

(2.15) L =
I

X

i=1

L
i

.

The log-likelihood can be maximized to provide parameter estimates and bio-
logical inference. In the next section we will provide a real-world example where
multivariate states are collected in mark-resight study of California sea lions.

3. EXAMPLE: MOVEMENT, SURVIVAL, AND MARK LOSS IN
CALIFORNIA SEA LIONS

3.1 Data and Model Description

As an example of a multivariate multistate model we use 18 years of annual
resighting data collected on a single cohort of California sea lion (Zalophus cali-
fornianus) pups. In 1996, a total of 485 4-5 month old pups born on San Miguel
Island (SMI), o↵ the west coast near Santa Barbara, California (Melin et al.,
2011) were herded into a pen over a total period of five days. The sex and weight
of each pup was recorded and a unique permanent number was applied as hot
brand to their left side. In addition, a uniquely numbered yellow roto-tag was
applied to each of their foreflippers. Pups were resighted by their brand during a
three month period from 15 May to 15 August each year at SMI and Año Nuevo
Island (ANI). SMI is a breeding rookery, whereas ANI is a haul out where animals
rest, and only a few pups are born and raised. When the animal was resighted
the presence (+) or absence (�) of the tag was noted. In many cases, however,
the status was not recorded for one or both of the tags. Although, the flipper
tags were not directly relevant to the resighting e↵ort, their presence allowed a
rare opportunity to assess loss and dependence for other pinniped studies that
rely solely on flipper tags for marking (e.g., Testa et al. 2013).

From the sea lion data, a capture history was constructed with annual occasions
and each entry was composed of 3 characters, with the first for the area, the second
for the left tag and the third for the right tag. There were 8 di↵erent possible
states for a live animal (a++, a�+, a+�, a��, s++, s�+, s+�, and s��).
Here we are using symbolic representation of the states for ease of discussion. In
terms of the notation presented in the previous sections, s1 is the location state
(s1 = 1 for “a” and 2 for “s”), s2 and s3 are the left and right tag status variables
(s

k

= 1 for “+” and 2 for “�”; k = 2, 3).
To begin the model specification used to analyze these data we will start with

the observation portions of the model (p and �). The possible capture history
values were 0 if not seen, the 8 possible states if seen and each tag status was
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10 JOHNSON ET AL.

recorded, and an additional 10 observations with unknown tag status (a+u, au+,
a� u, au�, auu, s+ u, su+, s� u, su�, suu). For these data, location is always
known with certainty when the animal is detected but each tag status could be
unknown. For the � model we used the fully known tag status as the reference
cell which implies that the parameters can be interpreted as controlling whether
tag status was not obtained (i.e., unknown). The following formulation was used,

�
ij

(c; s) = �(2,3)(c(2,3), s); for c1 = s1.

/ exp{↵(2)(c) + ↵(3)(c) + ↵(2,3)(c)}.
(3.1)

Table A.2 in Supplement A (Johnson et al., 2016a) illustrates the observation
model parameters. For detection, we used the occasion ⇥ area model

(3.2) logit p
ij

(s) = ⇣0 + ⇣
j

+ ⇣(1)(s) + ⇣(1)
j

(s),

where ⇣
j

is an occasion e↵ect, ⇣(1)(s) is an area e↵ect, and ⇣(1)
j

(s) is an occasion ⇥
area interaction. Resighting of animals was based on the permanent brand mark,
thus, tag status was not included in the model.

Now, we describe the more scientifically relevant, process portions of the model.
First, all animals started on SMI with two tags (i.e., s

i1 = (s + +)) on the first
release occasion. Thus, for this example ⇡

i1(s) = 1 for s = (s++). The survival
model was formulated with sex, age, and area specific e↵ects,

(3.3) logit �
ij

(s) = x

ij

· ⌘(;) +B
sex(i),j + ⌘(1)(s),

where x

ij

= (1, w
ij

), where w
ij

is the mass anomaly (di↵erence from sex specific
mean) if j = 1, zero elsewise (i.e., pup survival is influenced by mass), B

sex(i),j

is a sex specific b-spline smooth (df = 3; Hastie 1992) over age, and ⌘(1)(s) is an
area e↵ect. For the state transitions we used the previous state as the reference
state for the following occasion, i.e., s⇤ = r for transitions from r ! s. Thus, the
parameters control movement away from the current area (s1) and loss of flipper
tags (s2, s3). The state transitions were modeled by

(3.4)  
ij

(r, s) / exp{B(1)
sex(i),j(s; r) +x

j

·�(2)(s; r) +x

j

·�(3)(s; r) + �(2,3)(s; r)},

where B(1)
sex(i),j(s; r) is a sex and area specific b-spline (df=3) over age, x

j

=

(1, age
j

), and �(2,3)(s; r) is an interaction term between the two tags which mod-
els dependence in loss. Although, not immediately obvious, the b-spline e↵ect,

B(1)
sex(i),j(s; r), can be written in the form b

j

·�(1)
sex(i)(s; r), where b

j

is a vector of
the b-spline basis function values for occasion j. Therefore, it fits into the pro-
posed log-linear framework. Also, because the same type of tag was placed on
each flipper, we constrained the marginal loss rates to be identical for each side.
This is accomplished by setting the tag loss parameters �(2)(�; +) = �(3)(�; +).
The probabilities for impossible transitions (i.e., going from “�” to “+” for ei-
ther flipper tag variable (s2, s3) were fixed to zero. The tag loss portion of the
state transition generally follows the tag loss model proposed by Laake et al.
(2014). Note, that the structural zeros only depend on the r

(2,3) ! s

(2,3) tran-
sitions and there is no interaction term for s

(1) and s

(2,3), therefore, we can

write  
ij

(s; r) =  (1)
ij

(s; r) (2,3)
ij

(s; r). Table A.3 in Supplement A (Johnson et
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MULTIVARIATE STATE CAPTURE-RECAPTURE MODELS 11

al., 2016a) illustrates the transition probabilities for each current state, r, to
each possible state, s.

The full model was fitted with maximum likelihood methods using the forward
HMM algorithm in Section 2.3. The ability to fit multivariate state models was
added to the R package marked (Laake, Johnson and Conn, 2013). R code used
for this example is available in Supplement B (Johnson et al., 2016b). Confidence
intervals for derived quantities were approximated using a multivariate normal
parametric bootstrap with mean equal to the maximum likelihood estimate and
covariance matrix equal to the negative Hessian of the log-likelihood function (see
Supplement B; Johnson et al. 2016b).

3.2 Results

The 1996 cohort of sea lion pups on SMI experienced a very strong El Niño in
1997 which influenced both the movement of young animals to ANI and created
a large amount of mortality before the sea lions reached age 2. With a single
cohort and a large amount of early mortality, the sample sizes were small at
older age classes and the confidence intervals became very wide and that should
be considered in evaluating any patterns across age. This unusual event may
have also influenced di↵erences in survival across sex and age. However, as an
example, it does illustrate the usefulness and flexibility of building multivariate
state models.

We begin describing the results with the observation model, �. This is a some-
what unusual example with regard to observation of each state’s status. Observers
use the brand for resighting and the tag status was often not observed. Observers
were more likely to record status of left tag because the brand is on the sea lion’s
left side (Figure 1). The odds of missing second side when the first is missed
increases 5-fold [95% CI: 3.5�8.2] (this CI notation used hereafter). This again is
due to use of brand for resighting. If the observer didn’t record the status of the
left side they were unlikely to get the status of the right side. The fitted detection
model, p, is illustrated in Figure A.1 of Supplement A (Johnson et al., 2016a). It
is relatively standard with respect to multistate (and CJS) modeling, so, we do
not elaborate further here.

Male pups had a slightly better overall pup survival (Figure 2). Although, this
may be due to the fact that male pups are heavier on average. For both sexes, pup
survival increased with increasing mass which has also been observed in northern
fur seals (Baker and Fowler, 1992; Baker, Fowler and Antonelis, 1994), Steller sea
lions (Hastings, Gelatt and King, 2009), and Hawaiian monk seals (Baker, Fowler
and Antonelis, 1994; Craig and Ragen, 1999). For non-pups (age > 0) survival
increased to adult age (about 5 years old) and then declined in older ages (Figure
3). The decline was much more dramatic for males whose cost of reproduction is
high due to their polygynous breeding system in which breeding males have to
defend a territory (Peterson and Bartholomew, 1967; Johnson, 1968). For both
sexes, higher survival at ANI was likely due to two factors. First, in El Niño
years prey resources are distributed farther north, closer to ANI, thus animals
not constrained by reproductive commitments at SMI had better access to food.
Second, animals at ANI during the breeding season were likely non-reproductive
(at least for a given year) and, thus, did not have to invest in costly activities
such as holding territories (males) or lactation (females), which allowed them to
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Fig 1. Estimated � parameters for the California sea lion model. If the tag status was observed it
appears as “Obs” in the plot. Thus, for example, the column “Obs/Unk” indicates the probability
that the left tag was observed and the right tag was not observed and its status is unknown.
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Fig 2. Mass- and sex-specific survival probability for California sea lion pups on San Miguel
Island, California. Mass anomaly is the deviation from the sex-specific mean mass.

preserve or invest in better body condition.
With respect to movement between SMI and ANI, we could look at the fitted

age and sex-specific annual area transition probabilities (Figure A.2; Supplement
A, Johnson et al. 2016b), however, a more biologically interesting, derived quan-
tity is the sex specific proportion of animals that were be located in each area

for a given age, ⇡(1)
ij

. This is because animals at SMI during the breeding season
were likely reproductive. This derived quantity can be calculated by

(3.5) b⇡(1)
ij

= ⇡(1)
i1 ·

J�1
Y

j=1

b

 

(1)
ij

,

where, for the sea lion data ⇡
i1 = (1, 0)0 because all pups began at SMI on

occasion 1, and b

 

(1)
ij

is a 2⇥ 2 matrix with b (1)
ij

(s; r) entries. Figure 4 illustrates
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Fig 3. Sex- and age-specific annual survival probabilities for California sea lion nonpups (age
> 0). Separate curves are plotted for each area A = Año Nuevo I. and S = San Miguel I.
Although, plotted as a solid curve, an animals transitioned between the curves depending on the
area occupied.

the occupancy rate of SMI by both sexes. In general, females began returning to
SMI at around age 3 and occupancy stabilized to ⇡ 0.7 by age 5. Thus, about
70% of females from the 1996 cohort were reproductively active each year based
on location alone. This is similar to the 0.77 average natality estimated by Melin
et al. (2011) for several cohorts. A large proportion of males stayed at ANI till
the age of 10 or 11 when the began to return and to hold territories. Because a
large proportion of males were located at ANI during the breeding season, they
experienced better annual survival (for the reasons discussed previously) and
hence, had higher survivorship than females (Figure 4). By age 12�13, however,
the lower survival for breeding males on SMI resulted in equal survivorship.
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Fig 4. Age- and sex-specific probability that an individual was located at San Miguel I. during
the breeding season. Solid lines and envelopes represent probability that an animal was located at
SMI and 95% confidence interval. The dashed lines represent the expected proportion of animals
that were alive at a given age; i.e., survivorship.
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14 JOHNSON ET AL.

Finally, although it did not a↵ect the estimation of survival in this case due
to the permanent brand, the flipper tag results were quite revealing for pinniped
studies where a third mark is not possible. First, tag loss rate increased with age.
Marginally, the odds of loosing a specific tag (left or right) increased 1.56-fold
[1.38�1.75] every year. There was also substantial dependence between tags. The
odds of loosing a tag increased 406-fold [76�2,204] when the other had been lost.
Therefore, tags were almost always lost simultaneously. The probability of loosing
both tags at or before the animal was 5 years old was 0.49 [0.38�0.61], by age 9,
the probability increased to 0.91 [0.86�0.95] (Figure 5; CDF). The most probable
age for an animal to become (�,�) tag status was 5-6, when approximately 40%
of animals entered double loss status (Figure 5; PDF). This was probably due to
the fact that females and males are in periods of strong growth and development
at these ages as they prepare for reproductive activities.
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Fig 5. Age-specific probabilities of double tag loss. The upper plot (CDF) is the cumulative
probability distribution of entering the double tag loss state at or before each age. The lower plot
(PDF) is the di↵erence of the upper plot and provides the probability that an animal entered the
double tag loss state at each age.

4. DISCUSSION

In the on-going development of state-based CJS modeling we present a gener-
alization of the multievent CJS models to the case where states are multivariate
vectors of categorical variables. This allows the user to analyze complex state
transitions and handle partial knowledge of states upon observation of the indi-
vidual. Using a log-linear model parameterization for multiway contingency table
data allows parsimonious modeling of multivariate state transitions by enforc-
ing desired independence (or dependence) between state variables by exclusion
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(inclusion) of specified interaction terms. In addition, because of the necessary
and su�cient conditions for determining independence from log-linear models,
inference on dependence of state variables can also be tested by examining for
significant deviation from zero for the appropriate interaction terms. We use the
term “testing” in a loose sense, in that one might eliminate that e↵ect through
a model selection procedure as well (Burnham and Anderson, 2002; Hooten and
Hobbs, 2015).

The parsimonious construction and hypothesis testing properties were both
demonstrated in the example analysis of the sea lion data. We assumed that tag
loss was primarily due to growth of the foreflippers from the time the tags were
placed on the animals as pups. Therefore, it is reasonable to conclude that loss
of tags will be independent of the location of the animal (i.e., tag loss variables
s2 and s3 are independent of the area s1). Therefore, we specifically omitted
any interaction terms that would imply dependence of area on tag loss. Second,
we examined the parameter measuring interaction between the loss of each tag,
�(2,3)(s; r), for significant deviation from zero and found that there is a high degree
of dependence in the loss of flipper tags in California sea lions. This conclusion
has strong implications for future studies that do not use a permanent third mark
such as a brand, as survival estimation may be negatively biased, depending on
the assumed tag loss process (Laake et al., 2014). By using the multivariate state
framework we were able to directly extend the double tag loss model of Laake
et al. (2014) to account for movement between di↵erent areas as well. Another
practical extension the the multivariate model provides over the single multievent
framework is that the probability of state uncertainty can depend on the true
state. For example, although we did not examine it here, it is possible that the
probability of an observer missing the status of a flipper tag depends on whether
it is present or not. Or, if there are di↵erent observers at each area, one set may
ignore the tag status, while the other dutifully records it. Thus, probability of
correct observation of one state variable may depend on another state variable.

Although the proposed multivariate framework is quite general, there are fur-
ther extensions that are straightforward to develop given the HMM formulation.
First, our model was based on the assumption that the state variable is either
observed correctly or it is not observed at all and hence, unknown. There is no
reason that this cannot be relaxed. All that needs to be done is to augment the
observation space for each variable for which errors can be made. For example,
C
k

= {0, 1, . . . ,m, u, e1, . . . }, where e1, . . . refers to states that are not biologi-
cal in origin, but observational errors. For example, in the tag loss example, an
observer might see a tag is physically present, but fail to read it. In this case it
is uncertain whether or not the tag should be considered lost (i.e., unreadable
= lost), but there is more information than a simple “unknown.” In addition, it
is also possible that an observer might declare a tag to be lost when it fact it
is present or vice versa. All that needs to be done in this case is to remove the
constraint that �

ij

(c; s) = 0 when any c
k

6= s
k

or u. Both of these instances are di-
rectly handled by the HMM inference framework. Some of these extensions might
produce a model of such complexity that some parameters become unidentifiable.
Therefore, placement the multivariate model in a robust design framework sim-
ilar to Kendall et al. (2012) might improve estimation of parameters. This can
be accomplished in the multivariate setting (and in marked package in general)
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by constraining parameters to be constant (most likely 0 or 1) within secondary
sampling periods, but free between primary periods.

We would, again, like to again acknowledge the seminal work by the Cormack
(1964), Jolly (1965), and Seber (1965) papers which initiated 50 years of develop-
ment and analysis of capture-recapture data. Through the years, the same basic
framework has been generalized to add additional inference capability as well as
overcome assumptions of the original CJS models, but the same basic framework
exists in each of these model, including the extension proposed herein.
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SUPPLEMENTARY MATERIAL

Supplement A: Notation summary and additional sea lion analysis

details

(doi: 10.1214/00-AOASXXXXSUPP; supplement A.pdf). Contains additional ta-
bles that summarize notation used throughout the paper and provide additional
details and results for the analysis of sea lion data in Section 3.

Supplement B: R code used to analyze sea lion data

(doi: 10.1214/00-AOASXXXXSUPP; supplement B.pdf). Contains the R code
used to run the sea lion example analysis in Section 3. The most up-to-date ver-
sion of the marked package can be installed directly using the R package devtools
with the command:

devtools::install github("jlaake/marked/marked") .
However, in order to install the this version users need to ensure that their ma-
chines are equipped to compile R packages with source code (namely Fortran
and C++). CRAN releases (version � 1.1.10) of marked contain the multivariate
state fitting capability and the sea lion data. Using the R console command:

install.packages("marked")

a precompiled version can be installed from CRAN.
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Table A.1
Notation glossery. Here we present a list of notation used throughout the paper. The
individual index i runs from 1 to n, the total number of marked individuals and j runs

from 1 to T , the total number of capture/resighting occasions.

I Number of individuals marked
J Total number of capture/resight occasions
V Set of state variable index, i.e, V = {1, . . . ,K}
K Number of state variables, K = |V|
S Space of possible multivariate state values
s Multivariate state in the s = (s1, . . . , sK) 2 S
s
k

Value of the kth state variable, k = 1, . . . ,K
m

k

The number of di↵erent values for the kth state variable, i.e.,
s
k

2 {1, . . . ,m
k

}
M Total size of S, i.e., M = |S| =

Q
K

k=1 mk

S† State space augmented with the death state S† = S
S
{0}

 
ij

(s; r) Probability of individual i transitioning from multivariate state r 2 S on
occasion j to state s 2 S on occasion j + 1

 

ij

Transition probability matrix for movement within S, entries are given by
 
ij

(s; r)
�

ij

Transition probability matrix for movement within S†

�
ij

(s) Probability of individual i surviving from occasion j to occasion j + 1 given
they where in state s on occasion j

p
ij

(s) Probability individual i is detected on occasion j given it is in state s on the
jth occasion

c Observed state vector (capture history), c = (c1, . . . , cK), where
c
k

2 {0, 1, . . . ,m
k

,m
k

+ 1}, 0 represents unobserved, and m
k

+ 1 represents
unknown

C Space of possible observations

N Total number of possible observations, i.e., N = |C| = 1 +
Q

K

k=1(mk

+ 1).
�
ij

(c; s) Conditional probability of observing c for individual i on occasion j given
the true state of the animal is s and the animal is detected.

⇡
ij

(s) Probability individual i is in state s when it is first captured/marked on the
jth occasion
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Table A.2
Conditional probabilities, �(c; s), for the observations, c given the true state, s, of detected

sea lion in the example analysis of Section 3. Because the location, s1, is known with
certainty when the animal is detected, we can write �(c; s) = �(c(2,3); s(2,3)). Here we use
the true state and the reference cell. Structural zeros occur for observations where the state

is mis-observed rather that just unobserved. The � probabilities are presented in their
unnormalized form. The necessary normalizing constants are the sums over each column.

The value in the last row holds for all columns.

s

(2,3)

(+,+) (+,�) (�,+) (�,�)
(+,+) 1 0 0 0
(+,�) 0 1 0 0
(�,+) 0 0 1 0
(�,�) 0 0 0 1

c

(2,3) (+, u) exp{↵(3)} exp{↵3} 0 0
(�, u) 0 0 exp{↵(3)} exp{↵(3)}
(u,+) exp{↵(2)} 0 exp{↵(2)} 0
(u,�) 0 exp{↵(2)} 0 exp{↵(2)}
(u, u) exp{↵(2) + ↵(3) + ↵(2,3)}
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Table A.3a
Transition probabilities,  (1)

ij

(s; r) =  (1)
ij

(s(1); r(1)), for the movement between areas,

s1 = s (San Miguel I.) and s1 = a (Año Nuevo I.). Readers should recall that B(1)
sex(i),j(·, ·)

is a sex-specific, 3 df b-spline smooth over age = j � 1. Probabilities are formed by
normalizing over rows of the table entries.

s

(1)

s a

r

(1) s 1 exp{�(1)
sex(i)(a; s) +B(1)

sex(i),j(a; s)}
a exp{�(1)

sex(i)(s; a) +B(1)
sex(i),j(s; a)} 1

Table A.3b
Transition probabilities,  (2,3)

ij

(s; r) =  (2,3)
ij

(s(2,3); r(2,3)), for the tag loss model presented
in Section 3. The state of the k � 1th flipper tag, s

k

, k = 2, 3 is represented by
s
k

2 {+,�}, where a “+” indicates the tag is present and “�” indicates the tag has been
lost. Recall from the main portion of the paper that because the tags are identical, we
assumed that the marginal loss rate would be the same for each side. Therefore, we

constrained the non-zero parameter values �(2)(�; +) = �(3)(�; +) = �. In addition, we
modeled a linear e↵ect of age, so the covariate vector x

j

= (1, j � 1). Values of zero, are
due to the fact that tag loss is an absorbing state from which the animal cannot return.
The  probabilities are presented in their unnormalized form, necessary normalizing

constants are the sums over each row.

s

(2,3)

(+,+) (+,�) (�,+) (�,�)

r

(2,3)

(+,+) 1 exp{x
j

· �} exp{x
j

· �} exp{2(x
j

· �) + �(2,3)}
(+,�) 0 1 0 exp{x

j

· �}
(�,+) 0 0 1 exp{x

j

· �}
(�,�) 0 0 0 1

4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2015. ; https://doi.org/10.1101/025569doi: bioRxiv preprint 

https://doi.org/10.1101/025569
http://creativecommons.org/licenses/by/4.0/


0.00

0.25

0.50

0.75

1.00

2000 2005 2010
Year

p A
re
a area

A
S

Fig. A.1. Area- and occasion-specific detection probabilities for California sea lions.
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Data analysis with the multivariate state models can be accomplished with the marked package but a
certain level of proficiency with R programming is required. In addition, a thorough knowledge of modeling
mark-recapture data and use of multinomial logit link function is needed. Here we provide the code used to
fit the model to the sea lion data as an example. It can be used as a template for other analysis. Laake et al
(2013) provide an overview of the marked package which will su�ce as an introduction but here we describe
the extensions that enable multivariate state models to be fitted with the package.
First we attach the marked package and additional packages used for analysis, prediction and graphics.

### Load packages ###

# Must have �marked� v >= 1.1.10

library(marked)

# The splines package is only necessary for fitting b-spline curves used in the paper

# It is not required for the multivate models in the marked package

library(splines)

library(mvtnorm)

library(dplyr)

library(ggplot2)

library(cowplot)

The example data are provided in the marked package and can be retrieved with data(sealions). The data
contain a capture history string, a numeric weight value which is the anomaly from the sex-specific mean in
kg and a sex value (F or M) for 485 sea lions. The sea lions were initially marked and tagged as pups in 1996
on San Miguel Island, CA. The capture history string has a 3-character representation for each occasion and
the occasion values are separated by a comma. The first character is either A (Año Nuevo Island) or S (San
Miguel Island) for the animals location when it was seen. The second and third characters represent the
status of the left and right tags respectively. A “+” means the tag was present, a “-” means the tag was
absent and a “u” means the tag status was not observed (unknown).

data(sealions)

The first step in using the marked package is to process the data. Processing the data includes specifying
mark-recapture model to be used (mvmscjs) and additional data attributes (e.g., strata.labels). For this
model, the labels and values for the capture history string must be provided from left to right in the string.
The following specifies that the first variable is called “area” and the possible characters are “A” and “S” as
described above. The second variables are named ltag and rtag and have values “+”,“-”, or “u”. The tag
status variables can be unknown but the area is always known because a “u” was not included in the vector
for area.

# Process data for multivariate models in marked

dp=process.data(sealions,model="mvmscjs",

strata.labels=list(area=c("A","S"),ltag=c("+","-","u"),rtag=c("+","-","u")))

## 485 capture histories collapsed into 334

In processing the data, if there are duplicate data records they are collapsed into unique records (referenced
by id) and a field named freq contains the number of sea lions with the same data. In this case the 485
records are collapsed to I = 334 ids with frequencies ranging from 1 to 16. The most commonly collapsed
records are those that are released and never seen again. Collapsing into the unique records reduces execution
time and the size of the design data list.
The processed data list (dp) contains the data and the model and data attributes. The processed data list
is passed to the function make.design.data which creates a list of design dataframes with a dataframe for
each parameter. The parameters for the “mvmscjs” models are Phi, p, Psi and delta for this model. It does
not include pi because this implementation assumes that the variables are all known at the time of release.

2

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2015. ; https://doi.org/10.1101/025569doi: bioRxiv preprint 

https://doi.org/10.1101/025569
http://creativecommons.org/licenses/by/4.0/


### Make design data

ddl=make.design.data(dp)

The dataframe for Phi contains a record for each id-interval-stratum where stratum is all M combinations of
the values of the variables used to define the states. For this example there are 8 strata (A++, A+-, A-+, A–,
S++, S+-, S-+, S–) and 19 occasions and 18 intervals. Thus, there are I(J ≠ 1)M = 18 ◊ 8 = I ◊ 144 records
in the design data. Likewise, for p there is a record for id-occasion-stratum (I(J ≠ 1)M = I ◊ 144) where
occasions are resight occasions from 2 to 19. A logit link function is used for Phi and p.

names(ddl$Phi)

## [1] "id" "occ" "stratum" "area" "ltag" "rtag" "time"

## [8] "cohort" "age" "sex" "weight" "freq" "Time" "Cohort"

## [15] "Age" "order"

nrow(ddl$Phi[ddl$Phi$id==1,])

## [1] 144

names(ddl$p)

## [1] "id" "occ" "stratum" "area" "ltag" "rtag" "time"

## [8] "cohort" "age" "sex" "weight" "freq" "Time" "Cohort"

## [15] "Age" "fix" "order"

nrow(ddl$p[ddl$p$id==1,])

## [1] 144

For the delta design data, there are I(J ≠ 1)Mn records where n is the possible number of observations for
each state. In this example, n = 4 because you can either observe the state variable or unknown value for
two of the three variables, ltag and rtag. For example, for state A++ you can observe A++, A+u, Au+, or Auu.
Each set of n records is a multinomial with the sum of the four probabilities equal to 1. The multinomial
logit is implemented using a log link function and then normalizing by the sum over the set of n values. To
be identifiable, one of the n values must be fixed to 1 (reference cell). We will explain fixed values later.
As a convention we suggest specifying the fully known observation (e.g., A++) as the reference cell. Had we
specified no u values for the variables then there would have only been n = 1 record which would be fixed to
1 (i.e., no unknown values). For each id and occasion, there are Mn = 8 ◊ 4 = 32 records.

head(ddl$delta)

## id occ stratum area ltag rtag obs.area obs.ltag obs.rtag time cohort age

## 1 1 2 A-- A - - A - - 2 1 1

## 2 1 2 A-- A - - A - u 2 1 1

## 3 1 2 A-- A - - A u - 2 1 1

## 4 1 2 A-- A - - A u u 2 1 1

## 5 1 2 A-+ A - + A - + 2 1 1

## 6 1 2 A-+ A - + A - u 2 1 1

## sex weight freq Time Cohort Age order

## 1 F -0.08534202 4 0 0 1 1
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## 2 F -0.08534202 4 0 0 1 2

## 3 F -0.08534202 4 0 0 1 3

## 4 F -0.08534202 4 0 0 1 4

## 5 F -0.08534202 4 0 0 1 5

## 6 F -0.08534202 4 0 0 1 6

nrow(ddl$delta[ddl$delta$id==1&ddl$delta$occ==2,])

## [1] 32

For the Psi design data, there are I(J ≠ 1)M2 = I ◊ 18 ◊ 64 = I ◊ 1152 records. For each id-occasion-state,
there are a set of M records that represent a multinomial for the probability of transitioning from that state
to any of the M states. The reference cell is set up by default to be �rr of staying in the same state (r æ r).
This is done when the design data are created by adding the field “fix” and assigning its value to NA except
for the reference cell which get the value 1. Values with NA are estimated and any other value fixes the real
parameter (inverse link) at that value. The value 1 is the real parameter value for a log link with a beta value
of 0 (1=exp(0)). The multinomial parameters, delta and Psi are set up with a log link but then normalized
by the sum over the multinomial set. For Psi that is a set of M records with �sr = exp(—sr)/

qM
s=1 exp(—sr)

and exp(—rr) = 1. A di�erent reference cell could be used by changing the values of the field fix. The
reference cell does not have to be the same for each state or it could vary by id or occasion as well but
specifying the formula could become tricky in the latter cases.

head(ddl$Psi)

## id occ stratum tostratum area ltag rtag toarea toltag tortag time cohort

## 1 1 1 A-- A-- A - - A - - 1 1

## 2 1 1 A-- A-+ A - - A - + 1 1

## 3 1 1 A-- A+- A - - A + - 1 1

## 4 1 1 A-- A++ A - - A + + 1 1

## 5 1 1 A-- S-- A - - S - - 1 1

## 6 1 1 A-- S-+ A - - S - + 1 1

## age sex weight freq Time Cohort Age fix order

## 1 0 F -0.08534202 4 0 0 0 1 1

## 2 0 F -0.08534202 4 0 0 0 NA 2

## 3 0 F -0.08534202 4 0 0 0 NA 3

## 4 0 F -0.08534202 4 0 0 0 NA 4

## 5 0 F -0.08534202 4 0 0 0 NA 5

## 6 0 F -0.08534202 4 0 0 0 NA 6

nrow(ddl$Psi[ddl$Psi$id==1&ddl$Psi$occ==1,])

## [1] 64

Default design data are created by make.design.data but you are free to add your own fields which may
create other fields derived from the default fields or possibly add entirely new data fields by merging in
occasion data like environmental variables. If you do merge in other data with the merge function, make sure
to re-order the design dataframe using the variable order. Below, a variable pup is defined for Phi and sex is
changed from a character to a factor variable. Had the latter been done in the data, this would not have
been needed.
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# Create pup variable for Phi

ddl$Phi$pup=ifelse(ddl$Phi$Age==0,1,0)

ddl$Phi$sex=factor(ddl$Phi$sex)

Data from Año Nuevo Island in 2014 were not available at the time, so p is set to 0 for area==“A” on the
last occasion:

# Detection model

# Set final year p=0 (no resight data) for ANI

ddl$p$fix = ifelse(ddl$p$Time==17 & ddl$p$area=="A", 0, NA)

For delta, a 0/1 variable is created for the left and right tag when it is unknown. These variables are used
in the formula such that the implied reference cell is when the status of both tags is known.

# Delta model

# create indicator variables for �unknown� tag observations

ddl$delta$obs.ltag.u = ifelse(ddl$delta$obs.ltag=="u", 1, 0)

ddl$delta$obs.rtag.u = ifelse(ddl$delta$obs.rtag=="u", 1, 0)

The changes to the Psi data are slightly more involved. We cannot have transitions from “-” (missing) to
“+” present for a tag, so that transition is set to 0 for both the left and right tag. Dummy 0/1 variables are
created for transitions from A to S and from S to A to be used in the formulas for Psi. In addition, dummy
variable lpm and rpm are set to 1 for transitions from “+” to “-” (losing a tag) and 0 otherwise. Finally, sex

is converted to a factor variable.

# Psi model

# Set Psi to 0 for cases which are not possible - missing tag to having tag

ddl$Psi$fix[as.character(ddl$Psi$ltag)=="-"&as.character(ddl$Psi$toltag)=="+"]=0

ddl$Psi$fix[as.character(ddl$Psi$rtag)=="-"&as.character(ddl$Psi$tortag)=="+"]=0

# Create indicator variables for transitioning between states

ddl$Psi$AtoS=ifelse(ddl$Psi$area=="A"&ddl$Psi$toarea=="S",1,0) # ANI to SMI movement

ddl$Psi$StoA=ifelse(ddl$Psi$area=="S"&ddl$Psi$toarea=="A",1,0) # SMI to ANI movement

ddl$Psi$lpm=ifelse(ddl$Psi$ltag=="+"&ddl$Psi$toltag=="-",1,0) # Losing left tag

ddl$Psi$rpm=ifelse(ddl$Psi$rtag=="+"&ddl$Psi$tortag=="-",1,0) # Losing right tag

ddl$Psi$sex=factor(ddl$Psi$sex)

Formulas are specified in a list and named by the variable with a dot and an extension (eg 1 in each case
below). This form is suggested to use the crm.wrapper function for fitting multiple sets of models.

Psi.1=list(formula=~-1+ AtoS:sex + AtoS:sex:bs(Age) + StoA:sex + StoA:sex:bs(Age) +

I(lpm+rpm) +I(lpm+rpm):Age + lpm:rpm)

p.1=list(formula=~time*area)

delta.1=list(formula= ~ -1 + obs.ltag.u + obs.rtag.u + obs.ltag.u:obs.rtag.u)

Phi.1=list(formula=~sex*bs(Age)+pup:weight+area)

The formula for p is the simplest. It specifies time varying resighting probabities that di�er across the two
areas (A and S). The formula for Phi specifies a cubic spline across age that varies by sex, survival varying by
weight for pup==1, and an additive area di�erence in survival. The formula for delta specifies a dependence
model for the probability of not observing the status of a tag in which if one tag is not known may influence
whether the other tag is known. By removing the intercept (-1), the intercept value is 0 which fixes the
reference cell to be observed status for both tags (obs.ltag.u=0 and obs.rtag.u=0). The formula for Psi

is the most complicated involving two additive portions with the first for movements between A and S and S
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to A that are a function of sex and Age represented by a spline that is sex specific. The second portion is for
tag loss (transitions from “+” to “-”). It specifies tag loss that is constant for left and right (I(lpm+rpm)), but
changes linearly with age (I(lpm+rpm):Age) and dependence (lpm:rpm) whereby losing one tag influences
loss of the other tag.

For this single model a call to crm fits the model and returns the results into mod. The arguments are the
processed data list (dp), the design data (ddl), the model.parameters which is a list of the parameter lists
and an argument hessian set to TRUE to get the variance-covariance matrix. Note that this model fitting
with estimation of the hessian may take about an hour to run. We are working on finding more e�cient ways
of fitting these models. With the generality of fitting models in marked, comes the concomitant cost of slow
execution.

# Fit model

mod=crm(dp,ddl,model.parameters=list(Psi=Psi.1,p=p.1,delta=delta.1,Phi=Phi.1,hessian=TRUE)

Various plots were produced from the model results. Here we provide the code to produce plots for survival.
The first plot shows the pup survival estimates as a function of their weight anomaly. The comments below
describe the code used.

#pup - create a dataframe with a sequence of weights for females and males

Phi_pup = rbind(

data.frame(

sex="F",

weight=seq(min(ddl$Psi$weight[ddl$Psi$sex=="F"]),

max(ddl$Psi$weight[ddl$Psi$sex=="F"]),0.1)

),

data.frame(

sex="M",

weight=seq(min(ddl$Psi$weight[ddl$Psi$sex=="M"]),

max(ddl$Psi$weight[ddl$Psi$sex=="M"]),0.1)

)

)

# create a design matrix for the pup survival with the data defined above

Phi_pup_dm = model.matrix(~sex + weight, data=Phi_pup)

Phi_coef = mod$results$beta$Phi

# extract the variance-covariance matrix for the betas

vcv = mod$results$beta.vcv

vcv_names = rownames(mod$results$beta.vcv)

# extract the portion of the v-c matrix for the Phi parameters

Phi_vcv = vcv[grep("Phi", vcv_names),grep("Phi", vcv_names)]

# compute 10,000 multivariate normal variables with means Phi_coef

# and variance-covariance matrix Phi_vcv

Phi_rep = rmvnorm(10000, Phi_coef, Phi_vcv)

# using the random variable values for the intercept, sex and weight variables compute the

# survival estimates for the 10000 variates

pred_rep=apply(Phi_rep[,c(1,2,10)], 1, FUN=function(b,D){plogis(D%*%b)}, D=Phi_pup_dm)

# compute the 95% confidence intervals from the simulated values

tmp = t(apply(pred_rep, 1, quantile, prob=c(0.025, 0.975)))

colnames(tmp) = c("lower","upper")

# create data frame for plotting and call ggplot to create the plot

Phi_pup = cbind(Phi_pup,tmp)

Phi_pup$estimate = plogis(Phi_pup_dm%*%Phi_coef[c(1,2,10)])

p_pup_surv = ggplot(data=Phi_pup) + geom_line(aes(x=weight, y=estimate, color=sex)) +

geom_ribbon(aes(ymin=lower, ymax=upper, x=weight, fill=sex), alpha=0.33) +
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ylab("Survival") + xlab("Mass anomaly (kg)") + geom_rangeframe()

p_pup_surv
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The second plot shows the non-pup survival estimates as a function of age. The procedure used is very similar
to the code used above.

#adult - Follow a similar

Phi_ad = data.frame(

expand.grid(

sex=c("F","M"),

Age=c(1:17),

area=c("A","S"),

pup=0,

weight=0

)

)

Phi_ad_dm = model.matrix(mod$model.parameters$Phi$formula, Phi_ad)

Phi_ad$estimate = plogis(Phi_ad_dm%*%Phi_coef)

tmp = Phi_rep %>% apply(., 1, FUN=function(b,D){plogis(D%*%b)}, D=Phi_ad_dm) %>%

apply(., 1, quantile, prob=c(0.025, 0.975)) %>% t(.)

colnames(tmp)=c("lower","upper")

Phi_ad = cbind(Phi_ad,tmp)

p_ad_surv = ggplot(data=Phi_ad) + geom_line(aes(x=Age, y=estimate, color=area)) +

geom_ribbon(aes(ymin=lower, ymax=upper, x=Age, fill=area), alpha=0.33) +

facet_wrap(~sex) +

ylab("Survival") + xlab("Age (yr)")

p_ad_surv
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