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Abstract

We previously proposed a simple regression-based method to map quantitative trait loci

underlying function-valued phenotypes. In order to better handle the case of noisy phenotype

measurements and accommodate the correlation structure among time points, we propose an

alternative approach that maintains much of the simplicity and speed of the regression-based

method. We overcome noisy measurements by replacing the observed data with a smooth

approximation. We then apply functional principal component analysis, replacing the smoothed

phenotype data with a small number of principal components. Quantitative trait locus mapping is

applied to these dimension-reduced data, either with a multi-trait method or by considering the

traits individually and then taking the average or maximum LOD score across traits. We apply

these approaches to root gravitropism data on Arabidopsis recombinant inbred lines and further

investigate their performance in computer simulations. Our methods have been implemented in

the R package, funqtl.
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Introduction

Technology developments have enabled the automated acquisition of numerous phenotypes,

included function-valued traits, such as phenotypes measured over time. High-dimensional

phenotype data are increasingly considered as part of efforts to map the genetic loci (quantitative

trait loci, QTL) that influence quantitative traits.

Numerous methods are available for QTL mapping with function-valued traits. Ma et al.

(2002) considered parametric models such as the logistic growth model, g(t) = a
1+be−rt . The

high-dimensional phenotype is reduced to a few parameters. This works well if the parametric

model is approximately correct but in many cases the correction functional form is not clear.

Yang et al. (2009) proposed a non-parametric functional QTL mapping method, with a selected

number of basis functions to fit the function-valued phenotype. Min et al. (2011) extended this

method to multiple-QTL models using Markov chain Monte Carlo (MCMC). Sillanpaa et al.

(2012) proposed another Bayesian multiple-QTL mapping method based on hierarchical

modeling. Xiong et al. (2011) proposed an additional non-parametric functional mapping method

based on estimating equations. An important barrier to these methods is the long computation

time required for the analysis.

In Kwak et al. (2014), we proposed two simple regression-based methods to map quantitative

trait loci underlying function-valued phenotypes, based on the results from the individual analysis

of the phenotypes at each time point. With the SLOD score, we take the average of the LOD

scores across time points, and with the MLOD score, we take the maximum. These approaches

are fast to compute, work well when the trait data are smooth, and provide results that are easily

interpreted. Another important advantage is the ability to consider multiple QTL, which can
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improve power and enable the separation of linked QTL. However, the approaches do not work as

well when the trait data are not smooth, and they do not take account of the correlation among

time points.

In the present paper, we describe methods to overcome these weaknesses. First, we replace

the observed trait data with a smooth approximation. Second, we apply functional principal

component analysis (PCA) as a dimension-reduction technique, and replace the smoothed

phenotype data with a small number of principal components.

QTL analysis is then performed on these dimension-reduced data. We consider either the

multivariate QTL mapping method of Knott and Haley (2000), or use the SLOD or MLOD

scores, as in Kwak et al. (2014). These methods all have analogs for multiple-QTL models, by

extending the penalized LOD scores of Broman and Speed (2002) and Manichaikul et al. (2009).

We illustrate these methods by application to the root gravitropism data of Moore et al.

(2013), measured by automated image analysis over a time course of 8 hr across a population of

Arabidopsis thaliana recombinant inbred lines (RIL). We further investigate the performance of

these approaches in computer simulations.
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Methods

We will focus on the case of recombinant inbred lines, with genotypes AA or BB. Consider n

lines, with function-valued phenotypes measured at T discrete time points (t1, · · · , tT ).

Smoothing

We first smooth the phenotype data for each individual. Let yi(t j) denote the observed

phenotype for individual i at time t j. We assume underlying smooth curves xi(t), with

yi(t j) = xi(t j)+ ei(t j).

We approximate the functional form of xi(t) as xi(t) = ∑
K
k=1 cikφk(t) for a set of basis

functions φ1(t), · · · ,φK(t), where the number of basis functions, K, is generally much smaller

than the number of time points, T . There are many possible choices of basis functions. We are

using B-splines (Ramsay and Silverman 2005, pp. 49–53).

Define the K by T matrix Φ, with Φk j = φk(t j), for k = 1, . . . ,K and j = 1, . . . ,T . We estimate

the coefficients, cik by minimizing the least squares criterion (Ramsay and Silverman 2005):

SMSSE(y|c) =
n

∑
i=1

T

∑
j=1

[
yi(t j)−

K

∑
k=i

cikφk(t j)

]2

= (y−Φc)′(y−Φc).

This gives the solution ĉ = (Φ′Φ)−1Φ′y. We then obtain the smoothed phenotypes ŷ = Φĉ,

which are used in all subsequent analyses.

A key issue is the choice of the number of basis functions. We use 10-fold cross-validation

and choose the number of basis functions that minimizes the estimated sum of squared errors.

Functional principal component analysis

Having replaced the phenotype data with a smooth approximation, ŷi(t), we use functional
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principal component analysis (Ramsay and Silverman 2005) to reduce the dimensionality with

little loss of information.

In functional PCA, we seek a sequence of orthonormal functions, ψ j(t), that take the role of

principal components but for functional data. By orthonormal, we mean

〈ψ j(t),ψk(t)〉=
∫

ψ j(t)ψk(t)dt = 0, for all j 6= k, and ‖ψ j(t)‖2 = 〈ψ j(t),ψ j(t)〉= 1 for all j.

With our smoothed functional data, ŷi(t), we first find the function ψ1(t) that maximizes

∑i(〈ŷi(t),ψ1(t)〉)2 = ∑i(
∫

ŷi(t)ψ1(t)dt)2, subject to the constraint ‖ψ1(t)‖= 1. The

computations make use of the B-spline basis representation of the ŷi(t).

Conceptually, the procedure then proceeds inductively. Having identified ψ1, . . . ,ψ j, we

choose ψ j+1 that maximizes ∑i(〈ŷi(t),ψ1(t)〉)2 subject to the constraint that ψ1, . . . ,ψ j+1 are

orthonormal.

We focus on a small number, p, of functional PCs that explain 99% of the data variation and

consider the coefficients 〈ŷi(t),ψ j(t)〉, as derived traits.

Single-QTL analysis

Having smoothed and dimension-reduced the phenotype data, we then use the p principal

components as derived traits for QTL analysis, using one of three methods. First, we apply the

multivariate QTL mapping method of Knott and Haley (2000). Our second and third approaches

are to analyze the p derived traits individually and take the average or maximum LOD score,

respectively, at each putative QTL position, as in Kwak et al. (2014).

HKLOD score: In the method of Knott and Haley (2000), we take n× p matrix of derived

phenotypes and scan the genome, and at each position, λ , we fit a multivariate regression model

with a single QTL. The basic model is Y = XB+E, where Y is the n× p matrix of phenotypes, X
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is an n×2 matrix of QTL genotype probabilities, and B is a 2× p matrix of QTL effects. The

rows of the n× p matrix of errors, E, are assumed to be independent and identically distributed

draws from a multivariate normal distribution.

The maximum likelihood estimate of the coefficients is B̂ = (X ′X)−1X ′Y , the same as if the

traits were analyzed separately. A key component of the likelihood is the matrix of sums of

squares and cross-products of residuals, RSS = (Y −XB)′(Y −XB), and particularly its

determinant, |RSS|. The log10 likelihood ratio comparing the model with a single QTL at position

λ , to the null model of no QTL, is

HKLOD =
n
2

log10

{
|RSS0|
|RSS(λ )|

}
,

where |RSS0| is for the null model with no QTL and |RSS(λ ) is for the model with a single QTL

at λ .

SL and ML scores: As further approaches, we apply the method of Kwak et al. (2014) to the p

derived traits. We perform a genome scan by Haley-Knott regression (Haley and Knott 1992)

with each trait separately, giving the LOD j(λ ) for trait j at position λ .

Our second criterion, is to take the average LOD score, across traits:

SL(λ ) = 1
p ∑

p
j=1 LOD j(λ ). We call this the SL score, to distinguish it from SLOD of Kwak et al.

(2014), calculated using the original phenotype data.

Our third criterion is to take the maximum LOD score, ML(λ ) = max j LOD j(λ ). We call this

the ML score, to distinguish it from the MLOD score of Kwak et al. (2014).
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Multiple-QTL analysis

As in Kwak et al. (2014), we use the penalized LOD score criterion on Broman and Speed

(2002) to extend each of the LOD-type statistics defined above, for use with multiple-QTL

models. The penalized LOD score is pLOD(γ) = LOD(γ)−T|γ|, where γ denotes a

multiple-QTL model with strictly additive QTL, and |γ| is the number of QTL in the model γ . T

is a penalty on model size, chosen as the 1−α quantile of the genome-wide maximum LOD

score under the null hypothesis of no QTL, derived from a permutation test (Churchill and Doerge

1994). We may replace the LOD score in the above equation with any of the HKLOD, SL and

ML scores.

To search the space of models, we use the stepwise model search algorithm of Broman and

Speed (2002): we use forward selection up to a model of fixed size (e.g., 10 QTL), followed by

backward elimination to the null model. The selected model γ̂ is that which maximizes the

penalized LOD score criterion, among all models visited.

The selected model is of the form Z = Qβ + ε , where Z contains the derived traits (the

coefficients from the functional principal component analysis) and Q contains an intercept

column and genotype probabilities at the inferred QTL. The derived phenotypes, Z, are linearly

related to the smoothed phenotypes, Ŷ , by the equation Ŷ = ZΨ, where Ψ is a matrix with (i, j)th

element ψi(t j). Thus we have Ŷ = ZΨ = Q(βΨ)+ ε ′, and so β̂Ψ are the estimated QTL effects,

translated back to the time domain (see Figure 3, below).
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Application

As an illustration of our approaches, we considered data from Moore et al. (2013) on

gravitropism in Arabidopsis recombinant inbred lines (RIL), Cape Verde Islands (Cvi) ×

Landsberg erecta (Ler). For each of 162 RIL, 8–20 replicate seeds per line were germinated and

then rotated 90 degrees, to change the orientation of gravity. The growth of the seedlings was

captured on video, over the course of eight hours, and a number of phenotypes were derived by

automated image analysis.

We focus on the angle of the root tip, in degrees, over time (averaged across replicates within

an RIL), and consider only the first of two replicate data sets examined in Moore et al. (2013).

There is genotype data at 234 markers on five chromosomes; the function-valued root tip angle

trait was measured at 241 time points (every two minutes for eight hours).

The data are available at the QTL Archive, which is now part of the Mouse Phenome

Database, as the Moore1b data set:

http://phenome.jax.org/db/q?rtn=projects/projdet&reqprojid=282

Single-QTL analysis

We first performed genome scans with a single-QTL model by the multiple methods: SLOD

and MLOD from Kwak et al. (2014), EE(Wald) and EE(Residual) from Xiong et al. (2011), and

the HKLOD, SL, and ML methods described above (and using four principal components). We

used a permutation test (Churchill and Doerge 1994) with 1000 permutation replicates to estimate

5% significance thresholds, which are shown in Supporting Information, Table S1.

The results are shown in Figure 1. The SLOD method (Figure 1A) gave similar results to the

EE(Residual) method (Figure 1D), with significant evidence for QTL on chromosomes 1, 4, and
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5. The MLOD method (Figure 1B) also showed evidence for a QTL on chromosome 3. The

EE(Wald), HKLOD, and SL methods (Figure 1C, 1E, and 1F) all gave similar results, with

significant evidence for QTL on each chromosome. The ML method (Figure 1G) is different, with

significant evidence for QTL on chromosomes 1, 2, and 4.
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Figure 1: The SLOD, MLOD, EE(Wald) and EE(Residual), HKLOD, SL and ML curves for the
root tip angle data. A red horizontal line indicates the calculated 5% permutation-based threshold.

Multiple-QTL analysis

We further applied multiple-QTL analysis, extending the HKLOD, SL, and ML methods to

use the penalized LOD score criterion of Broman and Speed (2002) for function-valued traits. We

focused on additive QTL models, and we used the 5% permutation-based significance thresholds

(Table S1) as the penalties.
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The penalized-HKLOD and penalized-SL criteria each indicated a five-QTL model, with a

QTL on each chromosome. The inferred positions of the QTL showed only slight differences.

The penalized-SL criterion indicated a two-QTL model, with QTL on chromosomes 1 and 4.

LOD profiles for these models are displayed in Figure 2. These curves, which visualize both

the evidence and localization of each QTL in the context of a multiple-QTL model, are calculated

following an approach developed by Zeng et al. (2000): The position of each QTL was varied one

at a time, and at each location for a given QTL, we derived a LOD-type score comparing the

multiple-QTL model with the QTL under consideration at a particular position and the locations

of all other QTL fixed, to the model with the given QTL omitted. For the SL (or ML) method, the

profile is calculated for the four derived traits, individually, and then the SL (or ML) profiles are

obtained by averaging (or maximizing) across traits. For the HKLOD method, the profiles are

calculated using the multivariate LOD test statistic.

In Kwak et al. (2014), we applied, to these same data, the analogous multiple-QTL modeling

approach, with the penalized-SLOD and penalized-MLOD criteria (that is, using the original

phenotype data, without the smoothing and dimension-reduction steps). The result (see Figure 3

in Kwak et al. 2014) with the penalized-SLOD criterion was the same two-QTL model identified

by ML (Figure 2C), while the penalized-MLOD criterion gave a three-QTL model, with a QTL

on chromosome 3, similar to that inferred by single-QTL analysis with MLOD (Figure 1B).

The estimated QTL effects, translated back to the time domain, are displayed in Figure 3. The

red curves are for the five-QTL model identified with the penalized-HKLOD and penalized-SL

criteria. The blue dashed curves are for the two-QTL identified with the penalized-ML criterion.

The estimated QTL effects in panels B–F are for the difference between the Cvi allele and the Ler
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Figure 2: HKLOD, SL, and ML profiles for a multiple-QTL model with the root tip angle data
set.

allele.

The effects of the QTL on chromosomes 1 and 4 are approximately the same, whether or not

the chromosome 2, 3 and 5 QTL are included in the model. The chromosome 1 QTL has greatest
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Figure 3: The estimated QTL effects for the root tip angle data set. The red curves are for the five-
QTL model (from the penalized-HKLOD and penalized-SL criterion) and the blue dashed curves
are for the two-QTL model (from the penalized-ML criterion). Positive values for the QTL effects
indicate that the Cvi allele increases the tip angle phenotype.

effect at later time points, while the chromosome 4 QTL has greatest effect earlier and over a

wider interval of time. For both QTL, the Cvi allele increases the root tip angle phenotype.

In summary, the HKLOD and SL methods gave similar results. For these data, the HKLOD

and SL methods indicate evidence for a QTL on each chromosome. The results suggest that these

approaches, with the initial dimension-reduction via functional PCA, may have higher power to

detect QTL, as the multiple-QTL analysis with SLOD and MLOD, without dimension-reduction,

indicated fewer QTL.
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Simulations

In order to investigate the performance of our proposed approaches and compare them to

existing methods, we performed computer simulation studies with both single-QTL models and

models with multiple QTL. For the simulations with a single-QTL model, we compared the

HKLOD, SL, and ML methods to the SLOD and MLOD methods of Kwak et al. (2014) and the

estimating equation approaches of Xiong et al. (2011). For the simulations with multiple QTL,

we omitted the methods of Xiong et al. (2011), as they have not yet been implemented for

multiple QTL.

Single-QTL models

To compare approaches in the context of a single QTL, we considered the simulation setting

described in Yap et al. (2009), though exploring a range of QTL effects.

We simulated an intercross with sample sizes of 100, 200, or 400, and a single chromosome of

length 100 cM, with 6 equally spaced markers and with a QTL at 32 cM. The associated

phenotypes was sampled from a multivariate normal distribution with the mean curve following a

logistic function, g(t) = a
1+be−rt . The AA genotype had a = 29,b = 7,r = 0.7; the AB genotype

had a = 28.5,b = 6.5,r = 0.73; and the BB genotype had a = 27.5,b = 5,r = 0.75. The shape of

the growth curve with this parameter was shown in Figure S3 of Kwak et al. (2014). The

phenotype data were simulated at 10 time points.

The residual error was assumed to following multivariate normal distributions with a

covariance structure cΣ. The constant c controls the overall error variance, and Σ was chosen to

have one of three forms: (1) auto-regressive with σ2 = 3,ρ = 0.6, (2) equicorrelated with

σ2 = 3,ρ = 0.5, or (3) an “unstructured” covariance matrix, as given in Yap et al. (2009) (also
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shown in Table S2 of Kwak et al. 2014)).

The parameter c was given a range of values, which define the percent phenotypic variance

explained by the QTL (the heritability). The effect of the QTL varies with time; we took the mean

heritability across time as an overall summary. For the auto-regressive and equicorrelated

covariance structures, we used c = 1,2,3,6; for the unstructured covariance matrix, we took

c = 0.5,1,2,3.

For each of 10,000 simulation replicates, we applied the previous SLOD and MLOD methods

of Kwak et al. (2014), the EE(Wald) and EE(Residual) methods of Xiong et al. (2011), and the

HKLOD, SL, and ML methods proposed here. For all seven approaches, we fit a three-parameter

QTL model (that is, allowing for dominance).

The estimated power to detect the QTL as a function of heritability due to the QTL, for

n = 100,200,400 and for the three different covariance structures, is shown in Figure 4. With the

autocorrelated variance structure, all methods worked well, though HKLOD had noticeably lower

power. With the equicorrelated variance structure, EE(Wald), SL and ML methods had higher

power than the other four methods. The HKLOD method also worked reasonably well, but the

EE(Residual), SLOD and MLOD methods had low power. In the unstructured variance setting,

EE(Wald), MLOD, SL and ML methods worked better than the other four methods. EE(Residual)

did not work well in this setting.

The precision of QTL mapping, measured by the root mean square error in the estimated QTL

position, is displayed in Figure S1. Performance, in terms of precision, corresponds quite closely

to the performance in terms of power: when power is high, the RMS error of the estimated QTL

position is low, and vice versa.

16

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 26, 2015. ; https://doi.org/10.1101/025577doi: bioRxiv preprint 

https://doi.org/10.1101/025577
http://creativecommons.org/licenses/by/4.0/


0 2 4 6 8 10 12

0

20

40

60

80

100

Percent variance explained by QTL

P
o
w

e
r

A
u
to

c
o
rr

e
la

te
d

n = 100

0 2 4 6 8 10 12

0

20

40

60

80

100

Percent variance explained by QTL

P
o
w

e
r

n = 200

0 2 4 6 8 10 12

0

20

40

60

80

100

Percent variance explained by QTL

P
o
w

e
r

n = 400

0 2 4 6 8 10 12

0

20

40

60

80

100

Percent variance explained by QTL

P
o
w

e
r

E
q
u
ic

o
rr

e
la

te
d

0 2 4 6 8 10 12

0

20

40

60

80

100

Percent variance explained by QTL

P
o
w

e
r

0 2 4 6 8 10 12

0

20

40

60

80

100

Percent variance explained by QTL

P
o
w

e
r

0 2 4 6 8 10 12

0

20

40

60

80

100

Percent variance explained by QTL

P
o
w

e
r

U
n
s
tr

u
c
tu

re
d

0 2 4 6 8 10 12

0

20

40

60

80

100

Percent variance explained by QTL

P
o
w

e
r

0 2 4 6 8 10 12

0

20

40

60

80

100

Percent variance explained by QTL

P
o
w

e
r

EE(Wald)

SL

ML

MLOD

SLOD

HKLOD

EE(Resid)

Figure 4: Power as a function of the percent phenotypic variance explained by a single QTL. The
first column is for n = 100, the second column is for n = 200 and the third column is for n = 400.
The three rows correspond to the covariance structure (autocorrelated, equicorrelated, and unstruc-
tured). In each panel, SLOD is in red, MLOD is in blue, EE(Wald) is in brown, EE(Residual) is in
green, HKLOD is in purple, SL is in pink, and ML is in black.

A possible weakness of SLOD and MLOD approaches was that they do not make use of the

function-valued form of the phenotypes. The methods may further suffer lower power in the case

of noisy phenotypes. The methods proposed in this paper use smoothing to handle the

measurement error. We repeated the same simulations in Kwak et al. (2014) with n = 200, adding

independent, normally distributed errors (with standard deviation 1 or 2) at each time point.

The estimated power to detect the QTL as a function of heritability due to the QTL, for added

noise with SD = 0,1,2 and the three different covariance structures, is shown in Figure 5. The

power of the SLOD and MLOD were greatly affected by the introduction of noise. However, the
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Figure 5: Power as a function of the percent phenotypic variance explained by a single QTL, with
additional noise added to the phenotypes. The first column has no additional noise; the second
and third columns have independent normally distributed noise added at each time point, with
standard deviation 1 and 2, respectively. The three rows correspond to the covariance structure
(autocorrelated, equicorrelated, and unstructured). In each panel, SLOD is in red, MLOD is in
blue, EE(Wald) is in brown, EE(Residual) is in green, HKLOD is in purple, SL is in pink, and ML
is in black. The percent variance explained by the QTL on the x-axis refers, in each case, to the
variance explained in the case of no added noise.

SL and ML methods, which used both smoothing and dimension-reduction, work well in the

presence of noise. The EE(Wald) method performed well in this case, as well. The EE(Residual)

method did not work well compared to the other six methods. Overall, the EE(Wald) method

continued to perform best.

Table 1 shows the average computation time for SLOD/MLOD, EE(Wald), EE(Residual),

HKLOD and SL/ML methods. For the single-QTL simulations, the computation time for the
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Table 1: Average computation time for each method, in the single-QTL simulations and in the
application.

Ave. computation time (in sec.)

Method Simulations Application

SLOD/MLOD 0.011 0.96

EE(Wald) 0.853 224.4

EE(Residual) 0.030 3.97

HKLOD 0.013 0.21

SL/ML 0.114 0.21

SLOD/MLOD and HKLOD methods are similar, while the SL/ML methods are somewhat slower.

This is because, in the simulation data set, the phenotype was measured at 10 time points. In the

application, with 241 time points, the functional PCA based methods (HKLOD and SL/ML) are

faster than the SLOD/MLOD methods. The EE(Wald) method requires considerably longer

computation time; on the other hand, it provided the highest power to detect QTL.

Multiple-QTL models

To investigate the performance of the penalized-HKLOD, penalized-SL and penalized-ML

criteria in the context of multiple QTL, we used the same setting as Kwak et al. (2014). We

simulated data from a three-QTL model modeled after that estimated, with the penalized-MLOD

criterion, for the root tip angle data of Moore et al. (2013) considered in the Application section.

We assumed that the mean curve for the root tip angle phenotype followed a cubic

polynomial, y = a+bt + ct2 +dt3, and assumed that the effect of each QTL also followed such a
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cubic polynomial. The four parameters for a given individual were drawn from a multivariate

normal distribution with mean defined by the QTL genotypes and variance matrix estimated from

the root tip angle data. Details on the parameter values used in the simulations appear in Kwak

et al. (2014).

Normally distributed measurement error (with mean 0 and variance 1) was added to the

phenotype at each time point for each individual. Phenotypes are taken at 241 equally spaced

time points in the interval of 0 to 1. We considered two sample sizes: n = 162 (as in the Moore

et al. (2013) data) and twice that, n = 324.

We performed 100 simulation replicates. For each replicate, we applied a stepwise model

selection approach with each of the penalized-HKLOD, penalized-SL, penalized-ML,

penalized-SLOD, and penalized-MLOD criteria. The simulation results are shown in Table 2.

The penalized-SL and penalized-HKLOD criteria had higher power to detect all three QTL. In

particular, the power to detect the QTL on chromosome 3 was greatly increased, in comparison to

the penalized-SLOD and penalized-MLOD criteria.
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Table 2: Power to detect QTL, for a three-QTL model modeled after the Moore et al. (2013) data.

QTL position Power

chr cM location HKLOD SL ML SLOD MLOD

n=162 1 61 82 86 65 89 54

3 76 24 27 2 12 15

4 40 88 94 60 82 77

n=324 1 61 100 100 94 100 59

3 76 78 77 13 31 43

4 40 100 100 93 100 91
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Discussion

We have described two techniques for improving the regression-based methods of Kwak et al.

(2014) for QTL mapping with function-valued phenotypes: smoothing and

dimensional-reduction. Smoothing leads to better performance in the case of noisy phenotype

measurements, and dimension-reduction improves power. The particular methods we used

(smoothing via B-splines, and dimensional reduction via functional principal component analysis)

are not the only possibilities, but they are natural choices widely used in functional data analysis

(Ramsay and Silverman 2005).

Following smoothing and dimensional-reduction, we applied QTL analysis to the small

number of derived traits, either by analyzing the traits individually and then combining the log

likelihoods, as in Kwak et al. (2014), or by applying the multivariate QTL mapping method of

Knott and Haley (2000). The latter approach cannot be applied directly to the original

phenotypes, due to the large number of time points at which the traits were measured, but it can

work well with the dimension-reduced derived traits.

Key advantages of our proposed methods include speed of computation and the ability to

consider multiple-QTL models. The EE(Wald) method of Xiong et al. (2011), based on

estimating equations, was seen to be most powerful for QTL detection in our simulation study, but

it is orders of magnitude slower and has not yet been implemented for multiple-QTL models.

Many other methods have been developed for QTL mapping with function-valued traits.

However, most focus on single-QTL models (e.g., Ma et al. 2002; Yang et al. 2009; Yap et al.

2009). Bayesian methods for multiple-QTL mapping with function-valued traits have been

proposed (Min et al. 2011; Sillanpaa et al. 2012), but these methods are computationally
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intensive, and software is not available.

In considering multiple-QTL models, we have focused on strictly additive QTL. Manichaikul

et al. (2009) extended the work of Broman and Speed (2002) by considering pairwise interactions

among QTL. Our approaches may be similarly extended to handle interactions.

The enormous recent growth in capabilities for high-throughput phenotyping, including

images and time series, particularly in plants (see, for example, Cabrera-Bosquet et al. 2012;

Araus and Cairns 2014; Ghanem et al. 2015), is accompanied by a growth in interest in the

genetic analysis such phenotype data. Speed of computation will be particularly important in the

analysis of such high-dimensional data, as will the joint consideration of multiple loci. The

methods we have proposed can meet many of these challenges.

We implemented our methods as a package, funqtl, for the general statistical software R (R

Core Team 2015). Our package makes use of the fda package (Ramsay et al. 2014) for smoothing

and functional PCA. It is available at https://github.com/ikwak2/funqtl.
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Figure S1 Root Mean Square Error (RMSE) of the es mated QTL posi on as a func on of the percent variance explained by
a single QTL. The first column is for n = 100, the second column is for n = 200 and the third column is for n = 400. The three
rows correspond to the covariance structure (autocorrelated, equicorrelated, and unstructured). In each panel, SLOD is in red,
MLOD is in blue, EE(Wald) is in brown, EE(Residual) is in green, HKLOD is in purple, FLOD is in gray, SL is in pink, and ML is in
black.
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Table S1 5% significance thresholds for the data from Moore et al. 2013,
based on a permuta on test with 1000 replicates.

Method Threshold
HKLOD 4.44
SL 1.07
ML 3.23
SLOD 1.85
MLOD 3.32
EE(Wald) 5.72
EE(Residual) 0.0559
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