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ABSTRACT  
To decrypt the regulatory code of the genome, sequence elements must be defined 
that determine the kinetics of RNA metabolism and thus gene expression. Here we 
attempt such decryption in an eukaryotic model organism, the fission yeast S. pombe. 
We first derive an improved genome annotation that redefines borders of 36% of 
expressed mRNAs and adds 487 non-coding RNAs (ncRNAs). We then combine 
RNA labeling in vivo with mathematical modeling to obtain rates of RNA synthesis 
and degradation for 5,484 expressed RNAs and splicing rates for 4,958 introns. We 
identify functional sequence elements in DNA and RNA that control RNA metabolic 
rates, and quantify the contributions of individual nucleotides to RNA synthesis, 
splicing, and degradation. Our approach reveals distinct kinetics of mRNA and 
ncRNA metabolism, separates antisense regulation by transcription interference 
from RNA interference, and provides a general tool for studying the regulatory code 
of genomes. 
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INTRODUCTION 
 

Gene expression can be regulated at each stage of RNA metabolism, during RNA 

synthesis, splicing, and degradation. The ratio between the rates of RNA synthesis and 

degradation determines steady-state levels of mature RNA, thereby controlling the 

amount of messenger RNA (mRNA) and the cellular concentration of non-coding RNA 

(ncRNA). The rates of both RNA degradation and splicing contribute to the time required 

for reaching mature RNA steady-state levels following transcriptional responses (Jeffares 

et al., 2008; Rabani et al., 2014). 

 To estimate the kinetics of RNA metabolic events genome-wide, techniques 

including genomic run-on followed by RNA polymerase chromatin Immuno-precipitation 

(Pelechano et al., 2010), cytoplasmic sequestration of RNA polymerase (Geisberg et al, 

Cell, 2014), or metabolic RNA labeling (Miller et al., 2011; Rabani et al., 2011; Schulz et 

al., 2013; Zeisel et al., 2011) has been performed in various organisms and under 

different conditions. Quantifying the individual contributions of synthesis and 

degradation led to an improved understanding of how these processes are coordinated and 

how they control mRNA levels. The rates of RNA synthesis show large variation across 

genes and are the major determinants of constitutive and temporally or conditionally 

changing mRNA levels (Marguerat et al., 2014; Rabani et al., 2014; Schwanhäusser et al., 

2011). RNA degradation modulates and fine-tunes mRNA abundance, largely varies 

across conditions and between organisms, and can be dynamically changed to shape gene 

expression (Eser et al., 2014; Munchel et al., 2011; Pai et al., 2012; Sun et al., 2012).   

 In contrast to synthesis and degradation rates, accurate genome-wide kinetic 

parameters of splicing are still lacking, likely because sequencing depth is more limiting 

to get measurements of short-lived precursor RNAs. Nonetheless, recent studies in 

human (Windhager et al., 2012) and mouse (Rabani et al., 2011, 2014) indicate that the 

rates of splicing also vary within a wide range. However, how these rates are 

quantitatively encoded in the genome remains largely unknown. 

 The fission yeast Schizosaccharomyces pombe (S. pombe) is an attractive model 

organism to study eukaryotic RNA metabolism. S. pombe shares important gene 

expression mechanisms with higher eukaryotes that are not prominent or even absent in 
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the budding yeast S. cerevisiae. These include splicing, which occurs for ~50% of the 

genes and is achieved with conserved spliceosomal components (Käufer and Potashkin, 

2000) and conserved consensus splice site (SS) sequences (Lerner et al., 1980; Roca and 

Krainer, 2009), heterochromatin silencing (Allshire et al., 1995), and RNA interference 

(Volpe et al., 2002). Because of its relevance for studying eukaryotic gene expression, S. 

pombe has been extensively characterized by genomic studies, and this led to an 

annotation of transcribed loci that includes ncRNAs (Dutrow et al., 2008; Rhind et al., 

2011; Wilhelm et al., 2008), a map of polyadenylation sites (Mata, 2013; Schlackow et 

al., 2013), the ‘translatome’ as measured by ribosome profiling (Duncan and Mata, 2014), 

and an absolute quantification of protein and RNA (Marguerat et al., 2012).  

 Here we used the fission yeast S. pombe as a model system to quantify RNA 

metabolism genome-wide, to identify genomic regulatory elements at single-nucleotide 

resolution, and to quantify the contribution of these elements to the kinetics underlying 

RNA metabolism. We provide an improved genome annotation and a quantitative 

description of RNA metabolism for an important eukaryotic model organism. The 

approach developed here enables quantitative, genome-wide studies of eukaryotic gene 

regulation, and provides a general route to help decrypting the regulatory code of the 

genome. 
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RESULTS 
 

Strategy to describe RNA metabolism and regulatory elements 
Our approach consists of three steps (Figure 1). First, we performed short and progressive 

metabolic labeling of RNA with 4-thiouracil coupled with strand-specific RNA-Seq (4tU-

Seq, Materials and Methods). With the use of advanced computational modeling, we 

obtained accurate estimates of RNA synthesis and degradation rates for 5,484 transcribed 

loci and splicing rates for 4,958 splice sites. Second, a novel statistical modeling 

procedure quantifies the contribution of each single nucleotide in predicting RNA 

metabolic rates and thereby identifies sequence features that contribute to RNA 

metabolism rates. We then supported a causal role of these features by comparing RNA 

expression fold-changes between strains differing by a single nucleotide at these sites 

with the corresponding fold-changes predicted by the model. Our approach relies on an 

accurate annotation of the genome. In particular, accurate transcript boundaries are 

important for quantifying RNA metabolism. We therefore first set out to precisely define 

the transcriptional units in S. pombe. 

 
Mapping transcriptional units in S. pombe 

To map transcribed regions in the S. pombe genome, we carried out strand-specific, 

paired-end deep sequencing of total RNA (RNA-Seq, at mean per-base read coverage of 

385) from fission yeast grown in rich media (Materials and Methods). Genomic intervals 

of apparently uninterrupted transcription (Transcriptional Units, TUs, Figure 2A) were 

identified with a segmentation algorithm applied to the RNA-Seq read coverage signal 

(Materials and Methods). The three parameters of the algorithm, the minimum per base 

coverage, the minimum TU length, and the maximum gap within TUs were chosen to 

best match the existing genome annotation (Pombase version 2.22 (Wood et al., 2012), 

Figure S1A,B). TUs that did not show significant signal in the 4tU-Seq dataset were 

considered as artifacts and discarded (Materials and Methods).  

 The segmentation led to a total of 5,484 TUs (Figure 2B, Table S1), of which 

4,105 were containing a complete, annotated open reading frame (ORF-TU), 1,014 were 

non-coding TUs (ncTU), and the remaining 365 TUs contained two or more annotated 
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adjacent transcripts, and thus may be multicistronic RNAs. Only a small number of novel 

splice sites were identified (148 out of 4,958, Table S2), and no evidence for substantial 

alternative splicing at any given intron or circular RNAs was found (at least 10 

supporting reads, Materials and Methods). These observations are in line with previous 

RNA-Seq studies of S. pombe showing that alternative splicing is prevalent but rare 

(Bitton et al., 2015; Rhind et al., 2011). A total of 402 ORFs (8%) in the existing 

annotation (Wood et al., 2012) were not recovered (Figure 2C, Materials and Methods), 

apparently because they were not expressed under the used growth condition (gene set 

enrichment analysis, Figure S1C). 

 

Significantly revised S. pombe genome annotation 

The resulting annotation of ncTUs in S. pombe differed largely from the current one. We 

identified 487 novel ncTUs, changed the boundaries by more than 200 nt of 422 (27%) 

previously annotated ncRNAs and could not recover 1011 (66%) of the previously 

annotated ncRNAs (Materials and Methods, Figure 2B, C). A large fraction of the latter 

apparently represent spurious antisense RNAs that are often generated with conventional 

protocols, but their generation was suppressed here with the use of actinomycin D 

(Perocchi et al., 2007). Indeed, 49% of those non-recovered ncRNAs were located 

antisense to highly expressed ORF-TUs and showed on average 66-fold higher antisense 

than sense coverage (Figure S1D). The remaining half non-recovered RNAs might be 

genuine ncRNAs that are not expressed in our growth condition. Thus, we redefined the 

location and boundaries of most ncRNAs in S. pombe, leaving only 105 of the currently 

annotated ncRNAs unchanged. 

 We also redefined boundaries for 1,481 coding transcripts that differed from the 

existing annotation by at least 200 nt. Untranslated regions (UTRs) of ORF-TUs were 

generally much shorter than previously annotated (mean difference 91 nt), consistent with 

a previously curated set of ORF transcript boundaries (Figure S1E, Lantermann et al., 

2010). This difference apparently also stemmed from spurious antisense RNAs in 

previous datasets because 68% of the 376 3’UTRs that were at least 250 nt shorter in our 

annotation showed higher antisense than sense coverage (Figure S1F; for an example see 

Figure 2A). Our revised transcript 3’-ends were centered around experimentally mapped 
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polyadenylation (polyA) sites (Mata, 2013), whereas the previously annotated 3’-ends 

typically extended well beyond polyA sites (median difference = 3 nt versus 45 nt, Figure 

2D). Thus our map of TUs provides a significantly revised annotation of the S. pombe 

genome that removes false positive ncRNAs from the current annotation and shortens 

aberrantly long UTRs. 

 

Quantification of S. pombe RNA metabolism 

To quantify the kinetics of RNA synthesis, splicing, and degradation genome-wide, we 

sequenced newly synthesized RNA after metabolic RNA labeling with 4-thiouracil (4tU-

Seq) and used the obtained data for kinetic modeling (Figure 1, step 1). In cells, the 

nucleobase 4tU gets efficiently converted to thiolated UTP and incorporated during 

transcription into newly synthesized RNAs, which can then be isolated and sequenced. 

To cover the typical range of synthesis, splicing, and degradation rates, cells in a steady-

state culture were harvested after 2, 4, 6, 8, and 10 minutes following 4tU addition. The 

data contained many reads that stemmed from intronic sequences and reads comprising 

exon-intron junctions, showing that 4tU-Seq captured short-lived precursor RNA 

transcripts. These reads from unspliced RNA gradually ceased during the time course 

(Figure 3A,B), indicating that the kinetics of RNA splicing may be inferred from the data. 

 To globally estimate rates of RNA synthesis, splicing, and degradation, we used a 

first-order kinetic model with constant rates that describes the amount of labeled RNA as 

a function of time (Figure 3C). We modeled splicing of individual introns, where splicing 

refers to the overall process of removing the intron and joining the two flanking exons. 

The model was fit to every splice junction using the counts of spliced and unspliced 

junction reads (Figure 3C, D). We included in the model scaling factors that account for 

variations in sequencing depth, an overall increase of the labeled RNA fraction, cross-

contamination of unlabeled RNA, and 4sU label incorporation efficiency (Materials and 

Methods). The model was fitted using maximum likelihood and assuming negative 

binomial distribution to cope with overdispersion of read counts (Robinson et al. 2010, 

Anders and Huber 2010).  

 Our method yields absolute splicing and degradation rates, but provides synthesis 

rates up to a scaling factor common to all TUs. Absolute synthesis rates were obtained by 
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scaling all values so that the median steady-state level of ORF-TUs matches the known 

median of 2.4 mRNAs per cell (Marguerat et al., 2012). To facilitate comparisons of the 

obtained RNA metabolic rates, we present the synthesis rate as the average time elapsed 

between the production of two transcripts in a single cell (‘synthesis time’); the 

degradation rate as the time needed to degrade half of the mature RNAs (‘half-life’); and 

the splicing rate as the time to process half of the precursor RNA junction (‘splicing 

time’) (Table S1, S2). 

 The synthesis times and half-lives inferred from distinct splice junctions of the 

same TU agreed well, demonstrating the robustness of our approach (Spearman rank 

correlation = 0.44 for synthesis time, P < 2 x 10-16 and Spearman rank correlation = 0.79 

for half-life, P < 2 x 10-16, Figure 3E and S2A). Based on this comparison, we estimated 

the accuracy to be typically 46% for synthesis times and 31% for half-lives (mean 

coefficient of variation). Estimation of the accuracy based on comparing the estimates 

obtained from the two time series replicates indicate that the accuracy of the estimates of 

splicing times is between the accuracy for half-lives and synthesis times. The variations 

in the rate estimates were much smaller than the dynamic range of the rates (about 50-

fold each, see below), allowing us to interpret rate differences. Supported by the good 

agreement of rates across junctions, we took the mean synthesis times and half-lives as 

estimates for the entire TU.  

 In order to estimate synthesis and degradation rates of intronless genes, a kinetic 

model that takes as input all reads overlapping the exon was used (exon model, Figure 

S2B). When applied to intron-containing genes, parameter estimates with the exon model 

were consistent with those obtained with the splice junction model (Figure S2C,D). 

Overall, synthesis and degradation rates correlated well with previous estimates from 

microarray data (Sun et al., 2012, Spearman rank correlation = 0.45, P < 2 x 10-16 for 

synthesis rate and Spearman rank correlation = 0.74, P < 2 x 10-16 for half-life, Figure 

S2G,H), strongly supporting our rate estimation procedure. 

 

Distinct kinetics of mRNA and ncRNA metabolism 

Overall, RNA synthesis and degradation occurred on similar time scales (median 

synthesis time of 7.4 min compared to a median half-life of 11 min) and about an order of 
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magnitude slower than splicing (median splicing time 37 sec Figure 3F-H). These results 

are consistent with splicing of beta-globin introns within 20 to 30 sec as measured by in 

vivo single RNA imaging (Martin et al., 2013), and argue against earlier slower estimates 

for splicing times of 5 to 10 min (Singh and Padgett, 2009). Notably, ncTUs were 

synthesized at a significantly lower rate than ORF-TUs (median synthesis times of 23 

min and 6.1 min, respectively, P < 2 x 10-16, Wilcoxon test), and were degraded slightly 

faster (median half-life of 12 min for ORF-TUs versus 7.4 min for ncTUs, P < 2 x 10-16, 

Wilcoxon test). Thus, the differences in steady-state levels of mRNAs and ncRNAs are 

achieved both by longer synthesis times and shorter half-lives for ncRNAs, although the 

differences in synthesis times dominate. Moreover, splicing time did differ significantly 

between the two transcript classes (median splicing time of 0.7 min for ORF-TUs versus 

1.5 min for ncTUs, P = 1.3 x 10-4, Wilcoxon test). Transcription is known to be the major 

determinant of gene expression. However, among genes expressed above background 

level as investigated here, the dynamic ranges across the bulk of all TUs (95% equi-tailed 

interval) showed similar amplitudes for all three rates (53-fold for synthesis, 47-fold for 

half-life, and 33-fold for splicing time, Figure 3F-H). Hence, there are large and 

comparable variations between genes at the level of RNA synthesis, degradation, and 

splicing. In the following, we first analyze the determinants for RNA synthesis and 

degradation, and then discuss the determinants for splicing rates.   

 

Sequence motifs associated with RNA metabolism 
We systematically searched for motifs in ORF-TU sequences that could influence RNA 

synthesis, splicing, and degradation rates (Figure 1, step 2). First, 6-mer motifs were 

identified, whose frequency in a given gene region (promoter, 5’UTR, coding sequence, 

intron, 3’UTR) significantly correlated with either rate while controlling for other 6-mer 

occurrences (multivariate linear mixed model, Materials and Methods). Next, overlapping 

motifs associating with the same rate in the same direction were iteratively merged and 

extended to include further nucleotides that significantly associated with the rate 

(Materials and Methods). We found 12 motifs that significantly associated with RNA 

metabolism kinetics (Figure 4A). Motifs found within TUs were strand-specific, 

consistent with their function as part of RNA, whereas motifs found in the promoter 
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region (except one, CAACCA), occurred in both orientations, suggesting that they 

function in double-stranded DNA. These observations strongly supported the functional 

relevance of the discovered motifs. The number of ORF-TUs per motif ranged from 58 

(ACCCTACCCT) to 765 (TATTTAT) with motifs in the 3’ UTR being the most 

abundant (Figure 4B).  

 

 

Determinants of high expression 
Motifs that were predictive of RNA synthesis times were only found in the promoter 

region, further validating our approach (Figure 4A). We identified de novo the Homol D-

box (CAGTCACA), a fission yeast core promoter element, and the Homol E-box 

(ACCCTACCCT), providing positive controls. In agreement with literature (Witt et al., 

1995 and Tanay et al, 2005), the Homol D-box and the Homol E-box motifs were 

enriched in ribosomal protein genes (32% and 41% of all ORF-TUs with these motifs), 

frequently co-occurred in promoters (Figure 4B, Fisher test, False Discovery Rate < 0.1) 

and showed strong localization preference at a distance of around 45 bp (Homol D-box) 

and 65 bp (Homol E-box) upstream of the TU 5’end (Figure 4C). 

The 3’UTRs of ORF-TUs with a Homol E-box were significantly depleted for all 

three motifs that we found to be associated with mRNA instability (FDR <0.1, Figure 

4B), indicating that the high levels of expression of these genes are achieved by a 

combination of efficient promoter activity and RNA-stabilizing 3’UTRs. Both motifs 

associated with decreased synthesis time by 28% (Homol D-box) and 32% (Homol E-

box) per motif instance (Linear regression, Figure 4F, Figure S3B), but also with 

increased half-life (50% and 31%) of the corresponding RNAs (Figure S3A, Figure S3C), 

likely because those RNAs are both highly synthesized and stable. 

 

Determinants of RNA half-life 
Motifs that were predictive of RNA half-lives were found in the promoter and in UTRs. 

A novel AC-rich promoter motif (CCAACA) is located near the TU 5’end (Figure 4C), 

and associated with a decrease in half-life by 30% per motif instance (Linear regression, 

Figure S3D). Four AC-rich motifs were found (CAACCA, AACCAC, ACCAAC, and 
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CCAACA) in 5’ UTRs, preferentially located near the TU 5’end (Figure 4D) and were 

associated with an increased RNA half-life (Figure S3E-H). Thus, for the AC-rich motif 

CCAACA the associated effect with half-life is the opposite, depending on whether the 

motif is located upstream or downstream of the TU 5’end. 

 Three motifs were detected in 3’ UTRs of ORF-TUs that all were associated with 

decreased RNA half-lives. One of these (TATTTAT) corresponds to the known AU-rich 

element (ARE) that destabilizes RNAs (Barreau et al., 2005; Shaw and Kamen, 1986) 

and that was found in 19% of the ORF-TUs and for which we estimated a half-life 

decrease per motif instance of 33% (Figure 4G). The second motif (TTAATGA) and the 

third motif (ACTAAT) are novel and associated with a reduction in transcript half-lives 

by similar extents (30% and 27%, Figure 4H, Figure S3I). These two motifs were found 

in a large number of ORF-TUs (466 and 514, 11% and 13% respectively, Figure 4B), and 

were co-occurring (FDR < 0.1, Figure 4B), yet not overlapping with each other. These 

findings suggest that TTAATGA and ACTAAT are widespread RNA elements that 

determine important RNA stability regulatory pathways. In contrast to the AU-rich 

element, the two novel 3’UTR motifs were sharply peaking 28 bp (ACTAAT) and 25 bp 

(TTAATGA) upstream of the polyA site (Figure 4E), indicating that they could implicate 

similar mechanisms, that are distinct from the AU-rich element pathway, and that are 

related to RNA polyadenylation or involve interactions with the polyA tail. Two of our 

motifs, the AC-rich element in the promoter region and the ACTAAT in 3’UTRs are 

enriched in the same regions of human, mouse, rat, and dog genes (Xie et al., 2005), 

indicating that their function is conserved from S. pombe to mammals.    

   

Effects of single nucleotides on RNA kinetics 

We next asked whether deviations from the consensus sequence of the discovered motifs 

can predict changes in synthesis time and half-life. We considered a linear model that 

included the effect of changes at each base position and the number of motifs present in 

each gene or RNA and fitted across all genes allowing for mismatches (Materials and 

Methods). Generally, deviations from the consensus sequence associate with decreased 

effects of the motif on synthesis time or half-life. These changes often neutralize the 

effect of the motif. For instance, loss of the consensus Homol D-box apparently increased 
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synthesis time two-fold (Figure 5A, purple line). A single-nucleotide deviation from the 

consensus Homol D-box motif by a C at the 6th position associated with a 1.6-fold 

increased synthesis time (Figure 5A). Similarly, a T to G substitution at the 5th position 

of the TTAATGA motif was predicted to lead to a 1.4-fold increased half-life, similar to 

the loss of the complete consensus motif (Figure 5B). Changes in positions flanking the 

motif have minor effects but may play functional roles (Figure 5A, B). Nucleotides 

associated with important effects tended to also be more frequent (Sequence logo, Figure 

5A,B) indicating that there is evolutionary pressure on these positions and further 

indicating that these motifs are functional. Similar results were obtained for all motifs 

(Figure S4).     

 

New regulatory motifs predict effects of cis-regulatory variants   
To further provide evidence for the functional role of these new motifs, we asked whether 

genetic variants affecting these sequence elements resulted in a perturbed expression 

level in a direction and extent that match the predictions (Figure 1, step 3). We analyzed 

expression data of an independent study that profiled steady-state RNA levels of a library 

of 44 different recombinant strains obtained from a cross between the standard laboratory 

strain 968, also profiled here, and a South African isolate Y0036 (Clément-Ziza et al., 

2014). In recombinant panels, the alleles of a reference and of an alternate parental strain 

are randomly shuffled by meiosis recombination within the population. For a variant of 

interest, recombinant strains group in two subpopulations: about one half carries the 

reference allele and the other half the alternate allele. Variants that are not in linkage with 

the one of interest, for lying on another chromosome or far away on the same 

chromosome, are approximately equally inherited within the two subpopulations. Hence, 

differential gene expression between the two subpopulations reflects local regulatory 

variants, such as promoter and RNA motifs, while controlling for distant, trans-acting 

regulatory variants.  

 To evaluate the effects due to perturbations of the motifs, we restricted the 

analysis to ORF-TUs with a variant that we predicted to significantly affect the rate 

(Materials and Methods), and harboring no further variant within the promoter region and 

the whole TU. These variants affected 20 motifs and were all single nucleotide variants 
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(Table S5). A positive control was provided by the alternate allele of the gene rctf1, 

which differed from the reference allele by a single nucleotide, a G-to-T substitution at 

the third position of a Homol D-box motif in its promoter. Recombinant strains harboring 

the alternate allele showed significantly lower steady-state expression levels (Figure 5C, 

P = 2 x 10-10, one-sided Wilcoxon test) consistent with the predicted 1.35-fold increased 

synthesis time (Figure 5A).  

 Two variants acting in an opposite fashion strongly supported the functional role 

of the 3’UTR motif TTAATGA. The linear model predicted a 1.23-fold increased half-

life for a A to G substitution at the 7th position (7.A>G, Figure 5B). Consistently, 7.A>G 

substitution occurring on the gene SPCC794.06 led to a significantly increased 

expression level (Figure 5D, P = 2 x 10-4) whereas the (7.G>A) in the gene mug65 led to 

a significantly decreased expression level (Figure 5E, P = 10-4). Among the novel motifs, 

the TTAATGA could be validated (3 out of 4 genes with a significant change in 

expression in the predicted direction P < 0.05) as well as the AACCAC motif (2 out of 2 

genes with a significant change in expression in the predicted direction P < 0.05). The 

other motifs generally did not yield significant changes, possibly because the predicted 

and the observed effects were of small amplitude. Over all 20 variants, the observed and 

predicted fold-changes did not only agree in direction but also in amplitude (Pearson 

correlation, P = 9 x 10-4, Figure 5F), demonstrating the model predicted quantitatively the 

effects of single mutations and providing strong evidence for the functional role of these 

motifs. 

 

Intron sequences determining splicing kinetics 

Sequence motifs predictive of splicing times were found only in introns, and here only in 

the donor region downstream of the 5’-splice site (5’SS) and at the branch site (BS). We 

complemented this set with the 3’-splice site (3’SS) and extended motifs in each direction 

as far as significant single nucleotide effects were found (Linear regression and cross-

validation, Materials and Methods, Figure 6A). Significant effects were found up to six 

nucleotides downstream of the 5’SS. These bases are those pairing with the spliceosome 

component U6 small nuclear RNA during the first catalytic step of splicing  (reviewed in 

(Smith et al., 2008; Staley and Guthrie, 1998)). We also found significant effects up to 
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seven nucleotides 5’ of the branch point adenosine and one nucleotide 3’ of it, entailing 

all but one of the seven nucleotides pairing with the U2 small nuclear RNA (Smith et al., 

2008). These two regions showed the strongest effects, with typically 1.1- to 1.5-fold 

decreased splicing time compared to consensus, showing that exact base-pairing with U6 

and U2, although not required for splicing, is a determinant for its kinetics. Significant 

but weaker effects (less than 1.1-fold) extending up to 8 nucleotides 3’ and 5’ of the 3’SS 

were also found. 

 Deviations from the consensus sequence invariably associated with increased 

splicing time (Figure 6A). Also, splicing time anti-correlated with the frequency of the 

core branch site sequence across the genome (Figure 6B). These observations indicate 

that there is selective pressure on all introns for rapid splicing in S. pombe. We then asked 

whether the selective strength at these positions always reflected their quantitative 

contribution to the rate of splicing. Overall, the mean effect of a deviation from the 

consensus significantly correlated with how little variable the base was across all introns 

genome-wide (Kullback-Leibler information, Spearman rank correlation = 0.61, P = 5 x 

10-4, Figure 6C). Positions within the branch site region and downstream of the 5’SS are 

most commonly found as consensus and showed the largest effect on splicing kinetics 

(Figure 6C). The last nucleotide of the 5’ exon is generally a guanine but did not 

influence splicing time (Figure 6C, 5’SS-1 position), indicating that other sources of 

selection influence this position. 

 

Splicing kinetics also depends on RNA synthesis 
Splicing time did not strongly correlate with intron length (Spearman rank correlation = 

0.03, P = 0.05) and correlated negatively with TU length (Spearman rank correlation = -

0.16, P < 2 x 10-16, Figure S5A, B), showing that short transcripts are spliced more 

slowly. This is in contrast to observations in mouse, where short transcripts and short 

introns are more rapidly spliced than longer ones (Rabani et al., 2014). This apparent 

discrepancy might be due to the fact that S. pombe neither contains very long genes nor 

very long introns. Splicing time increased with the number of introns (Figure 6D) as in 

mouse cells (Rabani et al., 2014), independently of the relative position of the intron 

within the transcript (Fig S5C-E). However, this correlation could be explained by the 
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fact that genes with few introns also have efficient splice site and branch site sequences 

(multivariate analysis and Figure S5F). Thus it is not the number of introns per se that 

affects splicing, rather, genes that give rise to rapidly processed RNAs evolved to have 

few introns and efficient splicing RNA elements.  

 Splicing time correlated positively with synthesis time (Spearman rank correlation 

= 0.28, P < 2 x 10-16, Figure 6E), in agreement with results in mouse (Rabani et al., 2014). 

This may be due to co-evolution of synthesis and splicing, or because highly transcribed 

loci are more readily accessible to the splicing machinery. This finding is not in 

contradiction to the understanding that fast RNA polymerase elongation inhibits splicing 

(Singh and Padgett, 2009), because synthesis rate is mostly determined by the rate of 

transcription initiation rather than elongation (Ehrensberger et al., 2013). Altogether, 

multivariate analysis (Materials and Methods) indicated that sequence elements, synthesis 

time, and TU length independently enhance splicing, where sequence is the major 

contributor (50% of the explained variance), followed by synthesis rates (42% of the 

explained variance). 

 

Antisense transcription affects mRNA synthesis, not stability 

Repression by antisense transcription is increasingly being recognized as an important 

mode of regulation of gene expression, but its mechanisms remain poorly understood 

(Pelechano and Steinmetz, 2013; Xu et al., 2011). In our revised genome annotation, 

convergent TUs generally did not overlap (1022 out of 1616), typically leaving 75 bp of 

untranscibed sequence in between (Figure 7A). Among overlapping convergent pairs, TU 

3’-ends were enriched within introns (P = 0.001) and depleted within exons (P = 0.001) 

of the opposite strand (Figure S6, 1,000 random permutations of TU pairs), likely 

because coding sequence is highly restrained and may impair encoding of 

polyadenylation and termination signals for the opposite strand. 

 Although transcripts are generally not antisense to each other, we found 520 

ncTUs antisense of ORF-TUs (one example in Figure 7B). In fission yeast, antisense 

transcription could repress sense RNA synthesis, as in S. cerevisiae (Schulz et al., 2013), 

or affect RNA stability by RNA interference, because fission yeast, unlike budding yeast, 

contains the RNAi machinery. ORF-TUs with antisense ncTUs overlapping at least 40% 
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exhibited significantly increased synthesis times (Wilcoxon test, P = 9 x 10-7), consistent 

with repression of mRNA synthesis by antisense transcription. This effect was higher 

when the antisense ncTU covered a larger area of the ORF-TU (Figure 7C). However, no 

difference regarding mRNA stability was observed (Figure 7D). Taking together, these 

results indicate that expression levels of those ORF-TUs were mainly regulated by means 

of mutually exclusive transcription rather than by RNA interference, which would be 

predicted to affect transcript stability.  
 
DISCUSSION 
Here, by combining metabolically labeled RNA profiling at high temporal resolution with 

computational kinetic modeling, we obtained in vivo RNA synthesis, splicing and 

degradation rates across an entire eukaryotic genome, providing insights into RNA 

metabolism and its sequence determinants. In addition, our systematic annotation of the 

transcribed genome of S. pombe redefines most ncRNAs and a large fraction of UTRs in 

mRNAs, in particular 5’UTRs and thus promoter regions. Hence, our data will be an 

important resource for the S. pombe community, and our approach will be of general use 

for systems biology studies of eukaryotic gene expression and its regulation. 

 So far, only Rabani and colleagues (2014), using mouse cells, have reported a 

computational tool to access RNA metabolism and estimate genome-wide splicing rates. 

That study had used mammalian cells, resulting in a limitation in sequencing depth that 

restricted many parts of the analysis to the 10% most expressed splice junctions. Due to 

the higher sequencing depth, our analysis in S. pombe could be global. Another advantage 

of fission yeast is the absence of alternative splicing, which simplifies the analysis and 

makes rate estimation very robust. Multiple lines of evidence based on independent data, 

down to the contribution of individual base to splicing recapitulating nucleotide 

interactions between the precursor RNA and the spliceosome, support the high quality of 

our dataset.  

 We further introduced an approach to discover regulatory elements in the genome 

that combines in vivo quantification of RNA metabolic rates with robust regression on 

DNA sequence. Without using further information than simple gene architecture 

(promoter, UTRs, exons and introns), this approach recovered known regulatory motifs 
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de novo, such as core promoter elements and the 3’UTR AU-rich element, but also 

provided two novel 3’UTR motifs, and AC-rich sequences in promoters and in 5’UTRs. 

Our approach has several advantages. Conservation analysis is difficult in genomic 

regions that align poorly, as is often the case for regulatory regions, and give confounding 

results because selection can have regulatory and non-regulatory origins. By analyzing 

the relation between sequence and individual RNA metabolic rates, we uncouple the 

contribution of sequence elements to each step of RNA metabolism. Whereas standard 

motif enrichment analysis discriminates between two classes of data (e.g. highly versus 

lowly expressed), we used quantitative regression and therefore could exploit the full 

range of the data without applying any cutoff. Regression furthermore has the benefit to 

provide quantitative predictions regarding genetic perturbations that could be directly 

compared to expression fold-changes for functional validations. Our method is general 

and can be applied to other organisms. Moreover it could be extended to study other 

layers of gene regulation such as ribosome recruitment, or translation. 

 Functional evidence of the discovered motifs was obtained by exploiting existing 

transcription profiles of genetically distinct strains. To this end, the analysis was 

restricted to genes harboring a single variant across the promoter and the whole gene 

body. Although one cannot exclude on every single gene that further independent 

mutations in linkage are causative of the observed expression changes, the agreement for 

each motif over multiple genes in direction and amplitude strongly indicate the 

functionality of the motifs.  Transcription profiles across genetically distinct individuals 

are increasingly available and include recombinant panels of model organisms such as S. 

cerivisiae, fly, mouse, A. thaliana, and human. Hence, our approach could help 

interpreting the transcription profiling in human individuals. In the future, the application 

of our model may help to understand the consequences of regulatory variation in the 

human genome, with important implications for understanding gene regulation and 

interpreting the many disease-risk variants that fall outside of protein-coding regions 

(Montgomery and Dermitzakis, 2011). 
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MATERIALS AND METHODS 

Strains 

All experiments were done with the strain ED666 (BIONEER) (h+, ade6-M210, ura4-

D18, leu1-32). 

 
4tU labeling and RNA extraction  
A fresh plate (YES) was inoculated from glycerol stock. An over-night culture was 

inoculated (YES medium) from a single colony and grown at 30 ∘C.  In the morning a 

120 mL culture (YEA medium) was started at OD600 0.1 and grown to OD600 of 0.8 at 32 ∘C in a water bath at 150 rpm.  4-thiouracil was added to 110 mL of culture at 5 mM final 

concentration.  20 mL samples were taken out after 2, 4, 6, 8, and 10 minutes.  Each 

sample was centrifuged immediately at 32 ∘C, at 3,500 rpm for 1 min.  The supernatant 

was discarded and the pellet was frozen in liquid nitrogen. All experiments were 

performed in two independent biological replicates. Total RNA was extracted and 

samples were DNase digested with Turbo DNase (Ambion).  Labeled RNA was purified 

as published (Sun et al., 2012). 

 

Sequencing 

rRNA was depleted using the Ribo-ZeroTM Gold Kit (Yeast, Epicentre) according to  the 

manufacturer’s recommendation with 1.5 μg labeled RNA and with 2.5 μg total RNA as 

input.  Sequencing libraries for the time series samples were prepared according to the 

manufacturer’s recommendations using the ScriptSeq™ v2 RNA-Seq Library Preparation 

Kit (Epicentre).  Libraries were sequenced on Genome Analyzer IIx (Illumina). 

 

RNA-seq read mapping 

Single- and paired-end RNA-seq reads were mapped to the reference genome 

(ASM294v2.26) with GSNAP (Wu and Nacu, 2010), allowing for novel splice site 

identification (Expanded view). 
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Transcriptional Units and their classification  
Transcriptional units (TUs) were identified using a min-length max-gap algorithm on 

binarized RNA-Seq coverage track (Expanded view) resulting in 5,596 TUs. Of these, 

112 partially overlapped ORFs and were discarded for further analysis.  The remaining 

final set of 5,484 TUs were classified into four disjoint classes: i) ORF-TUs entirely 

contain one ORF only and not more than 70% of any annotated ncRNA ii) nc-TUs do not 

contain entire ORFs, overlap at least 70% of an annotated ncRNA and not more than 70% 

of any other annotated ncRNA iii) Novel nc-TUs do not overlap by more than 70% any 

annotated ncRNA and do not overlap any ORF iv) multicistronic TUs contain multiple 

ORFs entirely or overlap 70% of two or more annotated transcripts.   

 

Read counts per exon, intron and splice junctions 

Counts of reads aligning completely within exons or introns were obtained with the 

software HTseq-counts (Anders et al., 2014) with settings --stranded=yes and -m 

intersection-strict. To count reads that map to splice sites we used HTseq with one 

different parameter (-m union) to allow counting of reads that spanned the junctions. For 

each intron, we defined the 5’SS as the 2 nt region that contains the last position of the 

upstream exon and the first position of the intron. Accordingly, we defined the 3’SS as 

the 2 nt region that contains the last position of the intron and the first position of the 

downstream exon. To distinguish spliced and unspliced junction mapping reads, a custom 

python script checked the cigar string of each alignment for occurrences of skipped 

reference bases (“N”). Alignments containing “N” and overlapped with a splice site, were 

counted as spliced junction reads. 

 

Rate estimation, identification of sequence elements predictive for rates and linear 
regression, and analysis of recombinant strain panel  
Detailed descriptions are found in the Expanded view. 
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FIGURE LEGENDS 

Figure 1. Overview of the approach 

Our approach for identifying regulatory elements that quantitatively determine RNA 

metabolism rates consists of three steps. In step 1 (top), genome-wide estimate of in vivo 

synthesis, splicing and degradation rates are obtained from the analysis of 4tU RNA 

labeling time series. In step 2 (middle), sequence motifs (colored boxes) that are 
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predictive for each rate are identified. The method provides for each motif and each 

nucleotide in a motif an estimate of its quantitative contribution to the rate. In step 3 

(bottom), the elements identified in step 2, which might be predictive by mere correlation, 

are tested for causality. To this end, ratio of average expression levels in a population 

harboring the reference allele versus a population harboring a single nucleotide variant 

are compared to model-predicted fold-change.  

 

Figure 2. Improved annotation of transcribed loci 
(A) Example of transcribed loci annotation on a 12 kb region of chromosome 1. Data is 

displayed symmetrically in horizontal tracks for the plus strand (upper half) and the 

minus strand (lower half). From most external to most central tracks: RNA-seq per base 

read coverage (marine blue), identified ORF-TUs (dark blue) and identified ncTUs (light 

blue), currently annotated ORFs and ncRNAs (gray, Pombase v2.22). On the current 

annotation tracks, UTRs are marked as thin rectangles and introns as lines. Typical 

changes that this study provides to the current annotation include the merging of adjacent 

transcripts into a single TU (e.g. SPAC3G9.16c and SPAC3G9.15c into TU.0896), the 

identification of novel ncRNAs (e.g. TU.0897), not recovered ncRNAs (SPNCRNA.891) 

and correction of aberrantly long UTRs (e.g. 3’UTR of SPAC3G9.13c as TU.0899). 

(B) Classification (Materials and Methods) of the 5,484 TUs into ORF-containing (ORF-

TUs), nc-TUs overlapping 70% of an annotated ncRNA (nc-TU), TUs overlapping more 

than one annotated TU (multicistronic TUs), and novel non-coding (Novel nc-TU).    

(C) From left to right: number of currently annotated transcripts that could not be 

recovered, are fully recovered, differ by more than 200 nt, and novel TUs for ORFs (dark 

blue) and ncRNAs (light blue).   

 (D) Differences between 3’ ends of ORF-TUs and polyA-sites mapped by Mata et al. 

(2013) (left), between 3’ ends of ORF-TUs and the corresponding currently annotated 

3’UTR end (middle), and between 5’ ends of ORF-TUs and the corresponding currently 

annotated 5’UTR end (right). 

 
Figure 3. Estimating RNA processing rates using labeled RNA time series 
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(A) Per base coverage (grey tracks) in a logarithmic scale of 4tU-Seq samples at 2, 4, 6, 8, 

and 10 min. labeling and for one RNA-Seq sample (i.e. steady-state) along the UTRs 

(white boxes), the exons (dark boxes) and the introns (lines) of the TU encoding cdc2.  

(B) Distribution of sequencing-depth normalized unspliced junction read counts (top 

panel) and normalized spliced junction read counts (lower panel) for the complete 4tU-

Seq time series and the steady-state RNA-Seq samples. 

(C) Schema of the junction first-order kinetics model. Each splice junction is modeled 

individually, assuming constant synthesis time, splicing time and half-life. Unspliced 

junction reads (blue) are specific to the precursor RNA and spliced junction reads (red) 

are specific to the mature RNA.  

(D) Observed (circles) and fitted (lines) splice junction counts for the first intron of 

TU.0597 (php3). Unspliced (blue) and spliced (red) normalized counts (y-axis) are shown 

for all 4tU-Seq samples and the steady-state sample (x-axis). 

(E) Half-life estimated from the first (x-axis) versus the second (y-axis) splice junction on 

TUs with two or more introns. 

(F,G,H) Distribution of synthesis times (F), half-lives (G) and splicing times (H) for 

ORF-TUs (blue) and ncTUs (light blue). Median indicated as vertical line.  

 

Figure 4. Sequence motifs associated with in vivo degradation and synthesis rates 

(A) The 12 motifs found in promoter, 5'UTR, intron and 3'UTR sequences of ORF-TUs 

are shown, together with their qualitative effects on RNA metabolism rates. No motif was 

found in coding sequences.   

(B) Number of ORF-TUs with at least one occurrence (horizontal bar) and significant 

(FDR < 0.1) co-occurrence enrichment (red) and depletion (blue) for all motif pairs. 

Significance was assessed using Fisher test within ORF-TUs with a mapped polyA site 

(Mata et al.), followed by Benjamini-Hochberg multiple testing correction.  All motif 

instances are provided in Table S3.  

(C) Fraction of ORF-TUs containing the motif (y-axis) within a 20 bp window centered 

at a position (x-axis) upstream of the TSS for the Homol D-box (blue), the Homol E-box 

(purple) and the CAACCA motif (dark green).    
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(D), (E). Same as (C) for the 5’UTR motifs (D) and for the 3’UTR motifs with respect to 

polyA site (E). No positional preference was found when aligning 3’UTRs with respect to 

stop codon and 5’UTRs with respect to start codon. 

F) Distributions of synthesis time among ORF-TUs that have zero, one or more than one 

occurrence of the motif CAGTCACA in their promoter sequence. 

G) Distributions of half-lives of ORF-TUs that have zero, one, two or more than two 

occurrence(s) of the motif TATTTAT in their 3'UTR sequence. 

H) Distributions of half-lives of ORF-TUs that have zero, one or more than one 

occurrence of the motif TTAATGA in their 3'UTR sequence. 

 

Figure 5. Single-base substitution effects on RNA synthesis and half-life 

(A) Nucleotide frequency within motif instances (lower track) and prediction of the 

relative effect on synthesis time (upper track) for single nucleotide substitution in the 

Homol D-box consensus motif  and of complete loss of the consensus motif (purple line). 

Coefficients for all motifs are available in Table S4. 

(B) As in (A) for the 3’ UTR motif TTAATGA.  

(C,D,E) Boxplot and individual data point of exonic read counts normalized for 

sequencing depth and batch effects (y-axis) for strains grouped by genotype (x-axis) for 

the gene rctf1 (C), SPCC794.06 (D), and mug65 (E)   

(F) Validation of motifs using expression data of a recombinant strain library (Clément-

Ziza et al., 2015). Fold-change in steady-state expression level due to a single nucleotide 

variant as predicted from our models (x-axis) against average expression fold-change 

between strains harboring the variant and strains harboring the reference allele (y-axis). 

Estimated standard errors for the prediction and the observed are represented by the 

vertical and horizontal segments. The overall Spearman rank correlation is 0.76 

(P=0.006). In legend: SNP code and one-sided Wilcoxon test P-value. 

 

Figure 6. Determinants of in vivo splicing rates. 
(A) Prediction of the relative effect on splicing time (y-axis) for single nucleotide 

substitution compared to consensus sequence around the 5’splice site, the branch site and 
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the 3’splice site (cartoon top panel). Effects at invariant positions (5’SS: GU, BS: A and 

3’SS: AG) cannot be computed. All coefficients are provided in Table S4. 

(B) Occurrence (bottom panel) and distribution of half-splicing times (top panel) per BS 

motif (x-axis) sorted by frequency. The median splicing time of introns with consensus 

sequence is indicated with a dashed line.  

(C) Information content (y-axis) versus mean effect on splicing time (x-axis) for each 

position (relative numbers) of the 5’SS (squares), BS (circles) and 3’SS (triangles). 

Positions with information content > 0.3 are highlighted. 

(D) Distribution of splicing times (y-axis) versus number of introns in the TU (x-axis).  

(E) Splicing time (y-axis) versus synthesis time (x-axis) 

 
Figure 7. Antisense transcription represses ORF-TUs synthesis 
(A) Distribution of the overlap of the 1,616 convergent TUs separated by less than 1,000 

bp. Most convergent TUs did not overlap. 

(B) Example of an ORF-TU (mug182) that is covered completely by a ncTU (TU.1046) 

on the opposite strand. The RNA-Seq read coverage (steady-state expression) of mug182 

is considerably lower than of the adjacent gene zpr1.  

(C) Distribution of synthesis times of ORF-TUs grouped by the fraction of overlap by 

antisense ncTUs.  

(D) As in (C) for half-lives. 

 

Figure S1. Segmentation algorithm parameters and antisense artifacts in current 
genome annotation  

(A) Distribution of mean RNA-Seq read coverage per segments for currently annotated 

(blue) and not currently annotated regions (red) and mean coverage cutoff for the 

segmentation algorithm to call a region expressed (vertical line).  

(B) Jaccard index (z-axis) when computing per base overlap between automatic 

segmentation and current annotation versus min-length and max-gap parameters of the 

segmentation algorithm. 

(C) Top ten GO terms enriched (model-based gene set analysis, Bauer et al. 2011) among 

402 non-recovered protein coding genes from Pombase.   
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(D) Sense mean coverage (x-axis) versus antisense mean coverage (y-axis) of 1011 non-

recovered ncRNAs of the current annotation.  

(E) Differences between 5’ and 3’ ends of ORF-TUs and Pombase v.2.22 (first and 

second box), difference between TUs 3’ends and polyA-sites mapped by Mata et al. 

(2013) (third box), and differences between 5’ and 3’ ends of ORFs defined by 

Lantermann et al. (2010) and Pombase v.2.22 (fourth and fifth box). 

(F) Mean sense coverage (x-axis) and antisense coverage (y-axis) of Pombase 3’UTR 

regions that extend TU defined 3’UTRs by 250nt or more. Per base coverage is extracted 

from total RNA-Seq data used in this study. The mass of the data in upper left quadrant 

indicate that long Pombase UTRs mostly arise from antisense artifacts in former studies. 

Figure S2. Modeling RNA kinetics  

(A) Estimate of synthesis time for ORF-TUs with two introns based on the first intron (x-

axis) against estimate based on the second intron (y-axis). 

(B) Exon-only model used to estimate synthesis times and half-lives of intronless TUs. 

(C) Half-lives of intron-containing TUs estimated using the junction model  (x-axis) 

versus the exon model (y-axis). 

(D) As in (C) for synthesis times. 

(E) Synthesis time of intron-containing TUs estimated using the exon model on the first 

exon (x-axis). 

(F) As in (E) for half-lives.. 

(G) Comparison of synthesis times of ORF-TUs between this study (x-axis) against 

synthesis rates publised in (Sun et al. 2012). 

(H) As in (G) for half-lives. 

Figure S3.  

(A) Boxplot showing the distribution of half-lives for all ORF-TUs, grouped by the 

number of occurences of the motif CAGTCACA in their promoter sequence. Number of 

instances per box in parentheses. 

(B-I) As in (A) for all identified motifs and corresponding rates. 
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Figure S4.  

(A) Nucleotide frequency within motif instances (lower track) and prediction of the 

relative effect on synthesis time (upper track) for single nucleotide substitution in the 

Homol E-box consensus motif and of complete loss of the consensus motif (purple line).  

(B-I)  As in (A) for all identified motifs and corresponding rates. 

Figure S5. 

(A) Mature mRNA length (x-axis) of all ORF-TUs with the splicing time (y-axis) of the 

corresponding introns.   

(B) Intron length (x-axis) versus splicing time (y-axis) for all introns. 

(C-E) Intron position specific distributions of the deviation from the mean splicing time 

for ORF-TUs with two (C), three (D) or four (E) introns. 

(F) Distribution of splicing time of individual introns predicted from their sequence at  

5’SS, 3’SS and BS (y-axis) versus the total number of introns in the corresponding ORF-

TU (x-axis). This plot is to be compared to Figure 6D.   

 

Figure S6. 
Observed and expected number of TU termination events in CDS, intron, 5’UTR and 

3’UTR of antisense ORF-TUs. Expected counts are estimated by 999 times 

randomization of all overlapping sense-antisense TU-pairs. Dark grey bars show the 

mean and the range which contains 90% of expected counts (“error bars”).   

 

SUPPLEMENTAL TABLES 

Supplemental table 1:  Transcriptional units 

Supplemental table 2:  Splice junctions 
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Supplemental table 4: Linear model coefficients 

Supplemental table 5: Motifs affected by genetic variation 
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