Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
Contradictory Results

Implications of simplified linkage equilibrium SNP simulation

S. Hong Lee
doi: https://doi.org/10.1101/025619
S. Hong Lee
1The Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
2School of Environmental and Rural Science, The University of New England, Armidale, New South Wales, 2351, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

In a recent paper published in PNAS (Golan et al. 2014)1, residual maximum likelihood (REML) seriously underestimated genetic variance explained by genome-wide single nucleotide polymorphism when using a case-control design. It was concluded that Haseman–Elston regression (denoted as PCGC in their paper) should be used instead of REML. Their conclusions were based on results from simplified linkage equilibrium SNP simulation (SLES), which the authors acknowledged may be unrealistic. We found that their simulation, SLES, unrealistically inflated the correlation between the eigenvectors of the genomic relationship matrix and disease status to values that are rarely observed in real data analyses. With a more realistic simulation that the authors failed to carry out (as they noted in their paper), we showed that there was no such inflated correlation between the eigenvectors of the genomic relationship matrix and disease status. Because REML uses the eigensystem of covariance structure, the inflated correlation artefactually constrained its estimates. We compared SNP-heritabilities from SLES and a more realistic simulation, showing that there was a substantial difference between the REML estimates from the two simulation strategies. Finally, we presented that there was no difference between REML and PCGC in real data analyses. This pattern from real data results differed strikingly from the pattern in the simulation study of Golan et al.1. One needs to be cautious of results drawn from SLES.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted August 27, 2015.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Implications of simplified linkage equilibrium SNP simulation
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Implications of simplified linkage equilibrium SNP simulation
S. Hong Lee
bioRxiv 025619; doi: https://doi.org/10.1101/025619
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Implications of simplified linkage equilibrium SNP simulation
S. Hong Lee
bioRxiv 025619; doi: https://doi.org/10.1101/025619

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genetics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4224)
  • Biochemistry (9101)
  • Bioengineering (6749)
  • Bioinformatics (23935)
  • Biophysics (12086)
  • Cancer Biology (9490)
  • Cell Biology (13728)
  • Clinical Trials (138)
  • Developmental Biology (7614)
  • Ecology (11656)
  • Epidemiology (2066)
  • Evolutionary Biology (15476)
  • Genetics (10615)
  • Genomics (14292)
  • Immunology (9456)
  • Microbiology (22773)
  • Molecular Biology (9069)
  • Neuroscience (48839)
  • Paleontology (354)
  • Pathology (1479)
  • Pharmacology and Toxicology (2562)
  • Physiology (3822)
  • Plant Biology (8307)
  • Scientific Communication and Education (1467)
  • Synthetic Biology (2289)
  • Systems Biology (6169)
  • Zoology (1297)