
The site-frequency spectrum associated with

Ξ-coalescents

Jochen Blath1, Mathias Christensen Cronjäger2, Bjarki Eldon3, Matthias Hammer1

February 4, 2016

Author a�liations:1

2

1. TU Berlin, Institut für Mathematik3

10623 Berlin, Germany4

5

2. University of Oxford, Department of Statistics6

OX1 3TG Oxford, UK7

8

3. Museum für Naturkunde9

Leibniz Institut für Evolutions- und Biodiversitätsforschung10

10115 Berlin11

1

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 6, 2016. ; https://doi.org/10.1101/025684doi: bioRxiv preprint 

https://doi.org/10.1101/025684


Running title: Frequency spectrum and Xi-coalescents1

2

Keywords: site-frequency spectrum, Xi-coalescents, diploidy, Atlantic cod, simultaneous3

mergers4

5

Corresponding author:6

Bjarki Eldon7

Museum für Naturkunde,8

Leibniz Institut für Evolutions- und Biodiversitätsforschung9

Invalidenstraÿe 4310

10115 Berlin, Germany11

Email: eldon@math.tu-berlin.de, bjarki.eldon@mfn-berlin.de12

Phone: +49(0)3020937037913

14

2

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 6, 2016. ; https://doi.org/10.1101/025684doi: bioRxiv preprint 

https://doi.org/10.1101/025684


Abstract1

We give recursions for the expected site-frequency spectrum associated with so-2

called Xi-coalescents, that is exchangeable coalescents which admit simultaneous multi-3

ple mergers of ancestral lineages. Xi-coalescents arise, for example, in association with4

population models of skewed o�spring distributions with diploidy, recurrent advanta-5

geous mutations, or strong bottlenecks. In contrast, the simpler Lambda-coalescents6

admit multiple mergers of lineages, but at most one such merger each time. Xi-7

coalescents, as well as Lambda-coalescents, can predict an excess of singletons, com-8

pared to the Kingman coalescent. We compare estimates of coalescent parameters9

when Xi-coalescents are applied to data generated by Lambda-coalescents, and vice10

versa. In general, Xi-coalescents predict fewer singletons than corresponding Lambda-11

coalescents, but a higher count of mutations of size larger than singletons. We �t12

examples of Xi-coalescents to unfolded site-frequency spectra obtained for autosomal13

loci of the diploid Atlantic cod, and obtain di�erent coalescent parameter estimates14

than obtained with corresponding Lambda-coalescents. Our results provide new in-15

ference tools, and suggest that for autosomal population genetic data from diploid or16

polyploid highly fecund populations who may have skewed o�spring distributions, one17

should not apply Lambda-coalescents, but Xi-coalescents.18
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Introduction1

The coalescent approach, ie. the idea of considering the (random) ancestral relations of2

alleles sampled from natural populations, has provided rich mathematical theory [cf. 7],3

and very useful inference methods (cf. eg. [18, 45] for reviews). Initiated by the Kingman4

coalescent [28, 30, 29], coalescent models now include the family of Lambda-(Λ-)coalescents5

[35, 36, 17], and Xi-(Ξ-)coalescents [40, 33, 37]. Ξ-coalescents admit simultaneous multiple6

mergers of ancestral lineages. Thus, in each merger event, distinct groups of ancestral7

lineages can merge at the same time, and each group can have more than two lineages. Λ-8

coalescents, in contrast, only allow one group - possibly containing more than two lineages9

- to merge each time. Thus, due to multiple mergers, the derivation and application of10

inference methods becomes harder as one moves from the Kingman coalescent to Lambda-11

coalescent models, and from Λ-coalescents to Ξ-coalescents. Ξ-coalescents can be obtained12

from diploid population models [9, 34, 14]. They also arise in models of repeated strong13

bottlenecks [11], and in models of selective sweeps [19, 20].14

[24] obtained closed-form expressions for the expected site-frequency spectrum, and (co)-15

variances, when associated with the Kingman coalescent. [10] obtain recursions for expected16

values and (co)-variances when associated with Λ-coalescents. However, the complexity of17

the recursions means that (co)-variances, when associated with Λ-coalescents, can only be18

computed for small sample sizes. The expected values can be applied in distance statistics19

[25], and in an approximate likelihood approach [10, 22].20

Multiple merger coalescents can be obtained from population models that admit high21

fecundity and skewed o�spring distributions, characteristics associated with many marine22

populations [1, 23, 8, 12, 13, 26, 27, 38]. Indeed, [2] �nd much better �t (ie. minimizing the23

sum of the squared distance between observed and expected values) between data on autoso-24

mal genes from Atlantic cod and Λ-coalescents than with the Kingman coalescent. Simulation25

results of [38] suggest that the site-frequency spectrum of (at least some) Ξ-coalescents is26

multi-modal, a pattern observed in data on the autosomal Ckma gene in Atlantic cod [2].27

Based on this evidence, a way to compute expected values of the site-frequency spectrum28
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associated with Ξ-coalescents should be a welcome and important addition to the set of in-1

ference methods for population genetics. Time-changed Kingman-coalescents obtained from2

models of population growth can predict an excess of singletons, a characteristic observed3

for some marine populations [cf. eg. 27]. However, the right tails of the site-frequency spec-4

trum predicted by multiple-merger coalescents and time-changed Kingman-coalescents di�er,5

which makes it possible to distinguish between them [22].6

In this work, we obtain recursions for the expected site-frequency spectrum associated7

with general Ξ-coalescents, with an approach similar to the one applied by [10]. We com-8

pare estimates of coalescent parameters when applied to simulated data obtained under9

Λ-coalescents, and vice-versa. Since the recursions for the expected values are already fairly10

complex, and computationally expensive, we expect recursions for the (co)-variances to be11

even more so. The (co)-variances will therefore not be addressed.12

We estimate coalescent parameters associated with speci�c examples of Xi-coalescents for13

the unfolded site-frequency spectrum of 3 autosomal loci [2] of the highly fecund Atlantic cod.14

Our simple method involves minimising the distance between observed and expected values,15

where the distance is not calibrated by the corresponding variance. Our estimates di�er16

from previous estimates obtained with the use of Lambda-coalescents. The main biological17

implication of our results are that Xi-coalescents should be applied to autosomal data from18

highly fecund diploid (or polyploid) populations, and Lambda-coalescents to haploid data19

such as mitochondrial DNA.20

The paper is structured as follows: First we give a precise mathematical description of21

the various coalescent models. We then state our main result on the expected site frequency22

spectrum of Ξ-coalescents, Theorem 2. This is followed by a discussion of some speci�c23

examples of Ξ-coalescents. Some numerical examples which illustrate the di�erence in the24

site-frequency spectrum between Lambda- and Xi-coalescents are then presented, followed25

by an application to autosomal Atlantic cod data. The proofs are collected in an Appendix.26
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Theory1

For ease of reference, we collect the notation we use in the following table.

Table 1: Notation.
notation explanation
[n] [n] := {1, 2, . . . , n}
Pn space of partitions of [n]
π generic element of Pn
#π number of blocks in π
π′ ≺ π π′ obtained from π by merging 2 blocks
π′ ≺m,k π π′ obtained from π by merging k ≤ m = #π blocks
k k = (k1, . . . , kr)
π′ ≺m,k π π′ obtained from π by a k-merger when m = #π
|k| |k| = k1 + · · ·+ kr
x x = (x1, x2, . . .)
∆ ∆ = {x : x1 ≥ x2 ≥ · · · ≥ 0, x1 + x2 + · · · ≤ 1}
ñ the set of all partitions of integer n
|ν| = n means ν ∈ ñ, ie. ν is a partition of n

|ν| k= n ν ∈ ñ and #ν = k, ie. ν has k elements
ν = 〈α1, α2, . . .〉 αj speci�es how often j appears in integer partition ν
µ = 〈β1, β2, . . .〉 ⊂ ν βj ≤ αj for all j

π↓ π ∈ Pn, |π↓| #π
= n, π↓1 ≥ π↓2 ≥ · · · ≥ π↓#π,

and the π↓j are the block sizes of π
(α) = (α2, α3, . . .) αj denotes the number of mergers of size j
1(A) 1(A) = 1 if A holds, and 0 otherwise
(a)m (a)m = a(a− 1) · · · (a−m+ 1), (a)0 := 1 (falling factorial)
Π coalescent process {Πt, t ≥ 0}
E(Π) expected value relative to Π

2

Coalescent models3

We brie�y review the basic coalescent models, namely the Kingman-, Λ-, and Ξ-coalescents.4

They all have in common to be continuous-time Markov chains, taking values in the space of5

partitions of the natural numbers N := {1, 2, . . . , }, whose restriction to the �rst n integers6

can be described as follows: Let Pn denote the space of partitions of [n] := {1, . . . , n}. We7

write π for a generic element of Pn, and #π for the size of π, i.e. for the number of blocks8

6
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πi ∈ π. Thus for π ∈ Pn we have π = {π1, . . . , π#π} with #π ≤ n.1

Kingman coalescent2

If π, π′ ∈ Pn with #π = m ∈ {2, . . . , n}, we write π′ ≺ π if there exist i, j ∈ [m] with3

π′ = {π` : ` ∈ [m], ` /∈ {i, j}} ∪ {πi ∪ πj}, ie. π′ is obtained from π by merging blocks πi and4

πj. If the transition rates of the continuous-time Markov chain {Π(K,n)
t , t ≥ 0} with values5

in Pn, and starting from state {{1}, . . . , {n}} at time t = 0, are given by6

qπ,π′ =


1 if π′ ≺ π,

−
(
m
2

)
if π′ = π, #π = m ≥ 2,

0 otherwise;

(1)

we refer to {Π(K,n)
t , t ≥ 0} as the Kingman-n-coalescent. The process is stopped at time7

inf{t > 0 : Π
(K,n)
t = {{1, . . . , n}}}, ie. when the most recent common ancestor of the n8

lineages has been reached.9

Lambda-coalescent10

If π, π′ ∈ Pn with #π = m ∈ {2, . . . , n}, and there exist indices i1, . . . , ik ∈ [m] with11

π′ = {π` : ` ∈ [m], ` /∈ {i1, . . . , ik}} ∪ {πi1 ∪ · · · ∪ πik}, we write π′ ≺m,k π and say that a12

k-merger has occurred, with 2 ≤ k ≤ m. For a �nite measure Λ on [0, 1], de�ne13

λm,k :=

∫ 1

0

xk−2(1− x)m−kΛ(dx), (2)

14

λm :=

∫ 1

0

[1− (1− x)m −mx(1− x)m−1]x−2Λ(dx) (3)

if the integral in (3) exists, and15

λm :=
m∑
k=2

(
m

k

)∫ 1

0

xk−2(1− x)m−kΛ(dx) (4)

7
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otherwise. For example, the integral in (3) does not exist in case of the Beta(2 − α, α)-1

coalescent introduced by [41].2

A Pn-valued continuous-time Markov chain {Π(Λ,n)
t , t ≥ 0} with transition rates qπ,π′ from3

π to π′ given by4

qπ,π′ =


λm,k if π′ ≺m,k π,

−λm if π′ = π, #π = m,

0 otherwise;

(5)

is referred to as a Λ-n-coalescent. The waiting time in state π is exponential with rate λm5

as in (3, 4).6

Xi-coalescent7

Now we specify the transition rates for a Ξ-n-coalescent. Let k ≡ (k1, . . . , kr) denote a8

vector of positive integers of length r ≥ 1. We write π′ ≺m,k π if π, π′ ∈ Pn with #π = m ∈9

{2, . . . , n}, and there exist r ∈ [bm
2
c] groups of indices i(j)1 , . . . , i

(j)
kj
, j = 1, . . . , r, such that10

π′ =
{
π` : ` ∈ [m], ` /∈ {i(1)

1 , . . . , i
(1)
k1
} ∪ · · · ∪ {i(r)1 , . . . , i

(r)
kr
}
}

∪
{
π
i
(1)
1
∪ · · · ∪ π

i
(1)
k1

}
∪ · · · ∪

{
π
i
(r)
1
∪ · · · ∪ π

i
(r)
kr

}
,

by which we denote a transition where blocks with indices i(j)1 , . . . , i
(j)
kj

merge into a single11

block, for j ∈ [r]. Thus, a transition denoted by π′ ≺m,k π is a simultaneous multiple merger,12

where r ∈ [bm
2
c] such mergers occur simultaneously. The vector k = (k1, . . . , kr) speci�es the13

merger sizes, and we write |k| := ∑r
j=1 kj.14

Let ∆ denote the in�nite simplex15

∆ :=

{
x = (x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0,

∑
i

xi ≤ 1

}
. (6)

Let x ∈ ∆, m ∈ N, k = (k1, . . . , kr) with ki ≥ 2 and |k| = k1 + · · ·+ kr ≤ m the sum of the r16

merger sizes, and s := m−|k| the number of blocks una�ected by the merger(s) speci�ed by17

8
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k. De�ne the functions f(x,m, k) and g(x,m, k), with x ∈ ∆0 := ∆\{(0, 0, . . .)} = ∆\{0},1

f(x,m, k) :=

s∑̀
=0

∑
i1 6=... 6=ir+`

(
s
`

)
xk1i1 · · · x

kr
ir
xir+1 · · · xir+`

(
1−∑j xj

)s−`
∑

j x
2
j

,

g(x,m) :=

1−
m∑̀
=0

∑
i1 6=... 6=i`

(
m
`

)
xi1 · · · xi`

(
1−∑j xj

)m−`
∑

j x
2
j

.

(7)

Let Ξ0 denote a �nite measure on ∆0, and write Ξ := Ξ0 + aδ{0}. Further, let N (m, k)2

denote the number of ways of arranging m items into r non-empty groups whose sizes are3

given by k. With `j denoting the number of k1, . . . , kr equal to j, one checks that, with4

s = m− |k| [40],5

N (m, k) =

(
m

k1 . . . kr s

)
1∏m

j=2 `j!
(8)

(recall that 0! = Γ(1) = 1). Now de�ne [40], with f(x,m, k) and g(x,m) given by (7),6

λm,k :=

∫
∆0

f(x,m, k) Ξ0(dx) + a1(r=1,k1=2), (9)

7

λm :=

∫
∆0

g(x,m) Ξ0(dx) + a

(
m

2

)
(10)

if the integral in (10) exists, and8

λm =
m−1∑
n=1

∑
k1≥...≥kr≥2
m−|k|+r=n

N (m, k)λm,k (11)

otherwise. A continuous-time Pn-valued Markov chain with transitions qπ,π′ given by [40]9

qπ,π′ =


λm,k if π′ ≺m,k π,

−λm if π′ = π, #π = m,

0 otherwise;

(12)

9
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is referred to as a Ξ-n-coalescent, and denoted by {Π(Ξ,n)
t , t ≥ 0}. The waiting time in state1

π is exponential with rate λm as in (10, 11).2

Speci�c examples of Xi-coalescents3

Out of the rich class of Xi-coalescents, several special cases have been identi�ed either for4

biological / modeling relevance or mathematical tractability. The example most relevant for5

us is concerned with diploidy.6

Haploid population models are probably the most common models in mathematical pop-7

ulation genetics. Diploidy, and other forms of polyploidy, are, however, widely found in8

nature. Atlantic cod is diploid, and oysters show both tetraploidy and triploidy [cf. eg.9

32]. In polyploid models which admit skewed o�spring distribution, one should observe up10

to M ≥ 2 simultaneous mergers, where M is some �xed number which re�ects the level11

of polyploidy. Indeed, [34] model diploidy in a population with a general skewed o�spring12

distribution, and obtain a Xi-coalescent, which admits simultaneous multiple mergers in up13

to four groups.14

Indeed, a mathematical description of a Xi-coalescent which admits up toM simultaneous15

mergers is as follows. Take a �nite measure Λ on [0, 1] (which would normally describe16

a Λ-coalescent). For convenience, let F (dx) := Λ(dx)
Λ([0,1])

be the corresponding normalized17

probability measure. Then, with M ≥ 2, de�ne the measure Ξ on the simplex ∆ by18

Ξ(dy) :=
1

M

∫
[0,1]

δ
(
x
M
, . . . , x

M︸ ︷︷ ︸
M times

, 0, 0, ... )
(dy)F (dx). (13)

The interpetation is this: If the normalized Lambda-measure F produces a multiple merger19

event, in which individual active ancestral lineages (blocks of the current partition) take20

part with probability x ∈ (0, 1], then the participating lineages are randomly grouped into21

M simultaneous mergers (each with probability 1
M
). Observe that if F (dx) = δ0(x)dx,22

then (13) becomes Ξ(dy) = 1
M

∫
[0,1]

δ(0,... )(dy)δ0(x)dx = 1
M
δ(0,... )(dy), which corresponds to23

a Kingman-coalescent with time scaled by a factor 1
M
.24

10
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For a given merger of the Ξ-coalescent into r ∈ [M ] groups of sizes given by k =1

(k1, . . . , kr), with k1 ≥ . . . ≥ kr ≥ 2 and |k| := k1 + · · · + kr, when m active ancestral2

lineages are present, with m − |k| lineages una�ected by the given merger, the transition3

rates are given by4

λm,k =

(m−|k|)∧ (M−r)∑
`= 0

(
m− |k|

`

)
(M)r+`M

−(|k|+`)
∫

[0,1]

x|k|+`−2(1− x)m−(|k|+`)F (dx),

(14)

where (M)r+` denotes the falling factorial. The rates (14) depend on the choice of the5

probability measure F determined by the underlying population model. A proof of (14) is6

in the Appendix. We say that a Xi-coalescent is M-fold if the transition rates are given by7

(14).8

Xi-coalescents which admit at mostM = 4 simultaneous mergers arise from diploid Can-9

nings population models with skewed o�spring distribution as shown in [34, 9], and are thus10

relevant for population genetics. In fact, if a haploid model (for example for mitochondrial11

DNA) is governed by a Λ-coalescent, the corresponding diploid model (concerning the core12

genome) might naturally lead to Xi-coalescents. Indeed, [9] derive a 4-fold Xi-coalescent from13

a diploid model, in which exactly one pair of diploid parents contribute diploid o�spring in14

each reproduction event. Hence, since 4 parental chromosomes are involved in each event,15

one can observe up to 4 simultaneous mergers. This was also observed by [34] in association16

with a diploid population model, but under a more general reproduction law than consid-17

ered by [9]. Xi-coalescents are also classi�ed by [14] for a very general diploid exchangeable18

Cannings model in which arbitrary pairs of diploid parents contribute o�spring in each re-19

production event. This generalises the model by [34], in which each individual forms at most20

one parental pair in each generation. For a detailed classi�cation of coalescent limits, see21

[34, 37, 33, 14].22

In truly diploid models, as considered by [34, 9], sel�ng is excluded, which leads to a23

`separation of timescales' phenomenon in the ancestral process, in which blocks which reside24

11
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in the same diploid individual instantaneously `disperse'; thus the con�guration of blocks in1

diploid individuals becomes irrelevant in the ancestral process (see Cor. 4.3 in [34]).2

A natural candidate for F may be the beta distribution with parameters ϑ > 0 and γ > 0

(cf. e.g. [9]), with density

Γ(ϑ+ γ)

Γ(ϑ)Γ(γ)
xϑ−1(1− x)γ−1, x ∈ [0, 1].

In this case, the rate λm,k in (14) takes the form3

λm,k =

(m−|k|)∧ (4−r)∑
`=0

(
m− |k|

`

)
(4)r+` 4−|k|+`

B(|k|+ `+ ϑ− 2,m+ γ − (|k|+ `))

B(ϑ, γ)
. (15)

A di�erent choice is based on a model of Eldon and Wakeley [23], where

Λ(dx) = F (dx) =
2

2 + ψ2
δ0(dx) +

ψ2

2 + ψ2
δψ(dx), ψ ∈ [0, 1].

In this case, the rates reduce to4

λm,k =
1

2 + ψ2

(m−|k|)∧(4−r)∑
l=0

(
m− |k|

`

)
(4)r+` 4−|k|+` (1−ψ)m−(|k|+`)ψ|k|+`+1(r=1, k1=2)

1

2

1

2 + ψ2
.

(16)

In (16) the parameter ψ has a clear biological interpretation as the fraction of the diploid5

population replaced by the o�spring of the reproducing parental pair in one generation. The6

interpretation of the parameters in (15) is perhaps less clear.7

A multi-loci ancestral recombination graph in which simultaneous mergers are admitted8

is obtained by [9] in which the framework of [34] is borrowed. There, one can think of the9

reproduction model as a two-atom Lambda-measure, one atom at zero, and another at some10

point ψ ∈ (0, 1). If the atom at ψ has mass of order at most N−2, the limit process admits11

simultaneous mergers. The order N−2 represents the order of the expected time which two12

gene copies need to coalesce when only 1 diploid o�spring is produced in each reproduction13

event. In [9], complete dispersion of chromosomes also occurs, and the con�guration of blocks14

12
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among diploid individuals becomes irrelevant in the limit process.1

Xi-coalescents can also be obtained from a population model where the population size2

varies substantially due to recurrent bottlenecks. This has been introduced and discussed3

in [11], who obtain a randomly time-changed Kingman coalescent, which thus yields a Xi-4

coalescent.5

Durrett and Schweinsberg [19, 20] show that a Xi-coalescent gives a good approximation6

[20, cf. Prop. 3.1] to the genealogy of a locus subject to recurrent bene�cial mutations.7

These examples suggest that Xi-coalescents form an important class of mathematical8

objects with which to study genetic diversity.9

The site-frequency spectrum10

The site-frequency spectrum is a simple summary statistic of the full DNA sequence data, but11

contains valuable information about variation among individuals. We assume the in�nitely-12

many sites mutation model [46], in which mutations occur as independent Poisson processes13

on the branches of a given gene genealogy with rate θ (or θ/2) for some constant θ > 0,14

and no two mutations occur at the same site. The constant θ is determined by the ratio15

µ/cN , where µ is the per-generation mutation rate, and cN is the probability of two distinct16

individuals (gene copies) sharing a common ancestor in the previous generation. We refer to17

[22] for a discussion of the relation between mutation and timescales of di�erent coalescent18

processes.19

Given sample size n, we let ξ(n)
i denote the number of polymorphic sites at which one20

variant (the derived mutation) is observed in i copies. The random vector21

ξ(n) =
(
ξ

(n)
1 , . . . , ξ

(n)
n−1

)
(17)

is known as the (unfolded) site-frequency spectrum. If information about ancestral states22

is unavailable, so that one does not know which variant is new, one considers the folded23

13
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spectrum η(n) =

(
η

(n)
1 , . . . , η

(n)

bn2 c

)
in which1

η
(n)
i =

ξ
(n)
i + ξ

(n)
n−i if i < n

2
,

ξ
(n)
i if i = n

2
.

(18)

[24] obtains closed-form solutions for expected values and (co)-variances of the site-2

frequency spectrum associated with the Kingman coalescent Π(K). Indeed [24],3

E(K)
[
ξ

(n)
i

]
=
θ

i
, i ∈ [n− 1], (19)

where E(K) denotes expectation with respect to Kingman coalescent.4

Let B(n)
i denote the random total length of branches subtending i ∈ [n − 1] leaves. By5

leaves we refer to the special kind of vertices in the random graph generated by a given6

coalescent process which would represent the sampled DNA sequences after mutations have7

been added to the graph. Since the mutation process can be separated from the genealogy8

(the random graph) it can sometimes be useful to consider properties of the graph itself.9

Result (19) follows from [24]10

E(K)
[
B

(n)
i

]
=

2

i
, i ∈ [n− 1], (20)

and the in�nitely-many sites mutation model.11

Due to the multiple merger property of Λ- and Ξ-coalescents, closed-form expressions for12

E(Π)
[
ξ

(n)
i

]
for Π ∈ {Λ,Ξ} are quite hard to obtain. A key quantity in computing E(Π)

[
B

(n)
i

]
13

for multiple merger coalescents is14

p(n)[k, i], i ∈ {1, . . . , n− k + 1},

which can be described as the probability that starting from n blocks, conditioned that15

there are at some point in time exactly k blocks, one of them, sampled uniformly at random,16

14
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subtends i ∈ [n− k + 1] leaves. See Figure 1 for an illustration.1

15
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Figure 1: An illustration of an event with probability p(n)[k, i], with k = 2, and 2 ≤ i = n−3
for n leaves (shown as open circles). In the example shown, the process reaches k = 2 blocks
in one transition, which is a simultaneous merger involving all of the i leaves (encircled) as
shown. All the i leaves are subtended by the block represented by a black square. A `level'
refers to the values taken by the block-counting process; �lled symbols represent ancestral
blocks.

n ◦ · · · ◦ ◦ ◦ ◦
i leaves

•••2

level
�

•1

16
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With g(n, k) we denote the expected length of time during which we see k ∈ {2, . . . , n}1

blocks, given that we started from n ≥ 2 blocks. Given p(n)[k, i] and g(n, k), E(Π)
[
B

(n)
i

]
can2

be computed as follows:3

E(Π)
[
B

(n)
i

]
=

n−i+1∑
k=2

p(n)[k, i] · k · g(n, k), (21)

where moreover g(n, k) can be computed recursively. This is shown in [10] for Λ-coalescents4

but in fact holds for Ξ-coalescents as well. Hence, it su�ces to obtain a recursion for p(n)[k, i].5

For the Λ-case, [10] obtain the recursion6

p(n)[k, i] =
n−1∑
m=k

pn,m
g(m, k)

g(n, k)

[
i− n+m

m
p(m)[k, i− n+m]1(i>n−m)

+
m− i
m

p(m)[k, i]1(i<m)

] (22)

in which pn,m is the probability that the block-counting process jumps from n to m blocks.7

Before we turn to the expected site-frequency spectrum associated with Ξ-coalescents,8

we give the recursion to compute g(n, k).9

Lemma 1. Let pn,m denote the probability that the block-counting process associated with a10

Ξ-n-coalescent with transition rates (12) jumps from n ≥ 2 to m ∈ [n − 1] blocks. For any11

n > k ≥ 1, we have12

g(n, k) =
n−1∑
m= k

pn,m g(m, k), (23)

with the boundary condition13

g(n, n) = λ−1
n (24)

for any n ≥ 2, where λn = −qπ,π with #π = n, see (10, 11, 12).14

A proof of Lemma 1 is given in the Appendix.15

17
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The expected site-frequency spectrum associated with Ξ-coalescents1

Since formula (21) holds for any exchangeable coalescent, it su�ces to obtain a recursion for2

p(n)[k, i] when associated with Ξ-coalescents. Before we state the main result, we review our3

notation for partitions of positive integers. Partitions of integers are helpful in enumerating4

the di�erent ways in which the number of active blocks can change in one transition in a5

Xi-coalescent.6

A partition of n ∈ N is a non-increasing sequence of positive integers whose sum is n. By7

ñ we denote the set of all partitions of n, we denote by ν a generic element of ñ. By way of8

example,9

3̃ = {(3), (2, 1), (1, 1, 1)}.

If ν ∈ ñ, we write |ν| = n. The size of a partition ν is de�ned as the length of the sequence,10

and is denoted by #ν. If |ν| = n with size #ν = k ∈ [n], we write |ν| k= n. Thus, |ν| 1
= n if11

and only if ν = (n); |ν| n
= n if and only if ν = (1, . . . , 1︸ ︷︷ ︸

n times

).12

Another way of representing an integer partition ν is by specifying how often each positive13

integer i ∈ N appears in ν (see [15] for details). Thus, we will also denote ν by 〈α1, α2, . . .〉,14

where αi denotes the number of times integer i appears in the given partition ν. A partition15

% = 〈β1, . . .〉 is a sub-partition of ν = 〈α1, . . .〉, denoted % ⊂ ν, if and only if βi ≤ αi for16

all i. For a set partition π ∈ Pn, we de�ne the integer partition associated with π, denoted17

π↓ ∈ ñ, as the partition of n obtained by listing the block sizes of π in decreasing order.18

More detailed discussion of partitions of integers can be found eg. in [44].19

The role of integer partitions in association with Ξ-coalescents should now be clear. We20

can enumerate all the possible ways the block counting process can jump from n to m active21

blocks by specifying the partitions of n (see eg. [15] for details). The elements of the sequence22

ν ∈ ñ specify the merger sizes, with the obvious exclusion of mergers of size 1. By way of23

example, integer partition (3, 2, 1) ∈ 6̃ speci�es a simultaneous merger of 3 blocks and 224

blocks, and one block remains unchanged, when we have 6 active blocks. By (12), any such25

transition happens at rate λ6,(3,2).26

18
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More generally, given integer partition |ν| m= n with ν = 〈α1, α2, . . .〉, put r := m−α1 for1

the number of elements of the sequence that are larger than 1, so that2

ν = (ν1, ν2, . . . , νr, 1, . . . , 1︸ ︷︷ ︸
α1 times

).

Then ν1 ≥ ν2 ≥ · · · ≥ νr ≥ 2, and de�ning k := (ν1, ν2, . . . , νr), the corresponding transitions3

in which k speci�es the sizes of the r mergers involved happen at rate λn,k, see (12). Moreover,4

the probability p(n)
ν of such a transition is given by [15, Lemma 2.2.2]5

p(n)
ν =

n!∏
i νi!αi!

λn,k
λn

, (25)

where the combinatorial factor6

n!∏
i νi!αi!

(coinciding with N (n, k) as introduced in (8)) denotes the number of di�erent ways of merg-7

ing n blocks in r groups speci�ed by k, and λn,k, λn are given by (9, 10, 11).8

Now we state our main theorem, which contains the recursion for p(n)[k, i] needed to9

compute E(Ξ)
[
B

(n)
i

]
. The theorem holds for all Ξ-n-coalescents whose block-counting process10

visits every possible state with positive probability, which is true of all examples of Xi-11

coalescents that we consider. The assumption is not very restrictive, since it excludes only12

degenerate cases where the measure Ξ is concentrated on a vertex of the in�nite simplex ∆0,13

see Proposition 6 in the Appendix for a precise formulation.14

Theorem 2. [15] Let {Π(Ξ,n)
t , t ≥ 0} be a Ξ-n-coalescent with transition rates (12) such that15

the corresponding block-counting process hits every k ∈ [n] with positive probability. Then,16

for 2 ≤ k ≤ n and 1 ≤ i ≤ n− k + 1, we have17

p(n)[k, i] =
n−1∑
m=k

g(m, k)

g(n, k)

∑
|ν|m=n

ν=〈α1,...〉

p(n)
ν

i∧(m−k+1)∑
j=1

∑
%⊂ ν
|%| j=i

%=〈β1,...〉

p(m)[k, j]

∏
`

(
α`
β`

)(
m
j

) , (26)

19
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with the boundary cases p(n)[n, i] = 1(i=1).1

A proof is provided in the Appendix, along with a necessary and su�cient condition for2

the block-counting process to hit state k ∈ [n] with positive probability (see Proposition 6).3

4

The recursion (26) for p(n)[k, i] simpli�es when one restricts to Ξ-coalescents with at most5

M ≥ 2 simultaneous mergers (M = 1 simply gives a Lambda-coalescent), as shown in Cor.6

3. Before we state Cor. 3, we brie�y review ordered mergers. The computations are more7

e�cient for Xi-coalescents restricted to at most M simultaneous mergers, and when one8

considers ordered mergers rather than partitions of integers. Let9

MM(n,m) := {k = (k1, . . . , kr) : r ∈ [M ], ki ∈ N, k1 ≥ . . . ≥ kr ≥ 2,m = n− |k|+ r} (27)

denote the set of single and up to M simultaneous ordered mergers by which the block-10

counting process can jump from n ≥ 2 to m ∈ [n − 1] blocks in r ∈ [M ] mergers. The set11

MM(n,m) corresponds to the set of all integer partitions |ν| m= n such that, if ν = 〈γ1, γ2, . . .〉,12

we have
∑

j≥2 γj = m− γ1 ∈ [M ]. Indeed, for 1 ≤ m < n, we have a bijection13

{ν = 〈γ1, γ2, . . .〉 : |ν| m= n,m− γ1 ≤M} 3 ν 7→ (ν1, . . . , νrν ) ∈MM(n,m),

with rν := max{j : νj ≥ 2} = m − γ1, for ν = 〈γ1, γ2, . . .〉. Obviously, the inverse bijection14

is given by15

MM(n,m) 3 k 7→ ν := (k1, k2, . . . , kr, 1, . . . , 1︸ ︷︷ ︸
m−r times

).

Informally, ordered mergers are just integer partitions where all elements equal to one are16

omitted.17

For ease of presentation, we will also writeMM(n,m) 3 µ = (α) ≡ (α2, α3, . . .) where αj18

denotes the number of occurrences of mergers of size j in µ. By γ = (β) ⊂ µ = (α) we denote19

a submerger γ of µ where βj ≤ αj for all j, including the case βj = 0. Finally, the size of20

µ = k ∈MM(n,m) is just the length of the sequence k, i.e. #µ = r for µ = k = (k1, . . . , kr).21

20
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If µ is the ordered merger corresponding to some integer partition ν = 〈γ1, γ2, . . .〉, |ν| m= n1

as above, then #ν = m = #µ+ γ1.2

Corollary 3. Let {Π(Ξ,n)
t , t ≥ 0} be a Ξ-n-coalescent with transition rates (12) such that3

at most M ≥ 2 simultaneous mergers are possible, and such that the corresponding block-4

counting process hits every k ∈ [n] with positive probability. Then, for 2 ≤ k ≤ n and5

1 ≤ i ≤ n− k + 1, we have6

p(n)[k, i] =
n−1∑
m=k

g(m, k)

g(n, k)

∑
µ∈MM (n,m)

µ= (α)

p(n)
µ

·
i∧(m−k+1)∑

j=1

∑
γ⊂µ

γ∈MM (i,j)
γ= (β)

p(m)[k, j]

(
m

j

)−1∏
`≥2

(
α`
β`

)(
m−#µ

j −#γ

)
,

(28)

with the boundary cases p(n)[n, i] = 1(i=1).7

Informally, the �rst sum in recursion (28) is over the number of blocks the block-counting8

process can jump to, given that it starts in n, and conditioned on it hits k. The second sum9

is over all (up to M simultaneous) mergers (µ) in which one can jump from n to m blocks,10

and the last sum is over all the ways mergers involving the i leaves can be nested within11

each given merger µ.12

Corollary 3 is simply another way of representing p(n)[k, i] (26) (see Thm. 2) in terms of13

ordered mergers. The switch in focus to ordered mergers from integer partitions obliviates14

the need to keep track of all the 1s. Also, since we restrict to Ξ-coalescents which admit at15

most M simultaneous mergers, the required mergers can be generated quite e�ciently.16

The computation of p(n)[k, i] can be checked by noting that for each �xed n ≥ 2, and17

with 2 ≤ k ≤ n,
∑

i p
(n)[k, i] = 1. One can also compute E(Ξ)

[
B

(n)
1

]
with a simple recursion18

as follows. Let E(Ξ)
[
B

(n, i)
1

]
denote the expected length of i external branches, given n ≥ 219

active blocks; ie. when we start from n active blocks, i of which are singleton blocks. De�ne,20

21
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for all n ∈ N, n ≥ 2,1

Cn : = {k = (k1, . . . , kr) : r ∈ [M ], ki ∈ N, k1 ≥ . . . ≥ kr ≥ 2, |k| ≤ n}

=
n−1⋃
m=1

MM(n,m)
(29)

as the set of all ordered (up to M simultaneous) mergers given n active blocks, where2

MM(n,m) was de�ned in (27).3

Lemma 4. Let {Π(Ξ,n)
t , t ≥ 0} be a Ξ-n-coalescent with transition rates (12) such that at4

most M simultaneous mergers are possible. With λn given by (10, 11), let Cn be given by5

(29), and let p
(n)
k denote the probability of merger k when the number of active blocks is n.6

Then,7

E(Ξ)
[
B

(n, i)
1

]
=

i

λn
+
∑
k∈Cn

p
(n)
k

i∧|k|∑
j=(i−n+|k|)+

(
n

|k|

)−1(
i

j

)(
n− i
|k| − j

)
E(Ξ)

[
B

(n−|k|+r, i−j)
1

]
(30)

with the boundary condition E(Ξ)
[
B

(n, 0)
1

]
= 0.8

Numerical results9

Expected branch lengths E(Π)
[
B

(n)
i

]
10

Under the in�nitely many sites mutation model, the expected site-frequency spectrum is11

given by E(Π)
[
ξ

(n)
i

]
= θE(Π)

[
B

(n)
i

]
where θ > 0 is the appropriately scaled mutation rate.12

Hence, it su�ces to consider E(Π)
[
B

(n)
i

]
in a comparison of the site-frequency spectrum13

associated with di�erent coalescent models. In Figure 2, we consider the 4-fold Ξ-coalescent,14

when the measure F in (14) is associated with the beta-density, with α ∈ [1, 2) [41],15

F (dx) =
x1−α(1− x)α−1

B(2− α, α)
dx, x ∈ [0, 1]. (31)

22
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The range of α is the interval [1, 2), since for α ∈ [1, 2), one obtains a Lambda-Beta coalescent1

from a supercritical branching population model [41]. We do not have a microscopic diploid2

population model which explicitly yields a Xi-Beta coalescent. However, the results of [34]3

indicate that such a process should exist. Also, the Lambda-Beta coalescent is one of the most4

studied examples of Lambda-coalescents. However, the existence of the Xi-Dirac coalescent5

was proved by [9]. The expected branch lengths associated with a Lambda-coalescent with F -6

measure (31), as well as the Kingman coalescent, are also shown in Figure 2 for comparison.7

We consider the normalised expected spectrum8

ϕ
(n,Π)
i :=

E(Π)
[
B

(n)
i

]
E(Π) [B(n)]

, i ∈ [n− 1], (32)

in which E(Π)
[
B(n)

]
is the expected total size of the genealogy

(
B(n) := B

(n)
1 + · · ·+B

(n)
n−1

)
.9

De�ne R(n)
i :=

B
(n)
i

B(n) . Let ξ(n) := ξ
(n)
1 + · · · + ξ

(n)
n−1 denote the (random) total number of10

segregating sites, and de�ne the normalised spectrum ζ
(n)
i :=

ξ
(n)
i

ξ(n)
(with ζ(n)

i ≡ 0 if ξ(n) = 0).11

The reasons for our preference for ϕ(n,Π)
i over E(Π)

[
ξ

(n)
i

]
are the following. The quantity12

ϕ
(n,Π)
i , which is an approximation of the expected normalised spectrum E(Π)

[
ζ

(n)
i

]
is, clearly,13

not a function of the mutation rate θ. The expected normalised spectrum E(Π)
[
ζ

(n)
i

]
is well14

approximated by E(Π)
[
R

(n)
i

]
, and is also quite robust to changes in mutation rate, if the15

mutation rate is not very small [22]. Since ϕ(n,Π)
i is a decent approximation of E(Π)

[
R

(n)
i

]
16

(results not shown), ϕ(n,Π)
i is therefore a good approximation of E(Π)

[
ζ

(n)
i

]
. One can therefore17

use ϕ(n,Π)
i to estimate coalescent parameters, for example by minimising sum-of-squares,18

without the need to jointly estimate the mutation rate.19

Refer to a Xi-coalescent with marginal (single-locus) rate described by Eq. (14) in [9]20

as the Xi-Dirac-Kingman coalescent. This corresponds to a process with coalescent rates21

given by (14), where the measure F has an atom at some ψ ∈ (0, 1), but there is an22

additional atom at 0, which represents the `Kingman component'. This process was derived23

by [9] in connection with ancestral recombination graphs involving multiple loci, in which24

simultaneous multiple mergers are admitted. In some cases, even for ψ close to 1, the25

23
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associated ϕ(n,Π)
i is very similar to ϕ(n,K)

i (results not shown).1

In Figure 2 the ϕ(n,Π)
i for corresponding Lambda-Beta and Xi-Beta coalescents are com-2

pared. As Figure 2 shows, the two processes predict di�erent patterns of the site-frequency3

spectrum, at least for α ∈
[
1, 3

2

]
. Both processes can predict a signi�cant excess of singletons4

relative to the Kingman coalescent.5

Similar conclusions can be reached from Figure 3, in which the measure F is given by6

the Dirac-measure F (dx) = δψ(x)dx for some ψ ∈ [0, 1] (no Kingman component). The7

Xi-Dirac-coalescent, for ψ = 0.95, displays a multimodal graph of ϕ(n,Π)
i , but the relative8

`height' of the modes is small (< 1% of the total expected length). As well as an excess of9

singleton polymorphisms, [2] observe multi-modality, or small `bumps', in the site-frequency10

spectrum associated with the Ckma gene in Atlantic cod.11

24
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Figure 2: The relative expected lengths ϕ(n,Π)
i (32) for n = 100 and coalescent process Π

as follows: L(a) denotes the Lambda-Beta coalescent with parameter value a (α) as shown,
and X(a) denotes the Xi-Beta coalescent with parameter value a (α) as shown. In A, only
the �rst 4 classes are shown; in B, the remaining classes.
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Figure 3: The relative expected lengths ϕ(n,Π)
i (32) for n = 100 and coalescent process Π as

follows: L(p) denotes the Lambda-Dirac coalescent with parameter value p (ψ) as shown,
and X(p) denotes the Xi-Dirac coalescent with parameter value p (ψ) as shown. In A, only
the �rst 4 classes are shown; in B, the remaining classes.
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Coalescent parameter estimates1

As Figures 2 and 3 indicate, Xi- and Lambda-coalescents predict di�erent site-frequency2

spectra. In Table 2 we record parameter estimates obtained when the `data' are branch3

lengths Bi simulated under either a 4-fold Xi-coalescent (14) or a Lambda-coalescent (5)4

with parameter values as shown. However, we consider an extensive comparison of di�erent5

examples of the large class of Xi-coalescent beyond the scope of the current work. Let6

ϑ denote a generic coalescent parameter. If 0 ≤ ϑ < 1, Ξ(ϑ) denotes a 4-fold Xi-Dirac7

coalescent, with F -measure F (dx) = δϑ(x)dx in (14), and Λ(ϑ) a Lambda-Dirac coalescent.8

If ϑ ∈ [1, 2), Ξ(ϑ) denotes a 4-fold Xi-Beta coalescent, and Λ(ϑ) a Lambda-Beta coalescent.9

Estimates of ϑ attributed to coalescent process Π2 are obtained with an `2 norm applied to10

the normalised lengths Ri := Bi
B
(where we drop the superscript `(n)') drawn from coalescent11

process Π1, and ϕ
(n,Π2)
i ,12

`2(Π1,Π2) =

√√√√n−1∑
i=1

(
Ri − ϕ(n,Π2)

i

)2

. (33)

If the Bi are drawn from a Xi-Dirac coalescent (Π1), we estimate ϑ associated with a Lambda-13

Dirac coalescent (Π2), and vice versa. If the Bi are drawn from a Xi-Beta coalescent (Π1),14

we estimate ϑ associated with a Lambda-Beta coalescent (Π2), and vice versa. The `2 norm15

(33) is appealing since it makes no assumptions about the distribution of Ri. In contrast, the16

Poisson Random Field (PRF) model [39] assumes Poisson distribution of mutation counts.17

Indeed, [16] prove that the law of the joint site-frequency spectrum converges, in the limit18

of in�nite sample size, to that of independent Poissons, when associated with the Kingman19

coalescent. The asymptotic results of [4, 6, 5] show that multiple-merger coalescents belong20

to completely di�erent asymptotic regimes than the PRF model assumes.21

A more suitable distance statistic, similar to the Gξ statistic suggested by [25, Eq. (8)],22

could be23

d(Π1,Π2) =

√√√√n−1∑
i=1

(Ri − E(n,Π2) [Ri])
2

V(n,Π2) [Ri]
, (34)

where V(n,Π2) [Ri] denotes the variance of Ri computed with respect to Π2. However, we can24
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neither represent V(n,Π2) [Ri] nor E(n,Π2) [Ri] as simple functions of ϑ or n. In actual appli-1

cations, one would replace Ri in (34) with ζi := ξi
ξ
, the normalised site-frequency spectrum2

(normalised by the total number of segregating sites ξ).3

As Table 2 shows, a Lambda-Dirac coalescent underestimates ψ when the data are gen-4

erated by a Xi-Dirac coalescent, and Lambda-Beta overestimates α when the data are gener-5

ated by a Xi-Beta coalescent. When we switch the generation of data from Xi- to Lambda-6

coalescents, we reach the opposite conclusions. A Xi-Dirac coalescent overestimates the7

parameter (ψ) when the data are generated by a Lambda-Dirac coalescent, and the Xi-Beta8

coalescent underestimates α when the data are generated by a Lambda-Beta coalescent. The9

`2 norm (33) recovers the true parameter values reasonably well when the model is correctly10

speci�ed (Table 4).11

The di�erence between the corresponding Xi- and Lambda-coalescents are further illus-12

trated in Figure 4, in which the distance between the normalised expected spectra ϕ(n,Π)
i13

(32), with Π as shown, is quanti�ed by the `2 norm (33). The graphs in Figure 4 show14

clearly that even when the parameters associated with the corresponding Xi- and Lambda-15

coalescents are the same, the di�erence in ϕ(n,Π)
i can be substantial (except of course when16

the Lambda-coalescent is the Kingman coalescent; which happens when α = 2 or ψ = 0).17

The di�erence in estimates between corresponding Lambda- and Xi-coalescents may be18

understood from the way the Xi-coalescent process is constructed. Indeed, given k blocks19

drawn from the associated Lambda-coalescent, we see one k-merger with probability 41−k,20

which quickly becomes small as k increases. A much more likely outcome is for the blocks to21

become (evenly) distributed into four groups. The e�ect on the genealogy of drawing a large22

number k is thus reduced in a Xi-coalescent relative to the corresponding Lambda-coalescent.23

C code written for the computations is available at http://page.math.tu-berlin.de/24

~eldon/programs.html.25
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Table 2: Estimates of coalescent parameter ϑ, obtained by the use of the `2 norm (33),
when the `data' (branch lengths of a realized genealogy) are obtained by a Lambda- (Λ(ϑ))
or a Xi-coalescent (Ξ(ϑ)) as shown. In the top half, the `data' is generated by a 4-fold
Xi-coalescent with parameter value as shown, and a parameter estimate obtained for the
corresponding Lambda-coalescent. In the bottom half, branch lengths are generated from a
Lambda-coalescent with parameter values as shown, and parameter estimates obtained for
the corresponding 4-fold Xi-coalescent. Parameter estimates (mean ϑ; standard deviation
ϑ̂) obtained for n = 50 leaves from 104 replicates. Estimates were obtained over the grids
{0.0, 0.05, . . . , 0.95} and {1.0, 1.05, . . . , 1.95}.

Π(ϑ) ϑ ϑ̂
Ξ(0.05) 0.02 0.029
Ξ(0.95) 0.30 0.225
Ξ(1.0) 1.44 0.257
Ξ(1.5) 1.70 0.208
Λ(0.05) 0.23 0.144
Λ(0.95) 0.95 0.035
Λ(1.0) 1.01 0.041
Λ(1.5) 1.20 0.256

29

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 6, 2016. ; https://doi.org/10.1101/025684doi: bioRxiv preprint 

https://doi.org/10.1101/025684


Figure 4: The distance between ϕ(n,Ξ-Beta)
i (32) and ϕ(n,Λ-Beta)

i (A) as quanti�ed by the `2

norm (33); the distance between ϕ(n,Ξ-Dirac)
i and ϕ(n,Λ-Dirac)

i (B) as quanti�ed by the `2 norm.
The number of leaves n = 50. Values were computed over the grid {1.0, 1.025, . . . , 2} when
associated with the Beta-coalescent (A); and {0, 0.025, . . . , 0.975} when associated with the
Dirac-coalescent (B).
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Application to Atlantic cod data1

Atlantic cod is a diploid highly fecund marine organism, whose reproduction is potentially2

characterised by a skewed o�spring distribution [1, 2]. Since Xi-coalescents can arise from3

diploid population models which admit skewed o�spring distributions [34, 9], one should4

analyse population genetic data of autosomal loci in diploid highly fecund populations with5

Xi-coalescent models. Indeed, [2] obtain population genetic data at three autosomal loci6

from Atlantic cod. We use the `2-norm (33) to �t (see Table 3) the 4-fold Xi-Beta and 4-fold7

Xi-Dirac coalescents to the unfolded site-frequency spectrum (USFS) of Ckma, Myg, and8

HbA2 genes obtained by [2]. The 4-fold Xi-coalescents correspond to a diploid population9

in which one successful pair of parents contributes o�spring in each generation.10

The USFS of the autosomal genes Ckma, Myg, and HbA2 are all characterised by a high11

relative amount of singletons. Thus, singletons have the most weight in our estimate, in12

particular since we do not calibrate the di�erence between observed and expected values by13

the variance. The estimates of α associated with the Xi-Beta coalescent are therefore all14

at 1.0, which we attribute to the excessive amount of singletons. The excessive amount of15

singletons also increases the estimate of ψ associated with the Xi-Dirac coalescent. In par-16

ticular, our Xi-based estimates of ψ are higher than the Lambda-based estimates (Table 3).17

Possibly the Xi-coalescent assigns less mass to the external branches than the correspond-18

ing Lambda-coalescent for a given parameter value, but the exact shift in mass may vary19

between di�erent Xi-coalescents. The Xi-Dirac coalescent is able to predict the excessive20

amount of singletons, the Xi-Beta coalescent much less so (Figures 5�6).21

Our estimates of ψ for the combined data on Ckma are smaller than for the partitioned22

data (into A and B alleles), and for the supposedly neutral loci Myg and HbA2. [2] also23

observe a similar pattern. Of the three loci, the Xi-coalescents give best �t to the Ckma data.24

In view of the modes in the right tail of the USFS for Ckma, [2] conclude that Ckma is under25

strong selection. Even though the Xi-Dirac coalescent does show multi-modal spectrum26

(Figure 3), the modes are small relative to the expected length of external branches, and do27

not quite explain the modes observed for Ckma (Figure 6).28
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Table 3: Parameter estimates (α̂, ψ̂) obtained by minimising the `2-norm (33) for the unfolded
site-frequency spectrum of Atlantic cod data [2]. Parameter α associated with the Xi-Beta
and the Lambda-Beta coalescent was estimated over the grid {1.0, 0.05, . . . , 1.95}, and ψ
associated with the Xi-Dirac and the Lambda-Dirac coalescent was estimated over the grid
{0.0, 0.05, . . . , 0.95}.

Xi-coalescents

locus sample size seg. sites α̂ `2 (α̂) ψ̂ `2

(
ψ̂
)

Ckma 122 91 1.0 0.08 0.30 0.10
CkmaA 43 47 1.0 0.21 0.65 0.12
CkmaB 79 55 1.0 0.18 0.50 0.13
Myg 45 29 1.0 0.27 0.80 0.14
HbA2 114 11 1.0 0.34 0.80 0.13

Lambda-coalescents
Ckma 122 91 1.25 0.07 0.05 0.12
CkmaA 43 47 1.1 0.13 0.15 0.11
CkmaB 79 55 1.1 0.08 0.15 0.13
Myg 45 29 1.0 0.10 0.20 0.14
HbA2 114 11 1.0 0.19 0.25 0.13
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Figure 5: Comparison of observed (χi; ◦) and expected
(
ϕ

(n,Π)
i ;�,N

)
(32) normalised site-

frequency spectrum for Myg and HbA2 [2] with 4-fold Xi-coalescent process as shown. The
associated parameter values are given in Table 3. In A, the observed and expected values
for the Myg gene are compared; in B for the HbA2 gene.
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Figure 6: Comparison of observed (χi; ◦) and expected
(
ϕ

(n,Π)
i ;�,N

)
(32) normalised site-

frequency spectrum for Ckma [2] with 4-fold Xi-coalescent process as shown. The associated
parameter values are given in Table 3. In A, all the CkmA sequences are included; in B,
only the A allele is considered; in C, only the B allele is considered.
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Discussion1

We prove recursions for the expected site-frequency spectrum associated with Xi-coalescents2

which admit simultaneous multiple mergers of active ancestral lineages (blocks of the current3

partition). We give a class of Xi-coalescents which is `driven' by a �nite measure (a Lambda-4

measure) on the unit interval, which determines the law of the total number of active lineages5

which may merge each time. This class of Xi-coalescents can be applied to populations of6

arbitrary ploidy. We apply the recursions to compare estimates of coalescent parameters7

between Lambda- and Xi-coalescents. Finally, we estimate coalescent parameters associated8

with Xi-coalescents for Atlantic cod where the data are the unfolded site-frequency spectrum9

on autosomal loci.10

The framework we develop will allow us to extend the recursions to more complicated11

scenarios, such as populations structured into discrete subpopulations [21, 31], or possibly12

by considering some sort of continuous distribution in space [3]. However, one would ex-13

tend the recursions to such more structured frameworks at the high risk of increasing their14

computational complexity.15

Computing the full expected site-frequency spectrum for a 4-fold Xi-coalescent with sam-16

ple size n ≥ 100 takes unfortunately a bit of time (on the order of hours). We do not provide17

detailed analysis, but the time can be shortened by considering the lumped site-frequency18

spectrum, where one would collect all classes of size larger than some number m � n into19

one class. How such lumping would a�ect the inference remains to be seen. However, one20

can analyse small samples (n ≤ 100) with our recursions, as we provide an example of.21

Exact likelihood methods in the spirit of [8] are yet to be developed for Xi-coalescents, and22

will likely be computationally intensive. In a very recent preprint, [43] introduce a di�erent23

method to compute the expected SFS associated with Xi-coalescents. The method of [43] is24

claimed to be approximately n2 faster than our method, where n is sample size.25

Our simple method of minimising the deviation between observed and expected values of26

the unfolded site-frequency spectrum should not be applied in a formal test procedure, since27

we do not scale the deviations by the corresponding variance. We do not give recursions for28
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the (co)-variances of the site-frequency spectrum associated with Xi-coalescents, as these will1

very likely be too computationally intensive to be useful. This has already been shown to2

be the case for the much simpler Lambda-coalescents [10]. Our recursions provide a way to3

distinguish between Xi-coalescents and other demographic e�ects such as population growth,4

with the use of approximate likelihoods [22].5

We obtain estimates of coalescent parameters associated with Xi-coalescents for data on6

autosomal loci of Atlantic cod [2]. Our estimates di�er from previous estimates obtained7

with the use of Lambda-coalescents [2], due to the simultaneous merger characteristic of8

Xi-coalescents. Regardless of exact estimates, our results, coupled with those of [2], suggest9

that multiple merger coalescents might be the proper null model with which to analyse10

population genetic data on Atlantic cod, as well as other populations which may exhibit11

high fecundity coupled with skewed o�spring distribution (HFSOD). Our speci�c examples12

of Xi-coalescents may well represent an oversimpli�cation of the actual mating schemes; ie.13

assuming only one successful couple contributes o�spring in each generation. However, one14

could use the framework of [14] to develop new examples of Xi-coalescents for speci�c mating15

schemes, for example when one successful female produces o�spring with many males.16

Rigorous inference methods to distinguish the e�ects of HFSOD from selection are yet17

to be developed. The common notion is that selective sweeps lead to an excess of singletons.18

The main genetic signature of HFSOD is also an excess of singletons. The unfolded site-19

frequency spectrum of the Ckma gene [2] is trimodal, with an excess of singletons, and small20

modes of mutations of larger size. These smaller modes are not captured by the examples21

of Xi-coalescents that we apply. Durrett and Schweinsberg [42, 20] use a stick-breaking22

construction to obtain a good approximation (≤ O(1/(log(N))2)) to a selective sweep where23

N denotes the population size. [2] conclude that Ckma is under a form of balancing selection.24

Our examples of Xi-coalescents also give best �t to the Ckma gene of the three loci studied by25

[2], although our method does not constitute a formal test. We refer to [2] for more detailed26

discussion of the variation observed at Ckma, and the supposedly neutral nuclear loci Myg27

and HbA2. The congruence between our Xi-coalescent examples and Ckma, and between Xi-28
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coalescents and selective sweeps studied by [42, 20], and the di�erent site-frequency spectra1

predicted by Lambda- and Xi-coalescents, leads us to conclude that Xi-coalescents form an2

important class of mathematical objects.3
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Appendix8

Proof of recursion (26) for p(n)[k, i] (Thm. 2)9

The requirement p(n)[n, 1] = 1 is obvious (therefore p(n)[n, k] = 0 for all k > 1). From10

now on, we consider the case 1 < k < n. By PN we denote the set of all partitions of11

N := {1, 2, . . .}. Let Π ≡ {Πt, t ≥ 0} be a PN-valued exchangeable coalescent, de�ned on the12

probability space (Ω,F ,P). By Π(n) ≡
{

Π
(n)
t , t ≥ 0

}
we denote the projection of Π onto Pn,13

which will be associated with coalescent processes started from n ≥ 2 leaves. De�ne14

τ
(n)
k := inf

({
t > 0|#Π

(n)
t = k

}
∪ {∞}

)
, (35)

ie. the �rst time the block counting process associated with Π(n) hits state k, with τ (n)
n = 0.15

Let16

Ω
(n)
k := {τ (n)

k <∞}.

Recall that we assume that P
(
τ

(n)
k <∞

)
> 0 for each k ∈ [n]. Thus we can de�ne the con-17

ditional law P(n)
k (·) := P

(
·|Ω(n)

k

)
. On the conditional probability space

(
Ω

(n)
k ,F|

Ω
(n)
k
,P(n)

k

)
,18

we sample uniformly at random a block π0 from the blocks of Π
(n)

τ
(n)
k

, ie. π0(ω) ∈ Π
(n)

τ
(n)
k

(ω) for19
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ω ∈ Ω
(n)
k . Then we can write1

p(n)[k, i] = P(n)
k (#π0 = i) . (36)

We de�ne the �rst jump time τ of the block-counting process2

τ := inf
{
t > 0 : #Π

(n)
t < n

}
.

Now consider some k ≤ m < n, and partition |ν| m= n, ie. an integer partition ν of n into m3

elements. De�ne4

Ω
(n,ν)
k :=

{(
Π(n)
τ

)↓
= ν

}
∩ Ω

(n)
k

(recall that π↓ denotes the integer partition associated to π ∈ P[n] obtained by listing the5

block sizes of π in decreasing order). Then it is clear that we have the decomposition6

Ω
(n)
k =

n−1⋃
m=k

⋃
|ν|m=n

Ω
(n,ν)
k . (37)

We de�ne the conditional law P(n,ν)
k (·) := P

(
·|Ω(n,ν)

k

)
.7

For each ω ∈ Ω
(n,ν)
k , we de�ne the set of blocks8

π(ν,0)(ω) :=
{
πj ∈ Π(n)

τ (ω) : πj ⊆ π0, j ∈ [m]
}
, ω ∈ Ω

(n,ν)
k . (38)

The set of blocks π(ν,0)(ω) contains all blocks of the partition Π
(n)
τ (ω) that will eventually9

merge into the block π0(ω).10

For any integer subpartition % = 〈β1, β2, . . .〉 ⊂ ν = 〈α1, α2, . . .〉, we need to be able to11

compute the probability P(n,ν)
k

((
π(ν,0)

)↓
= %
)
on Ω

(n,ν)
k . Indeed,12

P(n,ν)
k

((
π(ν,0)

)↓
= %
)

=P(n,ν)
k

((
π(ν,0)

)↓
= % |#π(ν,0) = #%

)
· P(n,ν)

k

(
#π(ν,0) = #%

)
=1(#%≤#ν−k+1) · p(#ν)[k,#%]

∏
`

(
α`
β`

)(
#ν
#%

) .
(39)
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The event
{(
π(ν,0)

)↓
= %
}

states that the sizes of the blocks of π(ν,0) are given by the1

integer subpartition %. Equation (39) follows from the exchangeability of Π, and the form2

of the probability density function of the multivariate hypergeometric distribution, which3

applies to the event of sampling β` blocks from α` for each `, for a total of #% out of #ν.4

The condition #% ≤ #ν− k+ 1 is required since we condition on the block counting process5

to hit k blocks.6

Given (39) we can compute P(n,ν)
k (#π0 = i). Indeed, the decomposition7

{#π0 = i} ∩ Ω
(n,ν)
k =

⋃
%⊂ ν
|%|= i

{(
π(ν,0)

)↓
= %
}

(where the union is disjoint) together with (39) gives8

P(n,ν)
k (#π0 = i) =

∑
%⊂ ν
|%|= i

P(n,ν)
k

(
(π(ν,0))↓ = %

)

=
∑
%⊂ν
|%|=i

1(#%≤#ν−k+1) · p(#ν)[k,#%]

∏
`

(
α`
β`

)(
#ν
#%

)
=

i∧(#ν−k+1)∑
j= 1

∑
%⊂ ν
|%| j= i

p(#ν)[k, j]

∏
`

(
α`
β`

)(
#ν
j

) .

(40)

Given Equation (40) one can now compute p(n)[k, i]: by the decomposition (37), we obtain9

p(n)[k, i] =P(n)
k (#π0 = i)

=
n−1∑
m= k

∑
|ν|m=n

P(n)
k

(
{#π0 = i} ∩ Ω

(n, ν)
k

)

=
n−1∑
m= k

∑
|ν|m=n

P(n)
k

(
Ω

(n, ν)
k

)
P(n)
k

(
#π0 = i |Ω(n, ν)

k

)

=
n−1∑
m= k

∑
|ν|m=n

P(n)
k

(
Ω

(n, ν)
k

)
P(n, ν)
k (#π0 = i) .

(41)

43

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 6, 2016. ; https://doi.org/10.1101/025684doi: bioRxiv preprint 

https://doi.org/10.1101/025684


We apply Lemma 5 (stated and proved below) to P(n)
k

(
Ω

(n, ν)
k

)
and Equation (40) to1

P(n, ν)
k (#π0 = i) to obtain2

p(n)[k, i] =
n−1∑
m= k

∑
|ν|m=n

p(n)
ν

g(m, k)

g(n, k)

i∧(m−k+1)∑
j= 1

∑
%⊂ ν
|%| j= i

p(m)[k, j]

∏
`

(
α`
β`

)(
m
j

) .

�3

Proof of computation of P(n)
k

(
Ω

(n, ν)
k

)
(Lemma 5)4

Let Ω
(n, ν)
k , P(n)

k (·), τ (n)
k (35) and τ be as de�ned in the proof for Thm. 2. Recall further that5

p
(n)
ν := P

(
(Π

(n)
τ )↓ = ν

)
, see Equation (25).6

By
{
Y

(n)
t ; t ≥ 0

}
, Y (n)

t := #Π
(n)
t we denote the block-counting process associated with7

Π(n), starting from n. Let g(n, k) denote the expected length of time that Y (n)
t spends in8

state k ≤ n,9

g(n, k) := E
[∫ ∞

0

1(
Y

(n)
s = k

)ds
]
. (42)

Clearly, g(k, k) = 1
λk

= −qπ,π where #π = k, see (12).10

Lemma 5. For k ≤ m < n and |ν| m= n, assuming P
(
τ

(n)
k <∞

)
> 0, we have11

P(n)
k

(
Ω

(n, ν)
k

)
≡ P(n)

k

(
(Π(n)

τ )↓ = ν
)

= p(n)
ν

g(m, k)

g(n, k)
, (43)

where g(· , ·) is de�ned in (42).12

44

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 6, 2016. ; https://doi.org/10.1101/025684doi: bioRxiv preprint 

https://doi.org/10.1101/025684


Proof. Assuming P
(
τ

(n)
k <∞

)
> 0, one obtains1

P(n)
k

(
(Π(n)

τ )↓ = ν
)

=

P
({(

Π
(n)
τ

)↓
= ν

}
∩
{
τ

(n)
k <∞

})
P
(
τ

(n)
k <∞

)

=P
(
(Π(n)

τ )↓ = ν
) P
(
τ

(n)
k <∞

∣∣∣ (Π
(n)
τ

)↓
= ν

)
P
(
τ

(n)
k <∞

)
= p(n)

ν

P
(
τ

(m)
k <∞

)
P
(
τ

(n)
k <∞

) ,

(44)

where we use #ν = m and apply the strong Markov property of the process
(
Π(n)

)↓
at time2

τ to obtain the last equality.3

Now we consider g(m,k)
g(n,k)

, and obtain4

g(m, k)

g(n, k)
=

E
[∫∞

0
1(

Y
(m)
s =k

)ds | τ (m)
k <∞

]
P
(
τ

(m)
k <∞

)
E
[∫∞

0
1(

Y
(n)
s =k

)ds | τ (n)
k <∞

]
P
(
τ

(n)
k <∞

)

=

E
[∫∞

τ
(m)
k

1(
Y

(m)
s =k

)ds | τ (m)
k <∞

]
P
(
τ

(m)
k <∞

)
E
[∫∞

τ
(n)
k

1(
Y

(n)
s =k

)ds | τ (n)
k <∞

]
P
(
τ

(n)
k <∞

)
=
g(k, k)

g(k, k)

P
(
τ

(m)
k <∞

)
P
(
τ

(n)
k <∞

) ,

(45)

where we use the strong Markov property of the block-counting process in the last step. Now5

the statement follows from (44) and (45).6

�7

45

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 6, 2016. ; https://doi.org/10.1101/025684doi: bioRxiv preprint 

https://doi.org/10.1101/025684


Proof of recursion (23) for g(n, k) (Lemma 1)1

Proof. For n ≥ 2, let λn := −qπ,π with qπ,π given by (12), and #π = n. Again write2

Y
(n)
t := #Π

(n)
t for the block-counting process starting from n.3

Let τ := inf
{
t > 0 : Y

(n)
t < n

}
denote the �rst jump time of the block-counting process,4

and let pn,m := P
(
Y

(n)
τ = m

)
, m ≤ n− 1. For k = n, one obtains5

g(n, n) = E
[∫ ∞

0

1(
Y

(n)
s =n

)ds
]

= E[τ ] = λ−1
n ,

and (24) is established. For k < n, we decompose according to the value of the block-counting6

process after the �rst jump and obtain7

g(n, k) = E
[∫ ∞

0

1(
Y

(n)
s =k

)ds
]

=
n−1∑
m=k

E
[∫ ∞

τ

1(
Y

(n)
s =k

)ds∣∣∣Y (n)
τ = m

]
P
(
Y (n)
τ = m

)
=

n−1∑
m=k

E
[∫ ∞

0

1(
Y

(m)
s =k

)ds
]
pn,m

=
n−1∑
m=k

pn,m g(m, k),

where we use the strong Markov property of Y in the second-to-last equality. Thus (23) is8

established.9

Proof of Equation (14)10

Fix m ≥ 2, k := (k1, . . . , kr) with k1 ≥ . . . ≥ kr ≥ 2, r ∈ [M ], and let |k| := k1 + · · · + kr,11

s := m− |k| = m− k1 − · · · − kr. Then we have to prove that12

λm,k =

s∧ (M−r)∑
`= 0

(
s

`

)
(M)r+`M

−(|k|+`)
∫

[0,1]

x|k|+`−2(1− x)s−`F (dx).
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Let ∆ denote the in�nite simplex, and recall the function f from (7) used to describe the1

rates (12) of a Xi-coalescent. We de�ne the map h(m,k) : ∆ 3 ξ 7→ f(ξ,m, k) ∈ R. We then2

have that the rate of a k-merger is given by3

λm,k =

∫
ξ∈∆

h(m,k)(ξ) Ξ(dξ). (46)

Since supp(Ξ) ⊆ ∆M := {( x
M
, . . . , x

M︸ ︷︷ ︸
M times

, 0, 0, . . .) ∈ ∆ : x ∈ [0, 1]}, we can rewrite the rate in4

(46) as5

λm,k =
1

M

∫
x∈[0,1]

h(m,k)(
x
M
, . . . , x

M︸ ︷︷ ︸
M times

, 0, 0, . . .)F (dx). (47)

De�ne xi := x
M
1(i≤M). Then the integrand in (47) is given by6

s∑̀
=0

∑
i1 6=... 6=ir+`

(
s
`

)
xk1i1 · · · x

kr
ir
xir+1 · · · xir+`

(
1−∑j xj

)s−`
∑

j x
2
j

,

which is zero if r + ` > M . For r + ` ≤M , one obtains7

xk1i1 · · · x
kr
ir
xir+1 · · · xir+` =

x|k|+ `

M |k|+ `

for any choice of indices i1, . . . , ir+` which are all di�erent and smaller or equal toM . There-8

fore, with (a)n := a(a− 1) · · · (a− n+ 1) for n ∈ N, (a)0 := 1 denoting the falling factorial,9

we have10 ∑
i1 6=... 6=ir+`

xk1i1 · · · x
kr
ir
xir+1 · · · xir+` = 1(r+`≤M)

(M)r+`
M |k|+` x

|k|+`.

We note further that11

1−
∑
j

xj = 1− x,
∑
j

x2
j = M ·

( x
M

)2

=
x2

M
.
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Thus we get1

h(m,k)(
x
M
, . . . , x

M︸ ︷︷ ︸
M times

, 0, 0, . . .) =

s∧(M−r)∑
`=0

(
s

`

)
(1− x)s−`x|k|+`−2(M)r+`M

1−|k|−`,

and we can represent the rate λm,k as2

λm,k =
1

M

∫
x∈[0,1]

h(m,k)(
x
M
, . . . , x

M︸ ︷︷ ︸
M times

, 0, 0, . . .)F (dx)

=

s∧(M−r)∑
`=0

(
s

`

)
(M)r+`M

−(|k|+`)
∫
x∈[0,1]

x|k|+`−2(1− x)s−`F (dx).

This completes our proof. �3

A condition for the block-counting process to hit state k (Proposition4

6)5

We now give a necessary and su�cient condition for the block-counting process of a Ξ-n-6

coalescent to hit state k ∈ [n] with positive probabilty, i.e. for P(τ
(n)
k <∞) > 0, where τ (n)

k7

is de�ned as in (35).8

Proposition 6. Let n, k be positive integers satisfying n > k > 1, and let {Π(Ξ,n)
t , t ≥ 0} be9

a Ξ-n-coalescent. Let ∆ denote the in�nite simplex (6), and ∆0 := ∆ \ {(0, 0, . . .)}. Then10

P(τ
(n)
k <∞) > 0 holds if and only if supp(Ξ) 6⊂ {ζ ∈ ∆0 :

∑
i<k ζi = 1}.11

Coalescents that fail to satisfy the condition supp(Ξ) 6⊂ {ζ ∈ ∆0 :
∑

i<k ζi = 1} must12

have the property that the �rst merger-event will almost surely result in a state of less than13

k blocks, regardless of the value of n. Hence it follows that any m-coalescent which has14

a `Kingman part' (i.e. Ξ has mass at (0, 0, . . .)), or which admits at least k simultaneous15

mergers, must necessarily satisfy P(τ
(n)
k <∞) > 0.16

Proof. We consider the decomposition Ξ = a · δ(0,0,...) + Ξ0 into a Kingman part and a17

non-Kingman part, as used earlier in the paper.18
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In the case a > 0, the condition supp(Ξ) 6⊂ {ζ ∈ ∆0 :
∑

i<k ζi = 1} is satis�ed since1

(0, 0, . . .) 6∈ ∆0. Since there is a non-zero probability of the �rst m − k merger-events all2

being single binary mergers, it follows that P(τ
(n)
k <∞) > 0 must hold in this case.3

In the remainder of this proof, we shall concern ourselves with the case a = 0. We begin4

by considering the Poisson process construction of the Ξ-coalescent as outlined in [11, section5

1.4]. This corresponds to letting {Π(Ξ,n)
t , t ≥ 0} be driven by a Poisson point process N on6

[0,∞)×∆× [0, 1]n with intensity-measure7

dt⊗ Ξ0(dζ)∑
i ζ

2
i

⊗
(
1[0,1](t) dt

)⊗n
.

From a realization of the point process N , we then construct {Π(Ξ,n)
t , t ≥ 0} by considering8

the atoms of N (ω) in ascending order of the �rst coordinate. Given (t, (ζi)i=1,2,..., (ui)i=1,...,n)9

and Π
(Ξ,n)
t− = π ∈ Pn, we construct Π

(Ξ,n)
t = π′ as follows:10

• For i = 1, . . . , n let ji ∈ N ∪ {∞} be de�ned by

ji := min
{
j :

∑
k<j

ζk ≤ ui <
∑
k≤j

ζk

}
.

• For j = 1, 2, . . . (∞ not included), let

Ij := {i : ji = j}.

Let πi denote the ith block of π in order of least elements, and for all j = 1, 2, . . .11

merge all blocks with an index belonging to Ij, in order to obtain π′.12

In the following, we let

τ := inf{t > 0 : ∃ (ζ, u) ∈ ∆× [0, 1]n s.t. (t, ζ, u) ∈ supp(N )}

be an N -measurable stopping time corresponding to the time until the �rst event of N .113

1The de�nition of τ is in terms of N , and not in terms of Π(Ξ,n). As a consequence, we may have
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Since Ξ is a non-trivial measure, it follows that τ <∞ holds almost surely. Furthermore, it1

follows by construction that τ ≤ τ
(n)
k .2

We �rst consider the case supp(Ξ) ⊂ {ζ ∈ ∆0 :
∑

i<k ζi = 1}. It follows immediately3

from the Poisson point process construction that #Π
(Ξ,n)
τ < k must hold (and by extension4

τ
(n)
k =∞), since every block of Π

(Ξ,n)
0 must merge into one out of strictly less than k groups5

of blocks at time τ . This proves the 'only if'-part in Proposition 6.6

In order to show the 'if'-part in Proposition 6, suppose now that supp(Ξ) 6⊂ {ζ ∈7

∆0 :
∑

i<k ζi = 1}. We consider the two cases supp(Ξ) ∩ {ζ ∈ ∆0 : ζk > 0} 6= ∅ and8

supp(Ξ) ∩ {ζ ∈ ∆0 :
∑

iζi < 1} 6= ∅.9

In the case supp(Ξ) ∩ {ζ ∈ ∆0 : ζk > 0} 6= ∅, let {‖ζ‖0 ≥ k} be shorthand for the event

(τ, ζ, u) ∈ [0,∞)× {ζ ∈ ∆0 : ζk > 0} × [0, 1]n.

We now aim at giving a non-trivial lower bound on P(τ
(n)
k <∞) by bounding the right side10

of the following inequality from below:11

P(τ
(n)
k <∞) ≥ P(τ

(n)
k = τ, ‖ζ‖0 ≥ k)

=

∫
x∈{ζ∈∆0:ζk>0}

P(τ
(n)
k = τ, ζ ∈ dx)

=

∫
x∈{ζ∈∆0:ζk>0}

P(τ
(n)
k = τ |ζ = x)P(ζ ∈ dx).

The inequality follows since the event τ (n)
k <∞ is a consequence of the event τ (n)

k = τ , and12

τ <∞ holds almost surely. The equalities on the other hand are an immediate consequence13

of the Poisson point process construction. Hence we may now devote ourselves to proving14

that the last integral is positive:15

τ 6= inf{t > 0 : Π
(Ξ,n)
t 6= Π

(Ξ,n)
0 }.
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Let x = (x1, x2, . . .) ∈ ∆0, and let xk > 0. Since1

P(τ
(n)
k = τ |ζ = x) ≥ P (∃j1 . . . jk distinct : Ij1 ∪ Ij2 ∪ . . . ∪ Ijk = [n]|ζ = x)

≥ P(I1 ∪ I2 ∪ . . . ∪ Ik = [n]|ζ = x)

is true by construction, and2

P(I1 ∪ I2 ∪ . . . ∪ Ik = [n]|ζ = x) =
∑

l1,...,lk≥1
l1+···+lk=n

(
n

l1 l2...lk

)
x1

l1 · x2
l2 · . . . · xklk

> 0

holds, it follows that3

∫
x∈{ζ∈∆0:ζk>0}

P(τ
(n)
k = τ |ζ = x)P(ζ ∈ dx)

≥
∫
x∈{ζ∈∆0:ζk>0}

∑
l1,...,lk≥1
l1+···+lk=n

(
n

l1 l2...lk

)
x1

l1 · x2
l2 · . . . · xklk

P(ζ ∈ dx)

=

∫
x∈{ζ∈∆0:ζk>0}

∑
l1,...,lk≥1
l1+···+lk=n

(
n

l1 l2...lk

)
x1

l1 · x2
l2 · . . . · xklk

Ξ0(dx)∑
i x

2
i

must also hold. Since the map4

{ζ ∈ ∆0 : ζk > 0} → [0,∞),

x 7→
∑

l1,...,lk≥1
l1+···+lk=n

(
n

l1 l2...lk

)
x1

l1 · x2
l2 · . . . · xklk ·

∑
i x

2
i

is strictly positive and Ξ0({ζ ∈ ∆0 : ζk > 0}) > 0 holds by assumption, it follows that

∫
x∈{ζ∈∆0:ζk>0}

∑
l1,...,lk≥1
l1+···+lk=n

(
n

l1 l2...lk

)
x1

l1 · x2
l2 · . . . · xklk

Ξ0(dx)∑
i x

2
i

> 0

must hold. This in turn establishes a non-trivial lower bound on P(τ
(n)
k <∞).5
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In the case supp(Ξ)∩{ζ ∈ ∆0 :
∑

iζi < 1} 6= ∅, we again rely on the Poisson point process
construction. For x ∈ {ζ ∈ ∆0 :

∑
iζi < 1}, denote ‖x‖1 :=

∑
i xi < 1. Let {‖ζ‖1 < 1} be

shorthand for the event

(τ, ζ, u) ∈ [0,∞)× {ζ ∈ ∆0 : ‖ζ‖1 < 1} × [0, 1]n.

In a manner analogous to the previous case, we can establish that1

P(τ
(n)
k <∞) ≥

∫
x∈{ζ∈∆0:‖ζ‖1<1}

P(τ
(n)
k = τ |ζ = x)P(ζ ∈ dx)

holds. Again, the integrand is strictly positive. This time it is bounded from below by

x 7→
(

n
n−k+1

)
x1

n−k+1(1− ‖x‖)k−1
= P(#I1 = n− k + 1,#I2 = 0, . . . |ζ = x).

Since P({ζ ∈ ∆0 : ‖ζ‖1 < 1}) > 0 holds by assumption, this again establishes a non-trivial2

lower bound on the right side of the above inequality.3
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Veri�cation of the `2 norm (33)1

Table 4: Veri�cation of the `2 norm (33) for estimation of coalescent parameters (ϑ) associ-
ated with Λ- or Ξ-coalescents (Table 2). The `data' are branch lengths associated with given
coalescent, and parameter estimates (mean ϑ; standard deviation ϑ̂) are given for the same
coalescent using the `2 norm. Based on number of leaves n = 50, and 105 replicates.

Π(ϑ) ϑ ϑ̂
Ξ(0.05) 0.06 0.041
Ξ(0.95) 0.83 0.191
Ξ(1.0) 1.08 0.132
Ξ(1.5) 1.48 0.228
Λ(0.05) 0.06 0.041
Λ(0.95) 0.83 0.192
Λ(1.0) 1.08 0.131
Λ(1.5) 1.47 0.228
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