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Abstract 1 

Competitive exclusion and habitat filtering are believed to have an important influence on 2 

the assembly of ecological communities, but ecologists and evolutionary biologists have 3 

not reached a consensus on how to quantify patterns that would reveal the action of these 4 

processes. No fewer than 22 phylogenetic community structure metrics and nine null 5 

models can be combined, providing 198 approaches to test for such patterns. Choosing 6 

statistically appropriate approaches is currently a daunting task. First, given random 7 

community assembly, we assessed similarities among metrics and among null models in 8 

their behavior across communities varying in species richness. Second, we developed 9 

spatially explicit, individual-based simulations where communities were assembled either 10 

at random, by competitive exclusion or by habitat filtering. Third, we quantified the 11 

performance (type I and II error rates) of all 198 approaches against each of the three 12 

assembly processes. Many metrics and null models are functionally equivalent, more than 13 

halving the number of unique approaches. Moreover, an even smaller subset of metric 14 

and null model combinations is suitable for testing community assembly patterns. Metrics 15 

like mean pairwise phylogenetic distance and phylogenetic diversity were better able to 16 

detect simulated community assembly patterns than metrics like phylogenetic abundance 17 

evenness. A null model that simulates regional dispersal pressure on the community of 18 

interest outperformed all others. We introduce a flexible new R package, metricTester, to 19 

facilitate robust analyses of method performance. The package is programmed in parallel 20 

to readily accommodate integration of new row-wise matrix calculations (metrics) and 21 

matrix-wise randomizations (null models) to generate expectations and quantify error 22 

rates of proposed methods.  23 
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Introduction 1 

“…we may be studying an attribute about which we cannot be sure what measurements 2 

can actually represent it or even whether a hypothesized attribute actually exists” (Houle 3 

et al. 2011). 4 

 5 

The idea that competition among species increases with relatedness goes back at least to 6 

Darwin (1859), who noted that more closely related species tend to be more ecologically 7 

similar and should therefore compete more intensely (reviewed in Cavender-Bares et al. 8 

2009). Referred to as the competition-relatedness hypothesis (Cahill et al. 2008), 9 

competitive exclusion is predicted to result in the co-occurrence of less closely related 10 

species than would be expected if communities were assembled entirely via stochastic 11 

processes (phylogenetic overdispersion; Elton 1946, Webb et al. 2002, but see Mayfield 12 

and Levine 2010), such as speciation and dispersal. In contrast to competitive exclusion, 13 

habitat filtering is the process whereby only those species possessing similar traits are 14 

able to survive and reproduce within a given abiotic environment (Harper 1977, Keddy 15 

1992). Thus, to the extent that such traits are evolutionarily conserved, habitat filtering 16 

results in local assemblages of species more closely related than expected by chance 17 

(phylogenetic clustering; Webb 2000, Cavender-Bares et al. 2009). Habitat filtering 18 

operates largely independently of individual interactions, whereas competitive exclusion 19 

occurs via either direct or indirect agonistic interactions among individuals of different 20 

species. Until the 1990s, few methods existed to test for patterns of relatedness within 21 

communities, and those available took a taxonomic rather than a phylogenetic approach 22 

(Elton 1946, Vane-Wright et al. 1991).  23 
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Over the past 25 years a large number of metrics have been developed to quantify 1 

phylogenetic patterns in community structure, by which one might infer the action of 2 

community assembly processes. However, misconceptions about the relationships of 3 

these metrics to each other and to species richness (reviewed in Box 1) have reduced their 4 

impact on our understanding of community assembly. The link between our theories of 5 

community assembly and our ostensible measures of it are tenuous, and the measures 6 

themselves are not well understood (Houle et al. 2011). Furthermore, while the metrics 7 

introduced by Webb (Webb 2000, Webb et al. 2002) have been most influential in 8 

community ecology, many other metrics have also received widespread use, and yet their 9 

mathematical properties and performance across different community assembly processes 10 

has not been comprehensively assessed. Recent reviews (Kraft et al. 2007, Kembel 2009, 11 

Vamosi et al. 2009, Vellend et al. 2011, Pearse et al. 2014) have addressed metric 12 

performance, but have evaluated only partially overlapping sets of metrics, often using 13 

different methods and classification schemes. Consequently, results cannot easily be 14 

compared among studies, making the selection of appropriate metrics for empirical 15 

research difficult. 16 

Statistically evaluating the significance of an observed phylogenetic community 17 

structure metric requires a null expectation. Thus, since their introduction, phylogenetic 18 

community metrics have been linked to null models (Webb 2000), when in fact, they are 19 

independent concepts. This conceptual link has led to the creation of redundant metrics 20 

and frequent and continuing confusion in the literature (Box 1). We suggest that 21 

practitioners should consider phylogenetic community structure methods as a set of 22 

possible metrics (e.g., row-wise calculations) and a set of possible null models (e.g., 23 
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repeated matrix-wise randomizations), any of which can be combined to create a unique 1 

metric + null model approach. Thus, the metric value for a particular community and 2 

phylogeny is fixed, but the significance of that metric varies according to which null 3 

model is used (Connor and Simberloff 1979, Diamond and Gilpin 1982, Gotelli 2000). A 4 

good null model randomizes those structures in the observed data (e.g., individual co-5 

occurrence patterns) relevant to the null hypothesis, and maintains structures in the 6 

dataset unrelated to the null hypothesis (e.g., species’ abundance distributions) (Gotelli 7 

and Graves 1996). In practice, null model performance, specifically type I (false positive) 8 

and II (false negative) error rates, and redundancy among null models is rarely tested (but 9 

see e.g., Gotelli 2000, Kembel 2009). 10 

Here, we compare the performance of 22 phylogenetic community structure metrics 11 

(Table 1) and 9 null models (Table 2). We develop spatially explicit, individual-based 12 

simulations of community assembly due to habitat filtering, competitive exclusion or the 13 

random placement of individuals, and then compare the ability (type I and II error rates) 14 

of each metric + null model combination to identify the correct assembly process. We 15 

document cases of equivalency among metrics and null models. We also assess the 16 

response of both metrics and null models to variation in species richness. We conclude by 17 

discussing the implications of our findings for future tests of community assembly 18 

processes. 19 

 20 

Methods 21 

We adopt the following terminology. The community is the spatial extent (i.e. study 22 

area) of interest. The quadrat is the sampling unit. For instance, 20, 1-ha forest plots in 23 
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the Ecuadorian Amazon would be considered 20 quadrats of the rainforest community. 1 

We refer to the quadrat (row) by species (column) data matrix as the community data 2 

matrix (CDM).  3 

 4 

Null model background  5 

We tested the performance of nine null models (Table 2). While distinctions are often 6 

drawn between models that randomize phylogenetic tip labels and those that randomize 7 

the CDM (e.g., Hardy 2008), this distinction is false; all tip-shuffling null models can be 8 

performed by matrix shuffling (Table 2, Appendix S1).  9 

Perhaps the simplest of the null models we tested is the richness model, which 10 

shuffles species occurrences or abundances randomly within quadrats (rows), thereby 11 

maintaining species richness (row totals) and, for abundance data, total abundance and 12 

the rank-abundance curve of each quadrat.  13 

In contrast, the frequency null model shuffles species occurrences within species 14 

(columns) in the CDM, which maintains the occurrence frequency or total abundance of 15 

each species (column totals), but not quadrat species richness. Instead, per-quadrat 16 

randomized species richness values are distributed around the mean per-quadrat species 17 

richness in the observed CDM. Species-poor quadrats will tend to be compared with 18 

quadrats of higher species richness, which does not incorporate the large variance 19 

expected of randomized metric scores derived from repeated small draws from the 20 

species pool (Efron 1979), and thus this model may exhibit elevated error rates. We refer 21 

to this null model as the “frequency by quadrat”, to distinguish it from another model 22 

described below.  23 
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The independent swap null model was developed to reduce error rates by maintaining 1 

both species occurrence frequencies and quadrat species richness (row and column totals) 2 

(Gotelli 2000, Gotelli and Entsminger 2001). The trial swap (Miklós and Podani 2004) 3 

was subsequently introduced as a more efficient approach to maintain the same structures 4 

in the null model. We used 105 swaps for these algorithms (Fayle and Manica 2010). In 5 

addition, Miller et al. (2013, Appendix 3 of that paper) developed the “frequency by 6 

richness” null model which, like the frequency null, shuffles occurrences within species 7 

but then concatenates the randomized quadrats by their species richness values, thereby 8 

maintaining species occurrence frequencies and quadrat species richness. 9 

Prior to the development of abundance-weighted metrics, few null models 10 

intentionally maintained features of abundance distributions. For example, a species 11 

might occur infrequently but in large numbers. Hardy (2008) introduced the 2x and 3x 12 

null models to maintain both species richness and occurrence frequency, as well as either 13 

the species or quadrat-level structure of abundance data. The 2x maintains the total 14 

abundance and rank-abundance curve of each quadrat, but neither species’ abundances 15 

nor the set of species-specific abundance distributions. In contrast, the 3x maintains 16 

species’ abundances and the set of species-specific abundance distributions, but not the 17 

abundance distributions of each quadrat. No null model that we know of maintains 18 

species richness, species occurrence frequency, species-specific and quadrat-specific 19 

abundance distributions (it is likely not possible via matrix shuffling).  20 

We developed (Appendix S1) and tested a model that approximates this behavior, 21 

which we call the regional null. The regional null simulates dispersal of individuals into 22 

the local community from the regional pool, where local dynamics have no influence on 23 
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the regional pool. Instead of using observed species abundance and occurrence 1 

frequencies from the community (i.e. study area) of interest, individuals are drawn 2 

randomly from an abundance-informed regional pool such that species’ colonization 3 

probabilities are proportional to regional abundances (Lessard et al. 2012). 4 

 5 

metricTester 6 

We wrote an R software package to run our analyses. metricTester is available from 7 

GitHub, along with associated documentation, and can be installed using the devtools 8 

package (https://github.com/eliotmiller/metricTester). To eliminate conflicts with picante 9 

(Kembel et al. 2010) we renamed some of the functions in ecoPD (Cadotte et al. 2010) 10 

and rebuilt the package, hosted under the name ecoPDcorr in the same Github account. 11 

metricTester interfaces with additional packages (Paradis et al. 2004, Eastman et al. 2011, 12 

Pennell et al. 2014), and is programmed in parallel and designed to facilitate the addition 13 

of new metrics, null models and community simulations. Thus, the performance of 14 

proposed metrics and null models can be tested against community simulations of the 15 

user’s choice. Generation of such expectations is not limited to phylogenetic community 16 

structure methods, and extends to any row- or column-wise metric calculation with 17 

repeated matrix-wise null model randomization. 18 

 19 

General behavior of the metrics 20 

To understand the behavior of the 19 focal metrics (Table 1) across variation in 21 

species richness, we generated a phylogenetic tree that terminated at 50 species using a 22 

pure-birth model (birth=0.1), then assembled a CDM that included one “quadrat” at every 23 
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species richness value between 10 and 40 species (thus, each CDM had 31 rows). 1 

Quadrats were created by randomly sampling species from the phylogeny, and then 2 

assigning these species abundances from a log-normal distribution (mean = 3, SD = 1). 3 

We then calculated and retained focal metrics for each quadrat. Using the same 4 

phylogeny, we repeated the process of filling a new CDM, calculating and retaining all 5 

metric values 50,000 times. We then calculated the mean and 95% confidence intervals 6 

(CI) of each metric at each species richness value, and plotted these across their 7 

respective species richness values. 8 

We used Pearson correlations to assess metric similarities and identify redundancies 9 

among the metrics. Because of the large number of simulations, some metrics that appear 10 

exactly correlated do in fact differ subtly (Appendix S2). We used these correlations to 11 

derive a distance matrix, then clustered metrics with a complete linkage method, and used 12 

this to generate a dendrogram.  13 

 14 

General behavior of the null models 15 

To identify similarities among null models, we explored the behavior of 9 null models 16 

(Table 2) across variation in species richness. We generated CDMs as above, except that 17 

species richness values ranged from 10 to 25. We used non-abundance-weighted mean 18 

pairwise phylogenetic distance (MPD) for these analyses because it is not inherently 19 

correlated with species richness (Fig. 1A), and therefore does not confound metric and 20 

null model behavior across species richness. In addition, null model expectations of MPD 21 

converged relatively quickly. Using an abundance-weighted metric did not affect results 22 

(not shown). To identify null models that do or do not converge efficiently on a stable 23 
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range of expected metric values, we explored how null model expectations changed with 1 

increasing numbers of randomizations of the CDM (Appendix S1). We did this by 2 

plotting the expected CI across the corresponding species richness while increasing the 3 

randomization of a given, initial CDM and phylogeny.  4 

 5 

Individual-based spatial simulations of community assembly to assess the performance of 6 

metric + null combinations 7 

The first two sets of analyses illustrated the general behavior of each metric and null 8 

model. In this third analysis, we assessed the ability of each metric + null model 9 

combination to detect a given assembly process. Because of the large number of steps in 10 

this analysis, we include a schematic to aid the following explanation (Appendix S3). 11 

Total computing time required to run these tests (>7 years) precluded systematic 12 

examination of sensitivity to simulation parameters, but results were very similar across 13 

preliminary exploration of parameter space (Appendix S4).  14 

To generate test cases against which to assess each metric + null approach, we 15 

simulated three types of spatially explicit communities, intended to model random 16 

assembly and the extremes of habitat filtering and competitive exclusion. Each spatial 17 

simulation produced a 316 x 316 m (10 ha) community, and 1,009 such communities of 18 

each type were generated. We began by generating a phylogeny of 100 species using a 19 

pure-birth model (birth = 0.1) and log-normal rank abundance curve, and randomly 20 

assigned species abundances from this distribution. We expanded assigned abundances to 21 

create a vector of individuals with species identities. In the random assembly spatial 22 

simulation, these individuals were then randomly placed within the community. 23 
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In habitat filtering simulations, we independently evolved two traits according to a 1 

Brownian motion evolutionary process (σ2 = 0.1). These traits are meant to mimic two 2 

independently evolving environmental preferences, e.g., soil moisture and pH. In our 3 

case, we treated these as spatial preferences (i.e. x and y-axis preferences), and scaled the 4 

simulated traits to match community bounds. We further smoothed species’ spatial 5 

preferences, which initially approximated a normal distribution, to a uniform distribution, 6 

such that species’ preferences were evenly distributed but phylogenetically conserved 7 

across the arena. We then placed individuals near their spatial preference, with a 8 

controllable degree of variation (exact parameters in Appendix S4). This simulation has 9 

the effect of placing related individuals near each other in space.  10 

In competitive exclusion simulations, we first placed individuals using the random 11 

assembly process. Following this, each generation, we calculated the mean relatedness of 12 

every individual in the community to all individuals within 20 m, which we term the 13 

“interaction distance”. We then identified the 20% of individuals with the highest mean 14 

relatedness. For each of these individuals, we identified the individual within their 15 

interaction distance to which they were most closely related, and then randomly selected 16 

one of the two individuals to be removed from the community. At the end of each 17 

generation, the same number of individuals as was removed was drawn from the original 18 

vector of individuals, and situated randomly in the community. This was repeated for 60 19 

generations for each competitive exclusion simulation. Preliminary analyses indicated 20 

that results were similar across different interaction distances and percentages of 21 

individuals considered (Appendix S4). All spatial simulations employed 200-400 22 

individuals/ha, which is somewhat less than stem-density in Australian tropical rain 23 
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forests (Murphy et al. 2013), and notably less than those in Ecuador (Valencia et al. 1 

2004). Results were nearly identical, however, when we performed the same analysis 2 

with comparable numbers of individuals (Appendix S4).  3 

After each spatial simulation, we generated a CDM by situating 20, non-overlapping 4 

quadrats of 31.6 x 31.6 m (0.1 ha) at random and recording the individuals in each 5 

quadrat. We then calculated observed metrics. Each CDM was then randomized 1,000 6 

times according to each null model, and for each randomization we calculated and 7 

retained all metric values. We then calculated standardized effect scores (SES, e.g., 8 

standardized MPD equals NRI, Box 1) and 95% CI per quadrat and per unique species 9 

richness value. In other words, randomized results were both concatenated by species 10 

richness and by quadrat, and SES and CI calculated for each such approach (Appendix 11 

S3). Because results were similar, we generally report results for the quadrat 12 

concatenation in the main text, with results from the richness method in Appendix S6. As 13 

this is the distinguishing feature between the frequency by richness and frequency by 14 

quadrat null models, however, we report these separately in the main text. The regional 15 

null is designed to be concatenated by richness, so quadrat method results for this model 16 

were discarded. 17 

We used Wilcoxon signed-rank tests to assess error rates. For a given metric + null 18 

model approach, a type I error was recorded if the distribution of SES from a random 19 

spatial simulation differed significantly from zero (two-sided test). A type II error was 20 

recorded if the distribution of SES from either a filtering or competition simulation was 21 

not significantly less or more than zero, respectively (one-sided test). Thus, the overall 22 

type I error rate for a given approach is the proportion of the 1,009 random spatial 23 
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simulations where the set of SES differed from zero. The overall type II error rate is the 1 

mean proportion of the filtering and competition simulations where the SES did not differ 2 

as expected from zero. We used one minus the type I and II error rates as a measure of 3 

overall approach performance. The use of confidence intervals to quantify error rates is 4 

discussed in Appendix S6. 5 

 6 

Results 7 

General behavior of the metrics 8 

We evaluated the behavior of 19 focal community phylogenetic metrics (Table 1) 9 

across variation in species richness. MPD, interspecific AW MPD, PSV and PAE were 10 

not correlated with species richness (Fig. 1A). Intraspecific AW MPD, complete AW 11 

MPD, PSE, IAC, HAED, HED, SimpsonsPhy, PD, PDc, and QE were positively correlated 12 

with species richness. MNTD, AW MNTD, PSC, and EED were negatively correlated 13 

with species richness. The intercorrelations among metrics (Fig. 1B, Appendix S5) 14 

revealed that: (1) MPD is equivalent to PSV; (2) complete AW MPD is equivalent to 15 

SimpsonsPhy and QE, and approximately equal to intraspecific AW MPD (Appendix S2) 16 

and to PSE; and (3) PSC is equivalent to MNTD. Moreover, MPD, interspecific AW 17 

MPD, and intraspecific AW MPD are equivalent to Δ+, Δ*, and Δ, respectively, of 18 

Clarke & Warwick (1998) (Box 1, Appendix S2). Thus, of the 22 metrics in Table 1, only 19 

15 are unique and, if very closely correlated metrics are considered equivalent, only 12 of 20 

the metrics are truly unique.  21 

We classified metrics into the following groups based on intercorrelations among 22 

them (Fig. 1B): Group 1 metrics quantify the mean relatedness among species; Group 2 23 
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metrics focus on the relationship between “evolutionary distinctiveness and abundance” 1 

(Cadotte et al. 2010); Group 3 metrics focus on patterns of phylogenetic relatedness 2 

among nearest relatives; and Group 4 metrics quantify the total relatedness in an 3 

assemblage, and are most closely correlated with species richness. 4 

 5 

Figure 1 (next page). (A) Behavior of 19 focal phylogenetic community structure metrics (Table 1) across 6 

variation in species richness. Panels are color-coded from blue (good) to red (poor) according to the mean 7 

of type I and II errors across all simulated assembly processes. (B) Dendrogram of intercorrelations among 8 

the phylogenetic community structure metrics (and species richness itself). Closely correlated metrics are 9 

annotated along branches. Group 1 metrics focus on “mean relatedness”; Group 2 metrics on the 10 

relationship between “evolutionary distinctiveness and abundance”; Group 3 on “nearest-relative” 11 

measures of community relatedness; and Group 4 on “total community diversity” and are particularly 12 

closely correlated with species richness. 13 
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General behavior of the null models 1 

The CIs from the richness, 1s, independent swap, trial swap, frequency by richness, 2 

and regional null models exhibited confidence funnels (Clarke and Warwick 1998), with 3 

more variance observed in smaller (less species rich) samples of the regional species pool 4 

(Fig. 2;  Fig S1.7). In contrast, the CI of the frequency by quadrat null model did not 5 

account for the anticipated increased variance in null model expectations at low species 6 

richness, and the value beyond which an observed metric needed to deviate to be 7 

considered significant was approximately the same for all quadrats, irrespective of 8 

underlying species richness of the quadrat (Fig. 2).  9 

 10 

Figure 2. Confidence intervals (95%) for the richness, both forms of the frequency, 2x and 3x null models 11 

(Table 2) across variation in species richness. Expectations shown here are the result of 105 randomizations. 12 

Because the 2x and 3x nulls follow identical distributions (Fig. S1.5), only a single layer is included in this 13 

figure. The arrow indicates a region of particular concern for type I error when using the frequency by 14 

quadrat null. Other null model behavior (including the independent swap, trial swap, and regional models) 15 

is summarized in Appendix S1. 16 
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The 1s and the richness null models converged on very similar null model 1 

expectations (Fig. S1.1), showing that despite differences in randomization schemes these 2 

models maintain the same elements of the CDM, and they are thus functionally 3 

equivalent. This was also the case for the independent swap and the frequency by 4 

richness null models (Fig. S1.4). In addition, the trial swap null converged, albeit slowly 5 

(after >106 randomizations), on the same expectations as the frequency by richness and 6 

independent swap null models (Fig. S1.2). We also found that the expectations when 7 

concatenated by richness from the 2x and 3x null models were equivalent, but did not 8 

form a confidence funnel (Fig. 2, Fig. S1.5, Appendix S6). Finally, expectations for the 9 

independent swap varied depending upon the relationship between species’ occurrence 10 

frequency and phylogenetic uniqueness. For instance, when phylogenetically unique 11 

species occurred more frequently in the CDM, CI were shifted upwards from models that 12 

do not maintain species occurrence frequency (e.g., the richness model, Fig. S1.6). 13 

 14 

Performance of metric + null approaches 15 

We ran 1,009 complete tests (all spatial simulations, null models and metrics). There 16 

was a great deal of variation in performance of different metric + null approaches. Across 17 

all metrics, for both competitive exclusion and habitat filtering assembly simulations, the 18 

frequency by quadrat null showed high rates of type II error, particularly for metrics that 19 

were correlated with species richness (Fig. 1A). The 2x and 3x nulls showed high type II 20 

error rates, particularly for the detection of habitat filtering and for metrics tailored to be 21 

sensitive to differences in abundance distributions (PAE, IAC, HAED, Fig. 3). The 22 

independent swap, trial swap and frequency by richness null models performed 23 
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reasonably well in habitat filtering simulations when used with some metrics (PD, MPD, 1 

MNTD, Fig. 3), but poorly in competitive exclusion simulations with most metrics (Fig. 2 

4). Finally, the richness, 1s and regional nulls performed well with most metrics in both 3 

the habitat filtering and competitive exclusion simulations, but the richness and 1s 4 

exhibited high type I error rates (Fig. 5).  5 

Focusing on the metrics, PD, PDc, MNTD and AW MNTD had the greatest power to 6 

detect habitat filtering, though Group 1 metrics also performed well (Fig. 3). PD and PDc 7 

were also relatively powerful at detecting the signature of competitive exclusion (Fig. 4), 8 

though here they were outperformed by Group 1 metrics. Group 3 metrics exhibited 9 

relatively less power to detect phylogenetic overdispersion, particularly with some null 10 

models (3x, independent swap). If we take overall metric performance as the mean of the 11 

type I error rates across all null models for the random simulations, and the type II error 12 

rates across all null models for the habitat filtering and competitive exclusion 13 

simulations, then Group 1 metrics performed best overall, followed closely by PD and 14 

PDc, and then by Group 3 metrics (Fig. 5). Some metrics (EAED, PAE, IAC, HAED) 15 

exhibited type I error rates similar to those of the more successful metrics (i.e. 10-11%), 16 

but also failed more often than they succeeded to detect simulated community assembly 17 

processes.  18 
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 1 

Figure 3. Performance of metric + null model approaches at detecting phylogenetic clustering given habitat 2 

filtering, arranged in order from best-performing to worst, with the best approaches in the bottom left 3 

corner. Blue bars summarize the proportion of the total 1,009 simulations where the mean of the 4 

standardized effect sizes was significantly less than zero (one-way Wilcoxon signed-rank test). Gray bars 5 

summarize the proportion where the mean did not differ from zero (type II errors). Equivalent metrics (e.g., 6 

PSC, MNTD) performed identically and are combined. 7 
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 1 

Figure 4. Performance of metric + null model approaches at detecting phylogenetic overdispersion given 2 

competitive exclusion, arranged in order from best-performing to worst, with the best approaches in the 3 

bottom left corner. Blue bars summarize the proportion of the total 1,009 simulations where the mean of the 4 

standardized effect sizes was significantly greater than zero (one-way Wilcoxon signed-rank test). Gray 5 

bars summarize the proportion where the mean did not differ from zero (type II errors). Equivalent metrics 6 

(e.g., PSC, MNTD) performed identically and are combined. 7 
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 1 

Figure 5. Overall performance of metric + null model approaches, arranged in order from best-performing 2 

to worst, with the best approaches in the bottom left corner. Red bars (type I errors) summarize the 3 

proportion of the total 1,009 random community assembly simulations where the mean of the standardized 4 

effect sizes differed significantly from zero (two-way Wilcoxon signed-rank test). Gray bars summarize the 5 

mean type II error rates from Figs. 3 and 4. Blue bars provide an indication of the success of each approach, 6 

and are defined as one minus the mean type I and II error rates. 7 

 8 

Discussion 9 

The unification of phylogenetic community structure methods with age-old questions of 10 

community assembly has revolutionized the fields of ecology and evolution. Since 11 

Webb’s seminal papers (Webb 2000, Webb et al. 2002), there has been an explosion of 12 

interest in these matters, including a wide variety of “improvements” upon existing 13 
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measures (Box 1). Many of these, however, have never been adequately tested, and 1 

others are equivalent, as we show here (Fig. 1B). Our objective was to assess a wide 2 

range of available methods in order to identify those with demonstrable utility, and to 3 

identify those that measure unique aspects of phylogenetic community structure. 4 

Which metrics are best? The results of our study suggest that the answer depends in 5 

part on which community assembly processes are of interest, and which null models are 6 

used. However, some clear and general answers did emerge. Across most null models and 7 

all community assembly simulations, PD (Faith 1992) consistently performed well (Fig. 8 

5), showing low type I error rates and more power than most other metrics; it was 9 

particularly good at detecting the effects of habitat filtering (Fig. 3). Group 1 (“mean 10 

relatedness”) metrics (Fig. 1) also performed well, particularly at detecting effects of 11 

competitive exclusion (Fig. 4). Like Kembel (2009), and unlike Kraft et al. (2007), we 12 

found that Group 3 (“nearest-relative”) metrics were not as powerful as Group 1 metrics 13 

at detecting competitive exclusion, though we did not directly probe changes in 14 

community size as did Kraft et al. Instead, we found that Group 3 metrics slightly 15 

outperformed Group 1 metrics at detecting habitat filtering. 16 

We expected that because non-abundance-weighted metrics can be strongly 17 

influenced by the presence or absence of a single individual, such metrics would more 18 

frequently exhibit type I errors (Miller et al. 2013). However, abundance-weighted forms 19 

of both Group 1 metrics and MNTD showed slightly higher type I error rates than non-20 

abundance-weighted forms. This may be because abundance-weighted metrics appear to 21 

require more randomizations before expectations stabilize (results not shown). However, 22 

increased randomizations (from 103 to 104) of CDMs did not alter our main conclusions 23 
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(Fig. S4.1). We encourage additional exploration of the circumstances under which 1 

abundance-weighted versions of these metrics yield type I errors, and emphasize that 2 

these differences in error rates among the Group 1 metrics were small.  3 

Some of the metrics introduced by Cadotte et al. (2010) showed poor performance, 4 

particularly PAE and HAED. The metric EED, which out-performed other Group 3 metrics, 5 

was a notable exception, as was PDc (though see Box 1). As suggested (Cadotte et al. 6 

2010), these metrics do indeed measure unique aspects of phylogenetic community 7 

structure (Fig. 1B). Some of these aspects, however, do not seem to be related to 8 

traditionally recognized community assembly processes. What these metrics (PAE, HAED) 9 

quantify may yet prove useful in certain contexts (Houle et al. 2011), but they showed 10 

poor performance with the simulations in this study. When used with the regional null, 11 

IAC showed strong power to detect non-random patterns, but this did not extend to other 12 

null models. HED was closely correlated with PD (r = 0.94), but it did not perform as well 13 

as it. We recommend use of either PD or Group 1 metrics. 14 

Which null models are best? Again, our results suggest that the answer depends in 15 

part on the choice of metric and the community assembly process of interest. In general, 16 

we recommend against use of a frequency by quadrat null. The CI for this null model 17 

account for neither the increased variance in expectations at smaller samples of the 18 

regional species pool (Clarke and Warwick 1998), nor the correlation of many metrics 19 

with species richness (Fig. 1). Under certain parameters (e.g., low observed quadrat 20 

species richness as compared with that of randomized quadrats), this is expected to result 21 

in high rates of type I errors, particularly for metrics that are correlated with species 22 

richness (Fig. 1A), and we suggest this null should be used with prudence.  23 
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The 2x and 3x null models showed mixed performance. While they exhibited fairly 1 

low type I error rates (Hardy 2008), they also exhibited limited power to detect expected 2 

phylogenetic community structure. When these nulls are concatenated by richness, they 3 

exhibit elevated type II error rates (Appendix S6). We suspect that extreme constraints 4 

imposed on matrix randomizations by these nulls results in biased exploration of 5 

reasonable phylogenetic space (Appendix S6). Regardless of the reason for this lack of 6 

power, the instability across species richness shown by the CI for the 2x and 3x null 7 

models (Fig. 2) means that the expectations for a given metric can change dramatically 8 

based on whether N or N+1 species are present in an observed community. Nevertheless, 9 

these null models are intended to be concatenated by quadrat, and when used in this 10 

manner, they performed better than all but the regional null.  11 

The regional null (Appendix S1) was designed to simulate dispersal, proportional to 12 

species abundance in a regional pool, into a local community (study area) of interest, 13 

such that deviations from these dispersal pressures (e.g., the product of environmental 14 

filters) can be readily detected, and local community dynamics (e.g., competition) do not 15 

obfuscate expectations. For instance, given strong competitive exclusion, local 16 

communities may show widespread phylogenetic overdispersion, where certain species 17 

are generally excluded. When these observed occurrence frequencies are taken as 18 

regional occurrence frequencies and randomized accordingly (as in the independent 19 

swap), it becomes difficult to detect phylogenetic overdispersion, since the randomized 20 

CDMs will tend to contain distantly related species, and confidence intervals are 21 

accordingly shifted up from those expected given a model like the richness null (Fig. 22 

S1.6). The regional null avoids this issue by using expectations from a larger, fixed pool 23 
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as the standard against which to compare observations from the study area. However, it is 1 

difficult to quantify dispersal pressure on a community of interest, and this model may 2 

not be practical for many researchers. Future studies should investigate what information 3 

might be used to construct these expectations (e.g., range sizes), and whether this null can 4 

be of widespread utility (Lessard et al. 2012). 5 

Null model choice cannot be driven entirely by statistical properties. There may be 6 

sound biological reasons for why a given null should be employed, even if its statistical 7 

performance is not on par with others (Gotelli and Graves 1996). However, such 8 

reasoning should not come at the expense of common sense. For instance, if the quadrats 9 

from a CDM are not thought to be representative of the study area (e.g., biased sampling 10 

across study areas), then a null model like the independent swap that maintains these 11 

observed occurrence frequencies will only confuse interpretation of results. In short, we 12 

recommend use of a model that randomizes data structures relevant to the hypothesis, 13 

while maintaining structures unrelated to that hypothesis, and while being cognizant of 14 

null model performance (Figs. 3-5) and behavior (Fig. 2). The behavior of any metric + 15 

null approach with any CDM can be elucidated with use of the expectations function 16 

from metricTester. More recently, efficient algorithms for directly calculating the 17 

richness-standardized forms of MPD and PD (i.e. SES after randomization with richness 18 

null) have been developed that do not require lengthy randomizations (Tsirogiannis and 19 

Sandel 2015), and there is room to extend such an approach to additional metrics and 20 

nulls.  21 

What combined approach do we suggest? The richness null with PD or Group 1 22 

metrics may offer the simplest results to interpret by making the clearest assumptions 23 
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(any species can occur anywhere); more constrained null models raise questions of 1 

sampling artifacts and the efficiency of swap algorithms. We emphasize that little should 2 

be made of the deviation of any single CDM beyond expectations; the high type I error 3 

rates of most approaches casts doubt on the interpretation of single community tests. 4 

However, if a metric that is uncorrelated with species richness is used (e.g., PSV), then 5 

quadrats from that CDM can be arranged along an environmental gradient to test 6 

hypotheses (Graham et al. 2009, Miller et al. 2013). Here, the slope is of interest, rather 7 

than the significance of any individual community (e.g., quadrats are increasingly 8 

phylogenetically clustered along a gradient of decreasing precipitation). Hypothesis 9 

testing in this manner minimizes the necessity of a null model, and raw metric values, 10 

which often have intrinsic meaning, can then be used instead of SES. For instance, the 11 

MPD of a community, given a time-calibrated phylogeny, is equal to the mean 12 

evolutionary time separating co-occurring taxa. Other metrics like PD are correlated with 13 

species richness, and should be used with a null model (or otherwise standardized, e.g., 14 

Nipperess and Matsen 2013) if the focus is on phylogenetic community structure (as 15 

opposed to e.g., PD itself). Researchers need to consider what they are measuring with 16 

their metric(s) of choice, whether they need to standardize those metrics, and why or why 17 

not they might procure significant results.  18 

By making the assumption that the traits responsible for community assembly covary 19 

with phylogeny, this study maintains the sometimes questionable dogma that habitat 20 

filtering leads to phylogenetic clustering, and that competitive exclusion leads to 21 

phylogenetic overdispersion (Webb et al. 2002, Mayfield and Levine 2010). If trait data 22 

are available, we encourage researchers who use these methods to fit explicit models of 23 
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evolution to traits pertinent to the assembly processes in question (Butler and King 2004), 1 

and to also investigate patterns of community structure in functional traits. In this study 2 

we did not test approaches that account for variation among quadrats in species co-3 

occurrence probabilities (e.g., Cavender-Bares et al. 2004; Hardy & Senterre 2007), but 4 

metricTester could be adapted to investigate these metrics. There is also an expansive 5 

assortment of existing (and yet to be created), hypothetically useful null models whose 6 

behavior and performance remains to be tested (e.g., Ulrich and Gotelli 2010). 7 

Ultimately, advanced approaches (Ives and Helmus 2011) may prove more powerful and 8 

gain wider use than current phylogenetic community structure metrics, but the existing 9 

arsenal remains well suited to addressing a wide variety of questions.  10 
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Table 1. The 22 phylogenetic community structure metrics reviewed in this paper. We 1 

paraphrase (or sometimes directly quote) the original description of the metric. While 2 

some metrics we discuss are in fact equivalent, these original descriptions often 3 

emphasized their uniqueness. IAC is a node-based metric. We multiplied it by -1 such 4 

that decreases in its value corresponded with increased clustering.  5 

Metric Abbreviation Description Citation 
Quadratic entropy QE Within community diversity 

based on species dissimilarity.  
 

(Rao 1982) 

Phylogenetic 
diversity 

PD Sum of total branch lengths for 
a set of species, and length to 
root if set does not span it. 
 

(Faith 1992) 

Non-abundance-
weighted mean 
pairwise 
phylogenetic 
distance 
 

MPD Mean of all pairwise branch 
lengths for a set of species.  

(Webb 2000, 
Webb et al. 
2002) 

Non-abundance-
weighted mean 
nearest taxon 
distance 

MNTD Mean of the branch lengths 
separating each species from its 
closest relative in the set of 
species. 
  

(Webb 2000, 
Webb et al. 
2002) 

Taxonomic 
diversity* 

Δ Average phylogenetic distance 
between any two individuals 
from a set. 
 

(Clarke and 
Warwick 
1998) 

Taxonomic 
distinctness* 

Δ* Average phylogenetic distance 
between any two heterospecific 
individuals. 
 

(Clarke and 
Warwick 
1998) 

Presence-absence 
case of taxonomic 
diversity* 

Δ+ Average phylogenetic distance 
between any two species from a 
set. 
 

(Clarke and 
Warwick 
1998) 

Phylogenetic species 
variability 

PSV Measures how phylogenetic 
relatedness decreases the 
variance of a hypothetical 
Brownian motion trait shared 
by all species in the 

(Helmus et al. 
2007) 
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community. 
 

  Table 1 continued  
Metric Abbreviation Description Citation 
Phylogenetic species 
clustering 

PSC Modified form of PSV 
incorporating maximum off-
diagonal element matrix of 
community phylogenetic 
correlation structure. 
 

(Helmus et al. 
2007) 

Phylogenetic species 
evenness 

PSE Modified form of PSV 
incorporating species 
abundance. 
 

(Helmus et al. 
2007) 

Phylogenetic form 
of Simpson’s index 

SimpsonsPhy Extension of Simpson diversity 
index that incorporates 
phylogenetic information. 

(Simpson 
1949, Hardy 
and Senterre 
2007) 

    
Abundance-
weighted MNTD 

AW MNTD Abundance-weighted form of 
MNTD. 
 

(Webb et al. 
2008) 

Phylogenetic 
diversity without 
regard to a larger 
regional pool 

PDc Sum of total branch lengths for 
a set of species, not including 
length to root. 
 
 

(Faith 2007, 
Cadotte et al. 
2010) 

Phylogenetic 
abundance evenness 

PAE “Phylogenetic evenness of 
abundance distribution scaled 
by branch length.” 
 

(Cadotte et al. 
2010) 

Imbalance of 
abundance 

IAC IAC. “Relative per-node 
imbalance in individual 
distribution.” 
 

(Cadotte et al. 
2010) 

Community 
evolutionary 
distinctiveness 

HED “Entropic measure of diversity 
of evolutionary distinctiveness 
among species.” 
 

(Cadotte et al. 
2010) 

Equitability 
evolutionary 
distinctiveness 
 

EED “Equitability of HED.” (Cadotte et al. 
2010) 

Community 
abundance-weighted 
evolutionary 

HAED “Entropic measure of diversity 
of evolutionary distinctiveness 
among individuals.” 

(Cadotte et al. 
2010) 
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distinctiveness 
 
 
  Table 1 continued  
Metric Abbreviation Description Citation 
Equitability 
abundance-weighted 
evolutionary 
distinctiveness 
 

EAED “Equitability of HAED.” (Cadotte et al. 
2010) 

Complete 
abundance-weighted 
MPD 

complete AW 
MPD 

An abundance-weighted form 
of MPD. Average phylogenetic 
distance between two 
individuals from a set, possibly 
between the same individual. 
 

(Webb et al. 
2008, 
Appendix S2 
of this paper) 

Intraspecific 
abundance-weighted 
MPD 

intra AW 
MPD 

An abundance-weighted form 
of MPD. Average phylogenetic 
distance between any two 
individuals from a set.  
 

(Appendix S2 
of this paper) 

Interspecific 
abundance-weighted 
MPD 

inter AW 
MPD 

An abundance-weighted form 
of MPD. Average phylogenetic 
distance between two 
heterospecific individuals.  

(Miller et al. 
2013, 
Appendix S2 
of this paper) 

* Denotes three metrics not directly assessed here due to equivalency with other metrics 1 

(see Appendix S2), leaving 19 focal metrics in this paper. 2 
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Box 1: Abbreviated history of phylogenetic community structure metrics. 1 

Faith (1992) introduced PD, a metric that quantifies the unique evolutionary history 2 

represented by co-occurring taxa. It was intended (and is often used) as a conservation 3 

tool. While PD built upon previous work by Vane-Wright et al. (1991) and others, it was 4 

the first to explicitly incorporate phylogeny. Since PD is the sum of all branch lengths 5 

connecting the species in a community (Table 1), the assumption that it increases with 6 

additional species, and is therefore correlated with species richness, was implicit (exact 7 

solution provided by Nipperess & Matsen 2013). 8 

Subsequently, Clarke and Warwick introduced metrics (Δ, Δ+, Δ*) focused on the 9 

average branch length among a group of taxa or individuals, again linking their 10 

methodology to conservation decisions (Warwick and Clarke 1995, 1998, Clarke and 11 

Warwick 1998, 1999). Their pioneering papers explored some statistical properties of the 12 

metrics, including the fact that mean expected Δ+ is not correlated with species richness, 13 

but the width of its confidence intervals decreases with increasing species richness 14 

(creating a “confidence funnel”). Yet, the conservation-specific scope of their papers 15 

limited their impact on community ecology.  16 

Webb (2000) introduced two new metrics--MPD and MNTD--and the standardized 17 

forms of these, NRI (net relatedness index) and NTI (nearest taxon index). Initially, MPD 18 

was slightly different than Clarke and Warwick’s metrics, only incorporating nodal 19 

distances, but by Webb et al. (2002) the definition had expanded to incorporate branch 20 

length, and was therefore equivalent to Δ+ (Appendix S2). Yet, by linking community 21 

assembly processes with these phylogenetic patterns, it was MPD and MNTD that 22 

revolutionized the field of community ecology. Moreover, despite the equivalency of 23 
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MPD and Δ+, Webb stated that both MPD and MNTD are correlated with species 1 

richness when only MNTD is (Fig. 1A), and devised standardization procedures to 2 

“correct” for this. This misperception occasionally persists to the present (e.g., Ulrich & 3 

Fattorini 2013), despite empirical solutions to the contrary (Tsirogiannis and Sandel 4 

2013). 5 

Helmus et al. (2007) introduced PSE, the “first” metric to incorporate abundance 6 

information. While this is not entirely true (Rao 1982, Warwick and Clarke 1995, Hardy 7 

and Senterre 2007), their focus on community assembly linked PSE with quintessential 8 

evolutionary questions. Helmus et al. (2007) also introduced two other metrics intended 9 

to be similar but superior to NRI and NTI--PSV and PSC. The noted advantage to these is 10 

the lack of need for a reference species pool, and therefore the ability of these metrics to 11 

transcend the particulars of the phylogeny and community data matrix at hand, and allow 12 

raw metric values to be directly compared. However, these should therefore have been 13 

compared with MPD and MNTD, respectively. Had this been done, it would have been 14 

noted that PSV and PSC are directly proportional to MPD and MNTD, respectively, a 15 

still all but unknown fact (though see Vellend et al. 2011). Instead, PSV and PSC were 16 

compared with NRI and NTI. As a further complication, the PSC function in picante 17 

(Kembel et al. 2010) returns the inverse of PSC (M. Helmus, pers. comm.). This, and a 18 

belief of uncertain affinities that PSC is not inherently correlated with species richness, 19 

confounded subsequent papers (e.g. Giehl & Jarenkow 2012; Villalobos et al. 2013).  20 

Cadotte et al. (2010) introduced metrics focused on phylogenetic abundance 21 

distributions. We review seven of those here: PDc (discussed earlier, Faith (2007)), PAE, 22 

IAC, ED, HED, EED, HAED, and EAED
 (see Table 1). Cadotte et al. (2010) showed their 23 
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metrics ranked communities differently than each other and than metrics like PSV and 1 

MNTD, but offered no discussion of the metrics’ statistical properties, nor has any 2 

subsequent paper. The metrics are available in ecoPD (http://r-forge.r-3 

project.org/projects/ecopd/).   4 

We discuss six additional metrics in this paper: QE (Rao 1982), SimpsonsPhy (Hardy 5 

and Senterre 2007), abundance-weighted (AW) MNTD, and three variants of AW MPD 6 

(Table 1, Appendix S2). Both complete AW MPD and AW MNTD were introduced in 7 

Phylocom (Webb et al. 2008) and picante without accompanying publication, and their 8 

statistical properties and relationship to other metrics remains essentially unknown. 9 

Interspecific AW MPD was introduced in (Miller et al. 2013), and intraspecific AW 10 

MPD is “first” described in the current paper (Appendix 2), though as we subsequently 11 

discovered, it is equivalent to Δ (Clarke and Warwick 1998). Similarly, after exploring 12 

the behavior of QE and SimspsonsPhy and finding them equivalent, we realized this was 13 

already known (Hardy and Senterre 2007, Allen et al. 2009).  14 
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Appendix S1. Null models: behavior across variation in species richness, documenting 

equivalency, and regional null model description. 

 

Behavior of existing null models across species richness 

 As described in the main text, we were interested in quantifying the behavior of 

the null models (Table 2) across varying species richness. Basic principles of 

bootstrapping (Efron 1979) suggest that there should be more variance when small 

subsamples of a larger pool are taken. If two random taxa are drawn from a phylogeny, 

they could be close sister species, or they could span the root. The calculated 

phylogenetic community structure metrics from these two extremes would vary greatly. 

Alternatively, if all the species from a phylogeny are present in a community, we know 

what the calculated metric will be (+/- some slight variation for abundance-weighted 

metrics). This should lead to a confidence funnel (Clarke and Warwick 1998), with more 

variable expectations at lower species richness. But what sorts of expectations do the 

different nulls we tested generate? How do they differ from each other? What factors 

influence their distributions?  

 The richness null (=SIM3, Gotelli (2000)) we tested swaps abundances within 

quadrats. In other words, given a quadrat by species community data matrix (CDM), this 

null shuffles the contents of each row (a quadrat). Accordingly, each species is sampled 

with equal frequency in the randomized matrices (i.e. it does not maintain species’ 

observed occurrence frequencies). We would expect that for metrics like mean pairwise 

phylogenetic distance (MPD) that are uncorrelated with species richness (Fig. 1), the 

mean expected value would not change with species richness. Simulations show this is 
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the case (Fig. 2). This is a useful null to use as a benchmark against which to understand 

other more constrained nulls. A slight variation on this, the 1s null model (Hardy 2008), 

converges on the same expectations as the richness null (Fig. S1.1). The 2s null (Hardy 

2008) is Hardy’s implementation of the richness null, and we examined it here simply to 

confirm that different R packages do indeed give similar solutions (Fig. S1.1).  

 The frequency null we tested (=SIM2, Gotelli (2000)) swaps abundances within 

species. We refer to this as the frequency by quadrat null. Given a quadrat by species 

CDM, this null shuffles the contents of each column (a species). This means that 

individual species are not sampled with equal frequency. Importantly, it also means that 

the randomized quadrats tend to contain the mean number of species as were observed in 

the input CDM. For example, given a CDM with four quadrats, one of species richness 2, 

two of species richness 5, and one of species richness 8, randomized quadrats will tend to 

contain 5 species. Based on the principles of bootstrapping mentioned above, it should be 

clear why this would be problematic; the larger expected variance at low species richness 

will not be incorporated in the null model, and high type I error rates are expected (black 

arrow in Fig. 1 points to the region of concern).  

 To account for this, Miller et al. (2013) developed a method where the per quadrat 

raw metric values and associated species richness from a frequency null were retained. 

These values were concatenated by species richness, and observed values were compared 

to those expected at their corresponding species richness. We refer to this as the 

frequency by richness null.  

 Like the frequency by richness null, the derivation of a CDM where the 

randomized quadrats contain the same number of species as the input CDM, and 
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individual species occur with the same frequency as the input CDM are the goals of the 

independent swap (Gotelli and Entsminger 2001) and trial swap null models (Miklós and 

Podani 2004). The trial swap null model has been considered a more efficient 

implementation of the independent swap (Miklós and Podani 2004). In our simulations 

this was not the case (although we are not entirely sure whether convergence on stable 

confidence intervals is necessarily equivalent to the “equidistribution” of randomized 

matrices discussed by those authors). With increasing randomizations of a given CDM, 

the independent swap, trial swap and frequency by richness nulls all show increasingly 

stable expectations, but the trial swap seems to stabilize at a slower rate (Fig. S1.2). 

Regardless of the reason for this result, all three nulls converge on the same solution 

(Figs. S1.3 and S1.4). 

 The 2x and 3x nulls (Hardy 2008) were developed to maintain not only aspects of 

species richness and occurrence frequency, but also either the quadrat-specific rank 

abundance curve or the species-specific abundance distribution, respectively. While these 

are aspects of a dataset that a researcher most certainly might wish to maintain, in 

practice, the extreme constraints imposed on the matrix randomizations seems to result in 

inefficient exploration of phylogenetic space (Appendix S6). Both nulls also gave 

identical solutions when concatenated by richness (Fig. S1.5). We were unable to 

determine why these nulls behaved as they did, but the fact that their expectations wobble 

across species richness seems to be an undesirable property. Biologically, it is hard to 

construct a reason why one should expect dramatically different phylogenetic community 

structures with the presence or absence of a single species. Indeed, when using a non-

abundance-weighted metric like MPD, a null model that maintains species richness and 
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occurrence frequency such as the independent swap and a null model that maintains both 

of these aspects of the data and aspects of abundance distributions like the 2x and 3x null 

models should converge on similar expectations. Using MPD, quadrat-specific and 

species-specific abundance distributions should not influence the expectations from two 

quadrats of similar species richness (e.g., there is no reason to expect the randomized 

values from two observed quadrats, each with five species, to converge on different 

expectations). Instead, quadrats of the same species richness converged on different 

expectations, suggesting poor exploration of possible phylogenetic community space 

(Appendix S6). Concatenating expectations from quadrats of the same species richness 

resulted in odd-shaped randomized distributions and a total loss of power to detect 

simulated community assembly processes (Appendix S6). That said, when concatenated 

by quadrat, as they were intended to be, these null models did perform better than most 

we tested (Fig. 5).  

 What determines how expectations for the independent swap (or frequency by 

richness or trial swap) vary from those given the richness null? It may not be intuitive to 

all readers that species within a phylogeny vary in their mean phylogenetic distance to 

other species in the phylogeny. In an ultrametric tree, all species are equidistant from the 

root. How can one differ from another in its mean relatedness to other species? Consider 

the case of a single species that is sister to the rest of the phylogeny. This species is 

separated by larger average evolutionary distances than are the other species. The 

relationship between species’ occurrence frequencies and their mean relatedness 

determines how the expectations for the independent swap shift from those of the 

richness null.  
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 To illustrate this point, we generated a CDM as described in the main text. For 

every species in the CDM, we next calculated both its mean relatedness to the rest of the 

species and its occurrence frequency in the CDM. In the first simulation (Fig. S1.6, 

“sim1”), we then replaced species identities in the CDM such that species that were more 

closely related to the rest became the most frequently occurring species in the CDM. In 

other words, the most closely related species in the phylogeny also became the most 

common in the new CDM. We performed the opposite procedure in the second 

simulation (“sim2”). When distant relatives are also the least frequently observed species, 

the expectations are shifted downwards from those given a richness null. When distant 

relatives are the most frequently observed species, the expectations are shifted upwards 

(Fig. S1.6). Moreover, mean expected MPD, which is uncorrelated with species richness, 

begins to show some correlation with species richness when using a null model like this. 

This is because the probability of including rare species in the randomized matrices 

increases with larger samples. Thus, the expected MPD is positively correlated with 

species richness in the first simulation, and negatively correlated in the second.  

 

Development of the regional null model. 

 No null model of community assembly that we know of maintains species 

richness, species occurrence frequency, and species abundance. The null models that 

come closest to achieving these objectives are the 2x and 3x nulls of (Hardy 2008). We 

developed a regional null model aimed at achieving these goals. We did this in particular 

because our competitive exclusion simulations led us to recognize the importance of local 

interactions on species occurrence frequencies (Appendix S3), though the importance of 
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considering the regional pool has also been recognized widely in the literature (Ricklefs 

1987, Lessard et al. 2011, 2012). Specifically, our competitive exclusion simulations 

produce a local effect where some species that are abundant in the regional species pool 

become locally less so (Fig. S4.6). Such species are closely related to species that are 

more abundant in the local community (i.e. the simulation arena and resulting CDM). 

When these local occurrence frequencies are used to inform a null model such as the 

independent swap, short phylogenetic distances (like those between sister species) tend 

not to occur in the randomized matrices, which results in the expected phylogenetic 

community structure being shifted upwards from that given a null that maintains only 

species richness (Fig. S1.7). Accordingly, it becomes difficult to detect phylogenetic 

overdispersion.  

 In empirical situations, researchers are likely interested in testing for the effects of 

community assembly processes in a focused area (e.g., a forest plot, a grid cell on a map, 

a soil sample, etc.). The thought, likely, is that the focal area was historically or is 

currently subject to community assembly processes (e.g., competitive exclusion) that 

operate on a smaller scale than regional dispersal dynamics. The regional null is intended 

to simulate these regional dispersal probabilities into the focal area. The regional null 

model largely accomplishes the objectives of maintaining species richness, occurrence 

frequency, and abundance distributions, and was associated with lower error rates than 

the other null models (Fig. 5). It requires, however, that a regional abundance vector (in 

the form of “sp1, sp1, sp1, sp2, sp2, …”) be provided. Developing a vector like this is 

easy in our simulations, but may be more difficult in empirical situations. If a dataset 

consisted of evenly sampled sites, so as not to introduce biases in species occurrence 
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frequencies, and the assumption was made that species abundances reflected their 

dispersal probability, then a vector of all individuals across the entire dataset could be 

used (use the function abundanceVector in metricTester to do so). Most real-world 

situations are more complicated than this, and the practicality of the regional null remains 

to be demonstrated. 

 The regional null takes as input a regional abundance vector and, for each quadrat 

in the randomized CDM, it then samples with equal probability from this vector the same 

number of individuals as were in the given quadrat in the observed CDM. The metric of 

interest is calculated on the quadrats from this randomized CDM, and these values are 

retained, along with the associated species richness from each quadrat. This process is 

repeated many times. The randomized values are then concatenated by their associated 

species richness. Thus, species richness is strictly maintained, as observed quadrats are 

only ever compared with randomized sites of corresponding species richness.  

 Species occurrence frequencies are also approximately maintained with the 

regional null. For instance, after 1,000 randomized CDMs were generated with the 

regional null, we calculated the mean occurrence frequency across all randomized CDMs 

for each of the 50 species in CDM. These values were closely correlated with the 

observed occurrence frequencies for the same 50 species (r2 = 0.83, p < 0.001, Fig. S1.8). 

The abundance at which a species occurs in any given quadrat is also approximately 

maintained with the regional null. For instance, within a given quadrat from these same 

randomizations, a randomly selected species was mostly found as a single individual, 

occasionally as two individuals, and very infrequently at higher abundances (Fig. S1.9A). 
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This is similar to the abundance distribution of the same species in the original CDM 

(Fig. S1.9B). 

 

 

 

Figure S1.1. Confidence intervals (95%) for null models (shaded by color) across 

variation in species richness. The same initial CDM, phylogeny and number of 

randomizations as Fig. 1 were used. The richness and 1s null models provide identical 

expectations. The 2s null model also converges on the same expectation; this model is 

simply the spacodiR implementation of what amounts to a richness null, but we include it 

here to confirm that different R packages provide similar results.  
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Figure S1.2. Confidence intervals (95%) for the frequency by richness, independent 

swap, and trial swap nulls across varying species richness and with increasing 

randomizations of an initial CDM. The darker lines in all panels represent mean trend 

Freq by richness, 10^3 Freq by richness, 10^4 Freq by richness, 10^5 Freq by richness, 10^6

Independent swap, 10^3 Independent swap, 10^4 Independent swap, 10^5 Independent swap, 10^6

Trial swap, 10^3 Trial swap, 10^4 Trial swap, 10^5 Trial swap, 10^6
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lines. The shading around those lines represents confidence around the mean, though 

shading is not visible (in the first two models) where there is a great deal of confidence 

around the mean. 

 

 

Figure S1.3. Confidence intervals (95%) for the frequency by richness, independent 

swap, and trial swap nulls across species richness (after 103 randomizations). These are 

the leftmost three panels from Fig. S1.2. Darker lines represent mean trends. Shading 

around those lines represents confidence around the mean; the shading is only visible for 

the trial swap mean. 
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Figure S1.4. Confidence intervals (95%) for the frequency by richness, independent 

swap, and trial swap nulls across species richness (after 106 randomizations). These are 

the rightmost three panels from Fig. S1.2. Darker lines represent mean trends. Shading 

around those lines represents confidence around the mean; the shading is only visible for 

the trial swap mean. 
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Figure S1.5. Confidence intervals (95%) for the 2x and 3x null models (Table 2) across 

variation in species richness. Expectations shown here are the result of 105 

randomizations. The two null models follow identical distributions. 
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Figure S1.6. Results of two simulations varying the occurrence frequency of individual 

species in the CDM according to mean relatedness to the rest of the species in the 

phylogeny. In the first simulation, the most closely related species occurred most 

frequently. This pattern was reversed in the second simulation. Expectations do not shift 

notably when using the richness null. 

 

 

 

Figure S1.7. Confidence intervals (95%) for null models (shaded by color) across 

varying species richness. The arenas were constructed with the same parameters as 

described for the competitive exclusion simulations in the main text. The expectations 

shown here are the result of 105 randomizations. After multiple generations of 

competition, the abundance of some closely related species (i.e. species more nested in 

the phylogeny) decreases across the arena (Fig S3.11), as does their occurrence frequency 
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in the random quadrats, used to generate the CDM. Thus, the expectations given an 

independent swap null, which accounts for occurrence frequency, are shifted notably 

upwards from those given a richness null. Moreover, some species are lost from the arena 

entirely, and the mean expectations for the richness null are therefore also shifted slightly 

up from those given the regional null. 
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Figure S1.8. Mean occurrence frequency of 50 species, after 1000 randomizations with 

the regional null model, as compared with their initial occurrence frequency. Species 

tended to occur with a frequency proportional to their occurrence frequency in the 

observed matrix (r2 = 0.83, p < 0.001). 

 

 

 

Figure S1.9. (A) Histogram of the abundance distribution of a randomly selected species 

across 1000 randomized community data matrices (after excluding all quadrats where it 

did not occur at all). (B) Histogram of the observed, original abundance distribution of 

the same randomly selected species as A (after excluding all quadrats where it did not 

occur at all). 
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Appendix S2. Three forms of abundance-weighted MPD, and equivalency of some forms 

to Clarke and Warwick’s metrics. 

 

Three forms of abundance-weighted MPD 

 Abundance-weighted mean pairwise phylogenetic distance (MPD) and mean 

nearest taxon distance (MNTD) were introduced in Phylocom (Webb et al. 2008) without 

accompanying publications. These methods have entered into common usage in the 

literature, but they have not been discussed at any length. A variation on abundance-

weighted MPD was recently introduced that only accounts for interspecific phylogenetic 

distances (Miller et al. 2013). This is different than the implementation in Phylocom and 

picante (Kembel 2009).  

 There are at least three different possible forms of abundance-weighted MPD 

(Fig. S2.1). Consider a local assemblage of three species drawn from a regional species 

pool. Qualitatively, species A, B, and C are clustered in the phylogeny. But, how should 

the abundances of these three species affect the metric? In the simple case of an 

assemblage of two individuals of species A, and one each of species B and C, all of the 

potential interactions among individuals can be visualized schematically (Fig. S2.1).  

 If we include only interactions among heterospecific individuals to derive a 

matrix of abundance weights for the MPD calculation (Fig. S2.1, “interspecific”), we 

obtain the MPD among heterospecific individuals within the community. This is the same 

as the MPD among species, weighted by the number of individuals of each interacting 

species. It is also the same as Δ* of Clarke & Warwick (1998) (see below). The resulting 

MPD calculated with this metric is slightly less than the unweighted version. This slight 
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decrease is due to down-weighting in the calculation of the contribution of the 

phylogenetic distance between individuals of the rarer species, B and C, compared to that 

of unweighted MPD (Fig. S2.1).  

 The interspecific metric will be useful when it is the phylogenetic distances 

among individuals of different species that are of interest. For example, when testing for 

habitat filtering or interspecific competition, given an increase in the number of 

individuals of species A, a researcher might prefer not to have the metric show a dramatic 

increase in the degree of clustering (as happens with alternative versions of the metric, 

see below and Fig. S2.2d). This is because it is the phylogenetic distances among 

individuals of different species that are hypothesized to be clustered and/or 

overdispersed. As another example, a researcher studying phylogenetic niche 

conservatism might be interested in how phylogenetic community structure changes 

along an environmental gradient. Given abundance data, he or she could study these 

changes along the gradient, down-weighting the importance of rarely recorded species 

(e.g., vagrants) and up-weighting the importance of abundant species.   

 Alternatively, one might wish to account for both inter- and intraspecific 

interactions to obtain the mean pairwise phylogenetic distance between any two 

individuals within the community (Fig. S2.1, “intraspecific”). Here, the two intraspecific 

interactions for species A, which correspond to phylogenetic distances of zero, are given 

weight when calculating MPD, considerably decreasing the resulting metric from the 

unweighted version. This intraspecific abundance-weighted MPD is equal to Δ of Clarke 

& Warwick (1998) (see below). It will likely be preferred when examining patterns in 

community phylogenetic structure predicted to arise from processes generating negative 
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density-dependence mediated by phylogenetic relatedness. For example, in the case of 

pathogen-mediated species co-occurrence, the inclusion of both intra- and interspecific 

phylogenetic distances is important as both con- and heterospecific individuals represent 

potential hosts, and the expectation may be not only of even spacing among species, but 

even abundance distributions of individuals among species.   

 Lastly, abundance-weighted MPD, as currently implemented in Phylocom and 

picante, is calculated by accounting for all possible interactions, including those of an 

individual with itself (Fig. S2.1, “complete”) (Webb et al. 2008, Kembel et al. 2010). The 

biological interpretation of this metric seems more complicated than those of the 

interspecific or intraspecific methods. The complete method might be likened, 

biologically, to including an individual’s impact both on others and on itself; for 

example, an individual’s use of environmental resources reducing availability for all 

individuals, including itself. The diagonal element in the abundance weight matrix of the 

complete method is equal to n2, where n is the number of individuals of a species, while 

that in the intraspecific method is n2 – n. Thus, MPD values calculated with either the 

intraspecific or complete versions will converge rapidly as n increases (Fig. S2.3). Only 

at low total local assemblage abundance is the difference in MPD values between these 

metrics notable. Nevertheless, it seems that intraspecific MPD is a more accurate 

implementation of abundance-weighted MPD as defined by Webb et al. (2008) to be the 

average phylogenetic distance between any two individuals drawn from a sample.  

 Each of these methods corresponds to a different biological interpretation, and 

they performed similarly overall (Fig. 3-5). A few points should still be understood about 

the intraspecific and complete methods. Both intraspecific and complete abundance-
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weighted MPD will correlate with assemblage species richness, since at lower richness, 

proportionally more intraspecific phylogenetic distances (i.e. distances of zero) are 

included in the mean (Fig. 1). Also, assemblages of uniform species abundances will 

have different MPD scores depending on whether they are abundance-weighted or not 

(Fig. S2.2). Finally, abundance-weighted MPD will always be less than the unweighted 

form (except in the unique case where all species in the assemblage are represented by a 

single individual, Fig. S2.2).  

 It is instructive to consider how these three different MPD metrics change as 

species abundances vary. If all species’ abundances are increased, keeping relative 

abundances the same, the resulting metric is unchanged for the interspecific and complete 

methods, but decreases for the intraspecific method (it converges on the complete method 

with increasing total assemblage abundance, Fig. S2.3).  If individuals of both species A 

and C are increased in tandem towards infinity, holding B constant, then the interspecific 

method converges on the phylogenetic distance between species A and C (4 in this 

example), while the latter two methods converge on the mean of the phylogenetic 

distance between species A and C and their intraspecific phylogenetic distance (2 in this 

example; the mean of 4 and zero). Similarly, with the interspecific method, adding 

individuals of species A only to the assemblage will increase the contribution of the 

phylogenetic distances between species A and other species, while with either of the 

other two methods, it will increase the contribution of both interspecific distances 

involving species A, and distances within species A (Fig. S2.2).  

 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2015. ; https://doi.org/10.1101/025726doi: bioRxiv preprint 

https://doi.org/10.1101/025726
http://creativecommons.org/licenses/by/4.0/


Some forms of MPD are equivalent to Clarke and Warwick’s earlier metrics 

 While writing this manuscript, we became aware of three additional phylogenetic 

community structure metrics that were not incorporated in the main simulations (Clarke 

and Warwick 1998). This oversight was due in large part to the fact that these metrics 

have been more frequently used by conservation biologists than by community ecologists 

(Box 1). As we show here, they are equivalent to other metrics that we did assess, and 

consequently are expected to perform equivalently. Specifically, non-abundance-

weighted MPD is equal to Δ+, interspecific MPD is equal to Δ*, and intraspecific MPD is 

equal to Δ (Fig. S2.4). 

 R code to demonstrate the equivalency of the metrics is provided below. 

metricTester can be installed directly from GitHub using the devtools package (username 

= “eliotmiller”; note that the dependency ecoPDcorr must also be installed using the 

same username). 

 

library(metricTester) 

library(geiger) 

 

#simulate tree with birth-death process 

tree <- sim.bdtree(b=0.1, d=0, stop="taxa", n=50) 

 

#generate log-normal abundance curve 

sim.abundances <- round(rlnorm(5000, meanlog=2, sdlog=1)) 

 

#use this log-normal abundance curve to create a community 
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#data matrix (cdm) with 16 quadrats of species richness 

#between 10 and 25.  

cdm <- simulateComm(tree, min.rich=10, max.rich=25, 

 abundances=sim.abundances) 

 

#generate a phylogenetic distance matrix 

dists <- cophenetic(tree) 

 

#calculate the various forms of MPD using metricTester 

naw.mpd <- modifiedMPD(cdm, dists, 

 abundance.weighted=FALSE) 

inter.mpd <- modifiedMPD (cdm, dists, 

 abundance.weighted="interspecific") 

intra.mpd <- modifiedMPD (cdm, dists, 

 abundance.weighted="intraspecific") 

 

#calculate the various forms of Clarke and Warwick's 

#metrics 

temp.CW <- taxondive(cdm, dists) 

delta <- temp.CW$D 

delta.star <- temp.CW$Dstar 

delta.plus <- temp.CW$Dplus 

 

#Non-abundance-weighted MPD is equal to delta +. Also, call 
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#the raw values if you want to see those directly 

plot(delta.plus~naw.mpd) 

 

#Interspecific abundance-weighted MPD is equal to delta * 

plot(delta.star~inter.mpd) 

 

#Intraspecific abundance-weighted MPD is equal to delta 

plot(delta~intra.mpd) 
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Figure S2.1. Schematic illustrating how non-abundance-weighted and three different 

forms of abundance-weighted MPD are calculated. Interspecific MPD accounts only for 

phylogenetic distances among heterospecifics, intraspecific also accounts for distances 

among conspecifics, and complete also includes interactions of an individual with itself. 
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Figure S2.2. Examples showing how varying species’ abundances affects the different 

abundance-weighted MPD metrics. Branch lengths are the same as in Fig. S2.1. In all 

examples shown, unweighted MPD would be equal to 3.3. (a) Intraspecific MPD is 

equivalent to unweighted MPD in the special circumstance where one individual of each 

species is present, whereas the interspecific method is always equivalent to unweighted 

MPD when all species are equally abundant. (b) When all species’ abundances are 

increased, keeping relative abundances constant, intraspecifc MPD decreases as more 

intraspecific distances are incorporated. (c) When individuals are added to species A and 

C, interspecific MPD increases, emphasizing the distance between these upweighted 

species. Intraspecific and complete MPD decrease, emphasizing the intraspecific 

phylogenetic distances within species A and C. (d) Intraspecific and complete MPD 

decrease dramatically when only individuals of species A are added, whereas 

interspecific MPD decreases only somewhat (as a result of a down-weighting of the 

phylogenetic distance between species B and C). 
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Figure S2.3. Intraspecific abundance-weighted MPD converges on complete abundance-

weighted MPD with increasing total community size. To determine this, a series of 1,000 

community data matrices were generated with the same phylogeny, number of species 

and number of quadrats, but the cells in the matrix were randomly filled by drawing from 

log-normal distributions with increasingly larger means. 
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Figure S2.4. Scatterplots demonstrating the equivalency of Δ+ to MPD, Δ to intraspecific 

AW MPD, and Δ* to interspecific AW MPD. These plots were produced with the 

example code from metricTester shown above.  
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Appendix S4. Metric and null model approach results are robust to variation in spatial 

simulation parameters and number of randomizations of community data matrix. 

 

 In this study we simulated community assembly and derived a community data 

matrix (CDM) from the simulated spatial arena. We simulated these communities 

according to one of three assembly processes: random assembly, habitat filtering and 

competitive exclusion. Observed phylogenetic community structure metrics from the 

CDM were then compared to null distributions of the metrics generated by randomizing 

the observed CDM 103 times. Results were very similar across metrics and nulls when the 

number of randomizations of each CDM was increased from 103 to 104, with slight shifts 

in error rates for some approaches (Fig. S4.1). That said, we do encourage empirical 

researchers to use more than 103 randomizations of their observed CDM, e.g., 106 .  

 Communities in the main results contained 2,000-4,000 individuals (i.e. 200-

400/ha). This is around a quarter to a half of the number of individual stems recorded in 

Australian forest plots of similar spatial extent (Murphy et al. 2013), and much less than 

the 6,400 individuals/ha in Ecuadorian rainforests (Valencia et al. 2004). However, our 

results were robust to increasing the number of individuals placed per community to 

between 7,000 and 11,000 (Fig. S4.2).  

 The competitive exclusion simulations were robust to parameter variation. 

Variation in both the interaction distance and in the percent of individuals “killed” per 

generation resulted in communities with regions of approximately equal genetic 

“overdispersion” (Fig. S4.3-4). These communities looked similar to the random 

communities, though the even spacing of close relatives was discernible (Fig. S4.5).  
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 During the competitive exclusion simulations, some species that were initially 

common in the community became less so with each generation (Fig. S4.6). These 

species were those with many close relatives in the phylogeny. A null model like the 

independent swap that incorporates species occurrence frequencies derives these from 

occurrence frequencies in the observed community data matrix (CDM). After the 

competitive exclusion simulations, therefore, longer than average branch lengths end up 

being frequently sampled in the randomized CDMs. Accordingly, the expected 

phylogenetic community structure is shifted upwards from that given a richness null, and 

it becomes difficult to detect phylogenetic overdispersion (Fig. S1.7). This occurs despite 

the fact that, throughout the competitive exclusion simulations, removed individuals are 

settled from the initial regional abundance pool. Our development of the regional null 

model (Appendix S1) was motivated in large part by this complication. 

 

R code for example communities simulated with metricTester (and the specific 

parameters we used in the main results) is given below: 

 

Simulate a phylogeny of 100 species with geiger: 

tree <- sim.bdtree(b=0.1, d=0, stop="taxa", n=100) 

 

Generate an object of class “simulations.input”: 

prepped <- prepSimulations(tree=tree, 

arena.length=sqrt(100000), mean.log.individuals=3.5, 

length.parameter=1000, sd.parameter=40, max.distance=20, 

proportion.killed=0.2, competition.iterations=60) 
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Run whatever simulations have been defined in the function defineSimulations(). In our 

case, this would simultaneously run the random, habitat filtering and competitive 

exclusion simulations, but more can be easily defined and added by users. Examples of 

what these simulated communities look like can be seen in Appendix S3. 

simulations <- runSimulations(prepped) 

 

 

Figure S4.1. Overall performance of metric + null model approaches given spatial 

simulations where the resulting CDM was randomized 104 instead of 103 times. This 

figure is analogous to Fig. 5 in main text. Red bars (type I errors) summarize the 

proportion of 10 total random community assembly simulations where the mean of the 
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standardized effect sizes differed significantly from zero (two-way Wilcoxon signed-rank 

test). Gray bars summarize the mean type II error rates from the 10 habitat filtering and 

competitive exclusion simulations. Blue bars provide an indication of the success of each 

approach, and are defined as the proportion of runs that did not generate type I and II 

errors. Metrics and nulls are arranged in order from overall best-performing to worst, 

with the best approaches in the bottom left corner. Results are generally very similar to 

those in the main text, though there are notable improvements in the performance of EED 

and HED and declines in the performance of PAE and PD. 

 

 

Figure S4.2. Overall performance of metric + null model approaches given spatial 

simulations containing more individuals (8,000 – 11,000 instead of 2,000 – 4,000), 
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analogous to Fig. 5 in main text. As compared with the example code in this appendix, 

these simulations are generated by changing the mean.log.individuals argument to 4. Red 

bars (type I errors) summarize the proportion of 10 total random community assembly 

simulations where the mean of the standardized effect sizes differed significantly from 

zero (two-way Wilcoxon signed-rank test). Gray bars summarize the mean type II error 

rates from the 10 habitat filtering and competitive exclusion simulations. Blue bars 

provide an indication of the success of each approach, and are defined as the proportion 

of runs that did not generate type I and II errors. Metrics and nulls are arranged in order 

from overall best-performing to worst, with the best approaches in the bottom left corner. 

Results are generally very similar to those in the main text, though there are notable 

improvements in the performance of EED and HED and declines in the performance of the 

2x null model. 
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Figure S4.3. Change in the mean genetic neighborhood over 100 generations of the 

competitive exclusion assembly for three different interaction distances. For each 

individual in the community, the mean pairwise phylogenetic distance between itself and 

all individuals within the interaction distance is derived. The mean genetic neighborhood 

is then defined as the community mean of these individual means. Across a wide range of 

interaction distances, the general pattern of increasing phylogenetic overdispersion is 

evident. 
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Figure S4.4. Change in the mean genetic neighborhood over 100 generations of the 

competitive exclusion assembly for three different interaction distances. For each 

individual in the community, the mean pairwise phylogenetic distance between itself and 

all individuals within the interaction distance is derived. The mean genetic neighborhood 

is then defined as the community mean of these individual means. Across a wide range of 

percent killed parameters, the general pattern of increasing phylogenetic overdispersion is 
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evident. Based on these preliminary results, it appears that removing (“killing”) a small 

percentage (e.g., 10%) of individuals each generation would ultimately generate a similar 

pattern to removing a large percentage (e.g., 30%). 

 

 

Figure S4.5. On the left, an example of a 300 x 300 m random assembly community, 

created using similar parameters to those in the study. Here, a random individual was 

selected near the center of the community (marked with a white asterisk). Individuals 

were then color-coded as a function of their relatedness to the focal individual, where 

bright red indicates a member of the same species. The size of individual dots was scaled 

according to their mean relatedness to all other species in the phylogeny, such that large 

dots indicate a member of a species with many close relatives. In this random 

community, bright red dots occasionally occur close together, and on average the plot is 

“redder” than the right panel. Also, the dots in the plot appear to be more uniform in size. 

On the right, an example of a 300 x 300 m competitive exclusion community. The 

community from the left panel was used as a starting point. An individual of the same 

focal species as that panel was selected near the center of the community (marked with a 
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white asterisk). Size and color scaling are the same as in the left panel. In this 

community, bright red dots appear regularly spaced, and on average the plot is “darker” 

than the left panel. Also, the dots in the plot appear to be more heterogeneous in size.   

 

 

Figure S4.6. Changes in the rank abundance curve after 25 generations of the 

competitive exclusion assembly simulations. The initial rank abundance curve is shown 

in black. Increasing the interaction distance results in increasingly large deviations from 
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the initial rank abundance curve. Some species (e.g., columns 8 and 9) change abundance 

dramatically during these competition simulations. Four separate simulations with the 

same initial community and phylogeny are shown here.  
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Appendix S6. Expanded methods and results for approaches that concatenate 

randomized values by richness and approaches that assess significance on a per-quadrat 

basis. 

 

 As in the main text, we here define a community data matrix (CDM) as a quadrat 

(rows)-by-species (columns) matrix, where cells are filled according to the abundance of 

a given species in a given quadrat. Traditionally, with null models used in empirical 

studies of phylogenetic community structure, the CDM is randomized according to some 

algorithm (e.g., the independent swap), and the metric in question is recalculated row-

wise after each randomization. These randomizations are performed some large number 

of times, the quadrat-specific expectations are then compared to observed values, used to 

derive standardized effect sizes (SES), and significance of the observed matrix-wide 

deviation of SES from expectations is assessed with a test such as a Wilcoxon signed-

rank test.  

 A slight deviation from this approach is to assess significance on a per-quadrat 

basis (Miller et al. 2013). Here, a given quadrat is considered significantly overdispersed 

or clustered if it deviates above or below, respectively, the 95% confidence intervals (CI) 

for that quadrat based on the randomized values from the null model. An additional 

deviation from the traditional approach is to retain randomized values, along with the 

species richness (the row-wise sum of non-zero elements) of the corresponding quadrat 

from the randomized matrix, and concatenate and summarize randomized metric values 

by these species richness values.  
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 Thus, null models such as the richness, independent swap and trial swap (Table 2, 

main text) that maintain row-wise sums of non-zero elements are expected to perform 

similarly whether results are concatenated by richness or quadrat. Indeed, since a given 

species richness may occur more than once in an observed CDM (e.g., two sampled 

quadrats from a given community might both contain 20 species), running a null model in 

this manner can effectively increase the number of randomizations against which 

observed values are compared. In other words, the expectations for a given observed 

quadrat of 20 species should be no different than those from a different quadrat of 20 

species. However, other null models like the frequency null, which do not maintain row-

wise sums of non-zero elements, are expected to behave differently when concatenated 

by richness or quadrat. This was the impetus for the development of the frequency by 

richness null (Miller et al. 2013), which we showed here to be equivalent to the 

independent and trial swap null models. 

 During our simulations, we performed all analyses according both to a traditional 

SES, community-wide framework, and to a per-quadrat significance framework. We also 

performed both of these types of analyses after concatenating randomized metric values 

both by quadrat and by species richness. Thus, in addition to the overall results presented 

in the main text (Fig. 5), there were three other ways to consider the overall results: (1) a 

SES framework where results were concatenated by species richness, (2) a per-quadrat 

framework where results were concatenated by quadrat, and (3) a per-quadrat framework 

where results were concatenated by species richness.  

 For the latter two approaches, we summarized type I errors for a given metric + 

null approach as the sum of all clustered or overdispersed quadrats from the random 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2015. ; https://doi.org/10.1101/025726doi: bioRxiv preprint 

https://doi.org/10.1101/025726
http://creativecommons.org/licenses/by/4.0/


simulation, overdispersed quadrats from the filtering simulation, and clustered quadrats 

from the competitive exclusion simulation divided by the total number of quadrats from 

each of these three simulations. We summarized type II errors for a given metric + null 

approach as the sum of all not clustered quadrats from the filtering simulation and all not 

overdispersed quadrats from the competitive exclusion simulation divided by the total 

number of quadrats from both of these simulations. 

 While the traditional approach for calculating the significance of observed 

phylogenetic community structure is sufficient, there are at least three reasons researchers 

might choose to take one of the other approaches. First, a researcher might wish to use 

unstandardized metrics (e.g., MPD instead of NRI). Second, a researcher might wish to 

assess significance for a given quadrat instead of across an entire matrix. Of course, using 

a SES approach, a single quadrat with an SES of > |1.96| can be considered significant at 

an alpha of 0.05. However, if the researcher wishes to use unstandardized metrics, 

assessing significance as per-quadrat deviations beyond CI is a more appropriate 

approach. Third, we believe it is not well appreciated that null model expectations vary in 

metric-specific manners across species richness, and significance testing in this manner 

may provide insight into how such underlying expectations vary in the empirical dataset 

in question. 

 When we took an SES framework where results were concatenated by species 

richness, as expected, results were similar to those when concatenated by quadrat (Fig. 5, 

main text) for the trial swap, independent swap, richness and 1s null models (Fig. S6.1). 

They were identical for the regional and frequency by richness null models since these 

were also concatenated by richness in the main text, and they were identical for the 
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frequency by quadrat null model since we only concatenated those randomized values by 

quadrat (Fig. S6.1). Unexpectedly, however, since both null models maintain species 

richness (i.e. row-wise sums of non-zero elements), results differed dramatically for both 

the 2x and 3x when randomizations were concatenated by richness.  

 We investigated this surprising result by creating a CDM of 12 quadrats and 20 

species total, where quadrats either contained 5, 7, or 10 species each (4 quadrats of each 

richness). When we randomized the matrix according to the 2x and 3x null models and 

plotted per-quadrat expectations as a function of the species richness of that quadrat, we 

discovered that quadrats of similar species richness did not appear to converge on similar 

expectations. Thus, when randomizations from a given species richness were 

concatenated, instead of being (at least somewhat) normally distributed, the randomized 

values often exhibited notably multi-modal distributions (e.g., Fig. S6.2). Moreover, even 

randomized values from a given quadrat were sometimes multi-modal (e.g., Fig. S6.3). 

This explains the significant drop in power of the 2x and 3x null models when 

concatenated by richness—expectations at a given species richness tend to be more 

platykurtic than when concatenated by quadrat.  

 The drop in power of the 2x and 3x null models continued when the significance 

of observed metrics was assessed on a per-quadrat basis. With this manner of significance 

testing, the type II error rates of both null models was greater than 99.9% when 

randomizations were concatenated either by quadrat (Fig. S6.4) or by richness (Fig. 

S6.5).  

 Both the 2x and 3x null models performed well when used in a traditional 

manner. However, when results were either concatenated by richness and/or significance 
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was assessed on a per-quadrat basis, these models essentially lacked any power to detect 

simulated community assembly processes. More study of the behavior of these models is 

warranted. Qualitatively, the issue appears to be biased exploration of plausible 

phylogenetic community structure space, possibly due to highly constrained 

randomization algorithms that maintain numerous aspects of the initial CDM. 

 

 

Figure S6.1. Overall performance of metric + null model approaches when 

randomizations were concatenated by richness (except for the frequency by quadrat 

model, which is always concatenated by quadrat). Red bars (type I errors) summarize the 

proportion of the total 1,009 random community assembly simulations where the mean of 

the standardized effect sizes differed significantly from zero (two-way Wilcoxon signed-
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rank test). Gray bars summarize the mean type II error rates from the habitat filtering and 

competitive exclusion simulations. Blue bars provide an indication of the success of each 

approach, and are defined as one minus the mean type I and II error rates. Metrics and 

nulls are arranged in order from overall best-performing to worst, with the best 

approaches in the bottom left corner. 
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Figure S6.2. Distribution of randomized MPD values after 3,000 randomizations of the 

CDM described in this appendix. Here, all randomized values from the three quadrats 

that contained five species each are shown (i.e. there are 15,000 randomized MPD values 

shown in the histogram).  

 

 

Figure S6.3. Distribution of randomized MPD values after 3,000 randomizations of the 

CDM described in this appendix. Here, all randomized values from one of the three 
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quadrats that contained five species are shown (i.e. there are 3,000 randomized MPD 

values shown in the histogram).  

 

 

Figure S6.4. Overall performance of metric + null model approaches when 

randomizations were concatenated by quadrat and significance assessed on a per-quadrat 

basis. Red and gray bars summarize type I and II errors, respectively (see text for 

definition). Blue bars provide an indication of success. Metrics and nulls are arranged in 

order from overall best-performing to worst, with the best approaches in the bottom left 

corner. 
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Figure S6.5. Overall performance of metric + null model approaches when 

randomizations were concatenated by richness (except for the frequency by quadrat 

model, which is always concatenated by quadrat) and significance assessed on a per-

quadrat basis. Red and gray bars summarize type I and II errors, respectively (see text for 

definition). Blue bars provide an indication of success. Metrics and nulls are arranged in 

order from overall best-performing to worst, with the best approaches in the bottom left 

corner. 
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