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Abstract

The social network structure of animal populations has major im-
plications to survival, reproductive success, sexual selection, and pathogen
transmission. But as of yet, no general theory of social network struc-
ture exists that can explain the diversity of social networks observed
innature, and serve as a null model for detecting species and population-
specific factors. Here we propose a simple and generally applicable
model of social network structure. We consider the emergence of net-
work structure as a result of social inheritance, in which newborns
are likely to bond with maternal contacts, and via forming bonds
randomly. We compare model output to data from several species,
showing that it can generate networks with properties such as those
observed in real social systems. Our model demonstrates that impor-
tant observed properties of social networks, including heritability of
network position or assortative associations, can be understood as a

consequence of social inheritance.
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1 Introduction

The transition to sociality is one of the major shifts in evolution, and so-
cial structure is an important and ever-present selective factor, affecting
both reproductive success Silk et al. (2003) and survival (Silk et al., 2010;
Barocas et al., 2011) and ecological dynamics (Packer et al., 2005). Social-
ity affects individual health, ecological dynamics, and evolutionary fitness
via multiple mechanisms in humans and other animals, such as pathogen
transmission (e.g. Hamede et al., 2009; Mossong et al., 2008) and promot-
ing or hindering of particular social behaviors (Ohtsuki et al., 2006; Santos
etal., 2008; Rand et al., 2014). Social bonds can both increase stress induced
by competition (Kappeler et al., 2015), while at the same time providing
buffer for individuals against stressors and their effects (Cohen and Wills,
1985; Kikusui et al., 2006). The social structure of a population summarizes
the social bonds of its members (Hinde, 1976). Hence, understanding the
processes generating variation in social structure across populations and
species is crucial to uncovering the impacts of sociality.

Recent years have seen a surge in the study of the causes and conse-
quences of social structure in human and animal societies, based on theo-
retical and computational advances in social network analysis (SNA) (Wey
et al., 2008). The new interdisciplinary network science provides many
tools to construct, visualize, quantify and compare social structures, facil-
itating advanced understanding of social phenomena. Researchers study-
ing a variety of species, from insects to humans, have used these tools to
gain insights into the factors determining social structure (Fewell, 2003;
Lewis et al., 2012; Aplin et al., 2013; Ilany et al., 2015). Using SNA pro-
vided evidence for the effects of social structure on a range of phenomena,
such as sexual selection (Oh and Badyaev, 2010) and cultural transmission
(Aplin et al., 2015; Allen et al., 2013).

At the same time, most applications of SNA to non-human animals have

been at a static and descriptive level, using various computational methods
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to quantify features of social structure. These methods, combined with in-
creasingly detailed data (“reality mining” Krause et al., 2013) about social
interactions in nature, provided valuable insights about the complex effects
of social interaction on individual behaviors and fitness outcomes. Yet, we
still lack a comprehensive theory that can explain the generation and diver-
sity of social structures observed within and between species. There have
been only a few efforts to model animal social network structure. Notably,
Seyfarth (1977) used a generative model of grooming networks based on in-
dividual preferences for giving and receiving grooming, and showed that
a few simple rules can account for complex social structure. This model
and related approaches (e.g., Sterck et al., 1997) have been very influential
in the study of social structure and continue to drive empirical research.
At the same time, they mostly focused on primates and were geared to-
wards specific questions such as the effects of relatedness, social ranks, or
ecological factors in determining social structure.

Independently, a large body of theoretical work in network science aims
to explain the general properties of human social networks through sim-
ple models of how networks form. Yet these models tend to focus either on
networks with a fixed set of agents (e.g. Skyrms and Pemantle, 2000), or on
boundlessly growing networks (e.g., Jackson and Rogers, 2007), with few
exceptions (Moore et al., 2006; Ghoshal et al., 2013). These network for-
mation models therefore have limited applicability to animal (and many
human) social groups where individuals both join (through birth of im-
migration) and leave (through death or emigration) the network. Further-
more, most work in network science concentrates on the distribution of
number of connections individuals have (the degree distribution). Models
that fit the degree distribution of real-world networks tend to be a poor
fit to other important properties, notably the tendency of social connec-
tions to be clustered (Jackson and Rogers, 2007), i.e., two individuals to be
connected with each other if they are both connected to a third individual.
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Real-world human and animal networks exhibit significantly more cluster-
ing than random or preferential attachment models predict.

To overcome these limitations, we provide a generally applicable net-
work formation model based on simple demographic and social processes.
Our model assumes a neutral demographic process (birth and death), and
focuses on a central social process that is in operation in many social species:
the “inheritance” of social connections from parents. This central compo-
nent of our model is based on the observation that in many species with
stable social groups, individuals interact with the social circle of their par-
ents. This is essentially the case in all mammals, where newborns stay
close to their mothers until weaning, but also common in other taxa, such
as birds, fish, and insects. After positively interacting with the parents’ so-
cial contacts, young individuals are likely to form social bonds with these
conspecifics.

Despite being extremely simplistic, we demonstrate that our model can
generate networks that match both the degree and local clustering distri-
butions of real-world animal social networks, as well as their modularity,
using only two parameters. We also show that social heritability of con-
nections can result in the appearance of genetic heritability of connectivity
traits, as well as assortativity in the absence of explicit assortative pref-
erences. Our approach highlights commonalities among groups, popula-
tions, and species, and uncover general principles underlying variation in

social structure.

2 Methods

2.1 A general model of social structure

Our departure point is the model by Jackson and Rogers (2007), which is
based on role models introducing their new contacts to their other con-
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Newborn

Figure 1: Graphical illustration of the model: a newborn individual is con-
nected to its parent with probability p,, to its parent’s connections with
probability p,, and to individuals not directly connected to its parent with
probability p,.
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tacts, and can reproduce many attributes of large-scale human social net-
works. However, Jackson and Rogers” model is based on a constantly grow-
ing network with no death or emigration of agents and their results hold
asymptotically for very large networks. Since we are interested in small-
scale animal networks that do not grow unboundedly, we model a popula-
tion where existing individuals die and get replaced at an equal rate with
newborn individuals (Moore et al., 2006). We model binary undirected, im-
plicitly cooperative networks, but our model can be extended to weighted
networks that describe the strength of each social bond, and directed ones,
such as agonistic networks.

Consider a social group of size N. Suppose that each time step, an in-
dividual is born to a random mother, and one individual is selected to die
at random. With probability p,, the newborn will meet and connect to its
mother (generally, p, will be close to one, but can be low or zero in species
such as some insects, where individuals might not meet their mothers). A
crucial component of our model is the general assumption that the likeli-
hood of a newborn A connecting with another individual B depends on
the relationship between A’s mother and B: the probability A will connect
to B is given by p, if A’s mother is connected to B, and p, if not (Figure 1).
Hence, p,, is the probability an offspring “inherits” a given connection of
its parent. If p, > p,, the population exhibits a tendency for clustering,
a well-established and general phenomenon in social networks (Lusseau,
2003; Ilany et al., 2015).

2.2 Mean-field approximation of the model

Despite being based on a simple process, most aspects of the dynamics our
model are analytically intractable, so we use simulations to study them. We
can however, characterize the expected degree distribution in our networks
from a mean-field approximation. To characterize the expected dynamics
of the degree distribution, consider a focal individual that has degree d at
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time period ¢. In period t+1, the probability that this individual increases
its degree by one, p, is:

.+ (N=1—d)dp,+ (N —d—2)p, + p
d N N —1 ‘

(1)

p

The first fraction in (1) is the probability that an individual not connected
to the focal individual is selected to die, while the second fraction is the
average probability that the newborn individual becomes connected to the
focal individual.

The probability of a focal individual’s degree d (> 0) going down by
one, p,, is likewise given by

()

__d(;_ d=Dpat (N -—dp+p
Pa =N N-1 ’

which is simply the probability one of the focal individual’s connections
dies times the newborn individual does not connect to the focal individual.
Denoting by ¢, ' the probability that a randomly selected individual in
the population has degree d, we can write the following rate equation for
the mean-field dynamics of the degree distribution (Moore et al., 2006):

oy _

di ba(¢) +PI—1N¢d71 + Py NGt — (p;; + 0, )Nba — ¢a, 3)

where b,(¢) is the probability that a newborn is born with d connections
(itself a function of the degree distribution ¢), and the last term in (3) is
the probability that a degree d individual dies, reflecting our assumption
that death occurs randomly with respect to degree. If we assume p, = 1,
so that the newborn always connects to its parent, then b4(¢) is given by

for 0 < d < N — 1, with the convention that p™, = p; =0
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(for d > 1; by = 0 in that case):
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where the inner sum is the probability that an offspring of a parent of de-
gree [ is born with degree d, and the outer sum takes the expectation over
the degree distribution. Equation (3) is of an approximate nature, since
it assumes that death and birth events are uncorrelated between different
degrees. Our simulations suggest that the approximation is good except in
very dense networks. Setting equation (3) equal to zero for all d and solving
the resulting NV equations, we can obtain the stationary degree distribution.
We were unable to obtain closed-form solutions to the stationary distribu-
tion, but numerical solutions display good agreement with simulation re-
sults (see Figure 3). It is worth noting that although the p; and p; terms
are similar to models of preferential attachment with constant network size
(e.g. Moore et al., 2006), these models assume that each new addition to the
network has exactly the same degree, whereas in our model, the number
of links of a newborn is distributed according to equation (4). Further-
more, the degree distribution does not capture the clustering behavior of
preferential attachment models, which generate much less clustering than
our model for a similar mean degree (results not shown), consistent with

results in growing networks (Jackson and Rogers, 2007).

2.3 Data

We compared the output of our model with observed animal social net-
works of four different species. For this analysis we used data from pub-
lished studies of spotted hyena (Crocuta crocuta (Ilany et al., 2015)), rock
hyrax (Procavia capensis (Ilany et al., 2013)), bottlenose dolphin (Tursiops
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spp. (Lusseau et al., 2003)), and sleepy lizard (Tiliqua rugosa (Bull et al.,
2012)).

The Hyena social network was obtained from one of the binary net-
works analyzed by (Ilany et al., 2015), where details on social network con-
struction can be found. Briefly, the network is derived from association
indexes based on social proximity in a spotted hyena clan in Maasai Mara
Natural Reserve, Kenya, over one full year (1997). Similarly, the hyrax net-
work was described by (Ilany et al., 2013), and is based on affiliative in-
teractions in a rock hyrax population in the Ein Gedi Nature Reserve, Is-
rael, during a five-months field season (2009). The dolphin network was
published in (Lusseau et al., 2003), and is based on spatial proximity. The
lizard social network was published by (Bull et al., 2012), and is also based
on spatial proximity, measured using GPS collars. To get a binary network,
we filtered this network to retain only social bonds with association index
above the 75% quartile.

2.4 Network measures

To study the networks produced by our model and compare them to ob-
served networks, we used a number of commonly used network measures.
Network density is defined as D = m where T is the number of ties
(edges) and N the number of nodes. The global clustering coefficient is
based on triplets of nodes. A triplet includes three nodes that are con-
nected by either two (open triplet) or three (closed triplet) undirected ties.
Measuring the clustering in the whole network, the global clustering coef-

ficient is defined as

_ closed triplets

triplets ©)
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The local clustering coefficient measures the clustering of each node:

_ number of edges among node i’s contacts
" number of possible ties among node i’s contacts

(6)
The betweenness centrality of a node v is given by

9 Z st (V)
. sFVF£L st

where o, is the total number of shortest paths from node s to node ¢ and
ost(v) is the number of those paths that pass through v.

Finally, we used modularity to measure the strength of a division of the
networks into modules, also called groups or communities. The modular-

ity of a given partition to c modules is

Q= Z(ez‘j —a;) (8)

where e;; is the fraction of edges connecting nodes in two different mod-
ules, and «a? is the fraction of edges connecting nodes in the same mod-
ule. We computed network modularity for partitions given by the walktrap
community detection method (Pons and Latapy, 2005).

3 Results

We simulated social network dynamics to test how social inheritance and
stochastic social bonding affect network structure, heritability, and assor-
tativity. For all of our results, we assume p, = 1. As expected, the network
density (the number of edges out of all possible edges) depends on p,, and
pr. The global clustering coefficient, a measure of the extent to which nodes
tend to cluster together, also depends on these parameters, but not mono-
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Figure 2: The dependency of social network density and clustering coef-
ficient on social inheritance, p,, and probability of random bonding, p,.
Parameter values: simulation steps=2000, N = 100.

tonically; high levels of clustering were observed in simulations with low or
high p,, but not at intermediate levels (Fig. 2). We also tested how changes
in network size affected its properties. These tests did not provide a gen-
eral conclusion, suggesting that the network structure might be sensitive
to its size in some cases (see Supporting Information).

We then compared the output of our model with observed animal so-
cial networks of four different species. We found species-specific values
of p,, and p, that could generate networks similar to those observed with
respect to the degree and local clustering coefficient distributions, as well
as the network modularity. Figure 3 illustrates that our model of social
inheritance can produce networks with realistic social structure. In partic-
ular, the good match of local clustering distributions is an advance over
network growth models based on preferential attachment (Jackson and
Rogers, 2007). Furthermore, our model generated networks with realistic
modularity values (see SI, figure S4). The values we found suggest that so-
cial inheritance is stronger in hyena and hyrax than in dolphins and sleepy
lizards (Table 1). We also solved for the stationary distribution of the mean-
tield dynamics of the degree distributions (Figure 3).
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Figure 3: Comparing model output to networks of four species. Upper
row: observed networks. Middle row: Cumulative degree distributions of
observed and simulated networks. Lower row: Cumulative clustering co-
efficient distributions of observed and simulated networks. Black dots rep-
resent observed values. Blue dots depict mean-field estimation (available
only for degree distribution). Red line notes mean values for 500 simulated
networks with the same species-specific p, and p, values (given in Table 1),
whereas light red area depicts 95% confidence intervals.

Species Dn Dr
Spotted hyena 0.90 0.010
Rock hyrax 0.80 0.009
Bottlenose dolphin 0.53 0.033
Sleepy lizard 0.57 0.005

Table 1: Parameter values used in the simulations for each species in Figure
3.
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Next, we tested if social inheritance can generate heritability of indirect
network traits in social networks. Direct network traits, such as degree,
will by definition be heritable when p,, is high and p, low. To see if this also
holds for emergent network traits, we measured the correlation between
parent and offspring betweenness centrality for a set of social inheritance
(pn) values. As Fig. 4 shows, high probability of social inheritance (When
pn > 0.5) results in a pattern of heritability. In other words, when indi-
viduals are likely to copy their parents in forming social associations, the
resulting network will suggest heritability of centrality traits, although the
only heritability programmed into the model is that of social inheritance
and stochastic bonding. Similar patterns obtain for local clustering coeffi-
cient and eigenvalue centrality (results not shown).

Finally, we tested the effect of social inheritance on assortativity, i.e. the
preference of individuals to bond with others with similar traits. We simu-
lated networks where each individual had one trait with an arbitrary value
between 0 and 1. Newborns inherited their mother’s trait with probability
1 — 1, where p is the mutation rate. Individuals followed the same rules of
the basic model when forming social bonds. Hence, individuals did not ex-
plicitly prefer to bond with others with the same trait value. Nevertheless,
the rate of assortativity was significantly higher than in random networks,
in which the trait values were re-assigned randomly (Figure 5).

As an alternative model generating assortativity, we considered an ex-
plicit assortativity model, in which newborns explicitly prefer bonding
with those with similar traits. Although this model generated networks
with high assortativity, as expected, it failed to reconstruct other impor-
tant features of observed networks, such as high clustering and modularity
(Supporting Information, figures S5 and S6). This result further suggests
that although assortativity is a feature of observed networks, in some cases
it is probably a byproduct of social inheritance rather than a driving force
of social network structure.
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Figure 4: The regression of betweenness centrality among parents and their
offspring as a function of the strength of social inheritance (p,,). The bottom
and top of the box mark the first and third quartiles. The upper whisker
extends from the hinge to the highest value that is within 1.5*IQR of the
hinge, where IQR is the inter-quartile range, or distance between the first
and third quartiles. The lower whisker extends from the hinge to the lowest
value within 1.5*IQR of the hinge. Data beyond the end of the whiskers are
outliers and plotted as points. Ten replications were run for each p,, value.
Parameter values: simulation steps=2000, N = 100, p, = 0.01.
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Figure 5: Illustration of assortativity without explicit assortative prefer-
ence. Dots and notches note assortativity coefficients and standard errors,
respectively, for model networks (red), and shuffled networks, where trait
values were reassigned randomly. Inset networks illustrate examples from
the two groups. Circle colors represent arbitrary continuous trait values.
Lines represent social bonds between individuals. Parameter values are
the same as in 4, with mutation probability ;. = 0.05
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4 Discussion

Our model provides a step towards a general theory of social structure in
animals, and incorporates two main processes shaping social networks: 1)
demography, which influences social structure as individuals gain contacts
when others join the population and lose contacts when individuals die or
leave; 2) “social inheritance” of connections, where individuals are more
likely to bond with individuals already connected to their parents than to
the rest of the population. This second process is crucial to the formation
of cohesive clusters in social networks. Notably, social inheritance usually
depends on the mother-offspring unit, long viewed as the base of social
structure (Kummer, 1971). We showed that in four different species it is
possible to identify parameter values to generate networks that are similar
in structure to the observed social networks, with respect to both the degree
distribution and modularity, and markedly also the clustering coefficient
distribution, in contrast to most studies of social network formation.
Clustering is an important feature of social networks, that distinguishes
them from other types of networks, such as transportation networks and
the internet Newman and Park (2003). Theory predicts that clustered net-
works are more conducive to cooperation (Cavaliere et al., 2012), and em-
pirical studies document a tendency to close triads (Ilany et al., 2013, 2015),
suggesting that it might be a generally adaptive feature of social structure.
Nevertheless, most previous models of sociality and network formation do
not explicitly account for clustering. For example, whereas preferential at-
tachment can reconstruct the degree distribution of social networks, it fails
to reconstruct their high degree of clustering (Jackson and Rogers, 2007).
Our work shows that clustering can result from social inheritance, which
requires a behavioral mechanism that facilitates introduction of newborns
to their mother’s social partners. As in many species young individuals
tend to follow their mothers, it is easy to think about such a passive mech-
anism: young individuals are introduced to other individuals by spend-
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ing time with their mother’s partners. Moreover, in many species group
members show active interest in newborns (Kinnaird, 1990), promoting the
initiation of a social bond between newborns and their mother’s partners.
Further work could test if initial interest in newborns later translates to
stronger social bonds with individuals reaching adulthood.

Our model makes a number of simplifying assumptions such as no in-
dividual heterogeneity, or age- or stage-structure in our demography. We
also donot treat sex-specific dispersal, a mechanism that results in different
social environments for the two sexes. We do not argue that these assump-
tions necessarily hold in nature. However, we argue the fact that we can
produce realistic-looking networks using this very simple model indicates
that the social inheritance of connections is likely to be an important factor
structuring social networks. Our model can therefore serve as a departure
point to test the effect of additional factors. For example, after fitting the
model to an observed social network, one could test whether personality
can explain the variance not explained by social inheritance and stochas-
ticity. This can be attained by adding personality to the agent-based model
as a factor that influences individual bonding decisions.

Our model also has implications for how positions in social networks
can be inherited, which has important implications for social dynamics.
For example, Fowler et al. (2009) found that in humans, network traits such
as degree and transitivity were heritable. In non-human primates, it was
suggested that indirect network traits such as betweenness are more her-
itable than direct ones in rhesus macaques, (Macaca mulatta, Brent et al.,
2013). In contrast, a study of yellow-bellied marmots, Marmota flaviventris,
presented evidence for heritability of social network measures based on
direct interactions (Lea et al., 2010), but not indirect interactions. Taken to-
gether, these studies suggest network position can be heritable, but have
not been able to elucidate the mechanism of inheritance. Our model sug-

gests that much of the inheritance of network position might be social (as
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opposed to genetic), from individuals copying their parents (or other role
models). Therefore, studies aiming to get at genetic inheritance specifically
need to control for social inheritance.

Another robust finding in network science and animal behavior is that
individuals tend to connect to others with traits similar to themselves (e.g.,
(Croft et al., 2005; Lusseau and Newman, 2004; Wolf et al., 2007)). This as-
sortativity is crucial for social evolutionary theory, as the costs and benefits
of social interactions depend on partner phenotypes. Nevertheless, recent
work (Xie et al., 2015) has found that assortative mating can arise without
assortative preferences, as a result of dynamic processes in a closed system.
Our model provides another general mechanism, social inheritance, that
can lead to high assortativity in the absence of explicitly assortative prefer-
ences for social bonding. Indeed, an alternative model based on explicit as-
sortativity failed to reconstruct topological features of observed networks.
Empirically, our results call for a careful assessment of networks with ap-
parent phenotypic assortment, and controlling for social inheritance. This
will be difficult to do with only static network data, but will be feasible for
species with long-term data on the network dynamics.

There are several interesting avenues to be explored in future research.
First, we used binary networks to describe the strength of social bonds
that are inherently on a continuous scale (Croft et al., 2011; Farine, 2014).
Whereas our model could generate networks similar in structure to ob-
served networks, weighted networks that can describe the delicate differ-
ences in the strength of social bonds between individuals would be more
relevant in some cases. It would be straightforward to replace our binary
bond generation with a distribution of bond strength though that will come
at the cost of additional model complexity and parameters. Therefore, such
an extension might be best attempted in conjunction with a more mech-
anistic approach to how social bonds are formed and maintained. Sec-

ond, even though our model is extremely simplistic, most of its mathemat-
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ical properties (including probability distributions over network measures
such as the degree distribution) are analytically intractable, which makes
model-fitting a challenge. Methods such as approximate bayesian com-
putation (Marjoram et al., 2003), coupled with dimensionality reduction
techniques (Wegmann et al., 2009) can be used to develop algorithms for
estimating parameters of the model and also incorporate more information
about individual variation and environmental effects. Additionally, long-
term datasets on social network dynamics can allow estimation of the so-
cial inheritance and random bonding parameters p,, and p, directly. Lastly,
our model does not consider changes in social bonds after these were es-
tablished. Although this assumption is supported by empirical findings
concerning bond stability in some species (Ilany et al., 2015; Shizuka et al.,
2014), future models in which this assumption is relaxed should be devel-
oped. We also assume a single type of bond between individuals, whereas
in nature, different social networks exist for different kinds of interactions
(e.g., affiliative, agonistic, etc.). Such “multiplex networks” represent an
important future direction.

In conclusion, the theory we present here is based on the idea that any
snapshot of a social network should be regarded and analyzed as the re-
sult of a dynamic process (Pinter-Wollman et al., 2014). A social network is
emergent in its nature, and its structure depends on environmental, indi-
vidual, and structural effects (Ilany et al., 2015) and as such, it can only be
understood in the context of past events, within a demographic framework.
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Supporting Information

SI1 The effect of varying network size

Population size might influence social structure in unknown ways. To test
how changes in population size affect the resulting network, we simulated
networks that grow or shrink in size. We then compared measures of the
networks to those of stable networks, where the network size was kept con-
stant. In a shrinking network model, we started the simulation with 200 in-
dividuals and ran it for the first 1000 time steps as a constant size network
(one born and one dead at each time step). After 1000 steps we set the prob-
ability of each individual to die at any time step at 0.05, corresponding to
an expected mortality of 10 individuals per time step initially. We kept
the number of individuals born at each time step at one. We kept running
the simulation until population size fell to 100 individuals, and compared
network characteristics to a parallel simulation where the population size
started out with V = 100 and held constant throughout. Similarly, in a
growth model we started with 100 individuals for the first 1000 steps, and
then changed the probability of each individual to die at a given time step
to 0.001 (instead of 0.01 in a stable network size). We stopped the simula-
tion when the network size increased to 200. Again, we compared these
networks to networks that started out with N = 200 were kept constant
throughout. We present results for two series of parameter sets: 1. the
four sets of parameter values, as fitted to the four species we tested (see Ta-
ble 1). 2. Another 15 parameter sets, where p,, varied between 0.5and 0.9 (5
values) and p, was one of 0.01, 0.05, and 0.1. For each parameter set, we ran
100 replicate pairs of shrinking (or growing) and constant size networks.
Tables S1 and S2 compare the network measures of stable to shrinking and
growing networks, respectively, for the sets of fitted values.

The effect of shrinking the network size was not consistent for all pa-
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Network density

Parameter set Mean=£SD for stable N Mean+SD for shrinking N
Hyena 0.084 £ 0.022 0.092 +0.013
Hyrax 0.041 £ 0.009 0.049 + 0.007
Dolphin 0.065 £ 0.006 0.066 + 0.005
Lizard 0.011 +=0.003 0.012 = 0.002

Clustering coefficient

Parameter set Mean=SD for stable N Mean=+SD for shrinking N
Hyena 0.092 £ 0.043 0.092 £ 0.026
Hyrax 0.054 £ 0.036 0.054 £ 0.022
Dolphin 0.073 £0.015 0.069 = 0.013
Lizard 0.021 £ 0.040 0.016 = 0.030
Modularity

Parameter set Mean=SD for stable N Mean=+SD for shrinking N
Hyena 0.381 +0.095 0.348 4= 0.046
Hyrax 0.524 £ 0.068 0.458 £ 0.049
Dolphin 0.339 £ 0.027 0.326 £ 0.025
Lizard 0.773 £ 0.062 0.776 £ 0.056

SI Table 1: Network measures of simulated networks, comparing simula-
tions of constant network size to those with shrinking networks. Parameter
sets indicate the values of p,, and p, used, taken from Table 1. Clustering co-
efficient is the global clustering coefficient. P values were calculated from
{ tests.
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Network density

Parameter set Mean=£SD for stable N Mean+SD for growing N
Hyena 0.089 £ 0.012 0.086 £ 0.019
Hyrax 0.043 £ 0.005 0.043 £ 0.008
Dolphin 0.065 £ 0.003 0.065 £ 0.003
Lizard 0.011 £ 0.001 0.012 £+ 0.002

Clustering coefficient

Parameter set Mean=SD for stable N Mean=+SD for growing N
Hyena 0.097 £ 0.022 0.098 £ 0.033
Hyrax 0.050 £ 0.015 0.055 £ 0.024
Dolphin 0.070 £ 0.006 0.071 4 0.007
Lizard 0.015 +=0.013 0.018 = 0.016
Modularity

Parameter set Mean=SD for stable N Mean=+SD for growing N
Hyena 0.292 4 0.060 0.313 = 0.098
Hyrax 0.407 £ 0.034 0.432 £ 0.050
Dolphin 0.238 £ 0.013 0.245 £ 0.014
Lizard 0.681 4 0.041 0.679 £ 0.050

SI Table 2: Network measures of simulated networks, comparing simula-
tions of constant network size to those with growing networks. Parameter
sets indicate the values of p,, and p, used, taken from Table 1. Clustering co-
efficient is the global clustering coefficient. P values were calculated from
{ tests.
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SI Figure 1: The difference in network density of simulated networks from
our model between stable and shrinking (left) or growing (right) networks.
Points and lines represent the mean difference and standard error, respec-
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(right) networks. Points and lines represent the mean difference and stan-

dard error, respectively.
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SI Figure 3: The difference in network modularity of simulated networks
from our model between stable and shrinking (left) or growing (right) net-
works. Points and lines represent the mean difference and standard error,
respectively.

rameter sets. Nevertheless, shrinking networks tended to be denser in ties
and less modular than networks of constant size for low p,. In a similar
fashion, the effect of growing network size was not consistent for all pa-
rameter sets.

We conclude that the effect of changes in population size on network
structure is unpredictable, and depends on the bonding probabilities. Fu-
ture work should explore many interesting questions about the interaction

of population size and social structure.

SI2 Modularity of model networks

Social networks feature higher modularity than random networks. That
is, social networks can usually be partitioned into subgroups of individu-
als (communities in network jargon), more densely connected within than
between those subgroups. To test another aspect of our model, we calcu-
lated the modularity of simulated networks after identifying the commu-

nity (subgroup) structure. Modularity measures the strength of division
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SI Figure 4: The network modularity of simulated networks from our
model (distribution), compared to modularity of observed networks (red
line). Modularity was calculated after partitioning the network to com-
munities using the Walktrap algorithm. In all four species, the observed
modularity could be generated by the model, i.e. was not an outlier.

into communities, where high modularity indicates dense connection be-
tween individuals within communities and sparse connections between in-
dividuals across communities. We used the Walktrap community finding
algorithm, based on the idea that short random walks on a network tend
to stay in the same community (Pons and Latapy, 2005). In all four tested
networks (see main text), the modularity of the observed network was not
an outlier in the distribution of modularity values of simulated networks.
Thus, we could not reject the null hypothesis that the observed network
belongs to the family of simulated networks, when considering their mod-
ularity (Figure S4).
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SI3 An alternative assortativity model

We constructed an alternative model of social network dynamics, focused
on preference to form social bonds with other individuals with similar
traits. The purpose of this model is to test the notion that explicit assorta-
tivity is the main factor determining network structure, as suggested em-
pirically in various species. In this alternative model, newborns still bond
their mother with probability p,, but then form bonds with all others with
probability proportional to the similarity of an arbitrary trait value. The
trait is inherited from the mother in the same manner as in the main model
(see main text). Specifically, the probability of a new born to connect with
%, where z is the absolute dif-
ference in trait values of the newborn and a candidate individual. This

any other individual was defined as <

term ensures the connection probability to be in a realistic range, resulting
in networks with similar density to the mean density of the four observed
networks (0.123, see main text).

Unsurprisingly, simulations of the explicit assortativity model (2000
time steps, 100 individuals, 500 repeats) resulted in networks with high
assortativity (Figure S5). However, the resulting networks failed to re-
construct other important topological features of the observed networks,
namely the global clustering coefficient and modularity. The only excep-
tion was the spotted hyena, where modularity values, but not global clus-
tering coefficient, matched modularity levels of the explicit assortativity
model.

To conclude, a model of social structure where individuals base their
social bonding almost exclusively on assortativity fails to reconstruct the
topological features of observed networks in the tested species.
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SI Figure 5: An example of a social network resulting from the explicit
assortativity model, in which newborns are more likely to connect with
similar individuals. Colors represent the values of an arbitrary trait, con-
sidered when forming bonds. See test for model definition and simulation
parameters.
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SI Figure 6: A comparison of the global clustering coefficient and modu-
larity of 500 networks resulting from the explicit assortativity model (see
text for details) to the values of observed networks of four species. Dis-
tributions show value of network measures for model networks. Red line
show values for observed networks. The global clustering coefficient of all
model networks is much lower than that of observed networks. Similarly,
the modularity of model networks is lower than observed networks, except
for the spotted hyena.

34


https://doi.org/10.1101/026120
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/026120; this version posted October 19, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

SI 4 Fitting the model to data

SI 4.1 Partial least square regression

To obtain estimates of parameter values p,, and p, from observed network,
we used a dimensionality reduction approach that incorporates informa-
tion about degree and local clustering distributions from the observed net-
works. For each empirically observed network, we ran the model with
10000 random values of p,, and p, between 0 and 1, and the network size
was set to match the observed network. We then used partial least squares
regression, using the R package pls (version 2.4-3), to obtain a regression
of the network degree and clustering coefficient distributions on p,, and p,..
Based on the regression formula, we predicted the values of p,, and p,. The
values predicted by the regression were sufficient to simulate networks that
were usually close in their degree and clustering coefficient distributions to
the observed network, but manual refinement was required in some cases
to achieve better fit. The values given in Table 1 are the result of the man-
ual refinement. They are meant to demonstrate the ability of the model to
generate realistic looking networks, and do not constitute a real fitting of
the model to data.

To verify the usage of partial least squares (PLS) regression to fit our
model to observed networks, we simulated networks using known param-
eter values and tested the predictions of PLS regression. Specifically, we
simulated 10,000 networks from our basic model over 2000 time steps, us-
ing random P, and P, values. We then used PLS regression to fit the de-
grees and clustering coefficients to parameter values. We then simulated
set of 100 networks each using a given set of parameter values (P, = 0.6 to
0.9, P, = 0.014) and checked whether the PLS regression fit could predict
those values. For example, in SI Figure 7 we plot the distribution of pre-
dicted P, and P, values compared to the real values used to simulate the
networks. SIFigure 8 shows the distribution of predictions for ten different
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SI Figure 7: Example of how PLS regression predicts simulated network
parameters. The distributions of predicted P, (left) and P, (right) values
for 500 networks simulated using P,, = 0.82, P, = 0.014 are plotted, along
with the real values (red dashed line).

values of P,,, whereas P, was fixed at 0.014.
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SI Figure 8: Distributions of predicted P, values (box plot), compared to
simulated values (red line). The predictions were generated after fitting
a PLS regression to degrees and clustering coefficients of simulated net-
works. Thus, it is possible to predict the model parameter values when
given an observed network.
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