
1 
 

HacDivSel: Two new methods (haplotype-based and outlier-based) for the detection of 

divergent selection in pairs of populations of non-model species. 

 A. Carvajal-Rodríguez 

Departamento de Bioquímica, Genética e Inmunología. Universidad de Vigo, 36310 Vigo, 

Spain. 

 

Keywords: haplotype allelic class, FST, GST, outlier test, divergent selection, genome scan, 

ecological genetics, non-model species. 

*: A. Carvajal-Rodríguez. Departamento de Bioquímica, Genética e Inmunología. Universidad 

de Vigo, 36310 Vigo, Spain. Phone: +34 986813828  

email: acraaj@uvigo.es  

Running title: HacDivSel: detection of divergent selection 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 25, 2016. ; https://doi.org/10.1101/026369doi: bioRxiv preprint 

mailto:acraaj@uvigo.es
https://doi.org/10.1101/026369
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract 

In this work two new methods for detection of divergent selection in populations connected 

by migration are introduced. The new statistics are robust to false positives and do not need 

knowledge on the ancestral or derived allelic state.  There is no requirement for performing 

neutral simulations to obtain critical cut-off values for the identification of candidates. The 

first method, called nvdFST, combines information from the haplotype patterns with inter-

population differences in allelic frequency. Remarkably, this is not a FST outlier test because 

it does not look at the highest FSTs to identify loci. On the contrary, candidate loci are chosen 

based on a haplotypic allelic class metric and then the FST for these loci are estimated and 

compared to the overall FST. Evidence of divergent selection is concluded only when both the 

haplotype pattern and the FST value support it. It is shown that power ranging from 79-94% 

are achieved in many of the scenarios assayed while the false positive rate is controlled 

below the desired nominal level ( = 0.05). Additionally, the method is also robust to 

demographic scenarios including population bottleneck and expansion. The second method, 

called EOS, is developed for data with independently segregating markers. In this case, the 

power to detect selection is attained by developing a new GST extreme-outlier set test (EOS) 

based on heuristic problem solving via a k-means clustering algorithm. The utility of the 

methods is demonstrated through simulations and the analysis of real data. Both algorithms 

have been implemented in the program HacDivSel.  
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Introduction 

Current population genetics has a main focus in the detection of the signatures of selection 

at the molecular level. In previous years, the main effort was focused in human and other 

model organisms but, now, the increasing amount of information on genomes of non-model 

species also permits to focus the search for selection in many other situations of interest. 

One of these includes the sought for local adaptation and selection in structured 

populations. By non-model species we mean a species for which we lack a priori information 

on candidate loci with known function that could be potentially adaptive. As well, the allelic 

state, ancestral or derived, is unknown.  There are several methods aiming to detect 

selection in genomic regions undergoing local adaptation (Whitlock 2015). Some of them are 

based on finding outlier loci when measuring genetic differentiation between populations. 

From its original formulation (LK test, Lewontin & Krakauer 1973) this technique has been 

both questioned and improved in many different ways (Akey 2009; Akey et al. 2002; 

Bonhomme et al. 2010; Chen et al. 2010; Duforet-Frebourg et al. 2014; Excoffier et al. 2009; 

Fariello et al. 2013; Foll & Gaggiotti 2008; Whitlock & Lotterhos 2015). For example, under 

the infinite island model, the effect of gene flow and the corresponding correlations in the 

gene frequencies among local subpopulations could inflate the neutral variance in FST, 

leading to high rate of false positives (Akey 2009; Akey et al. 2002; Bonhomme et al. 2010; 

Chen et al. 2010; Duforet-Frebourg et al. 2014; Excoffier et al. 2009; Fariello et al. 2013; Foll 

& Gaggiotti 2008). Moreover, several processes not related with local adaptation, as 

background selection, species wide selective sweeps or bottleneck and population 

expansions scenarios, can also produce FST outliers (Bierne et al. 2013; Maruki et al. 2012). 

Finally, FST methods are not designed for detecting polygenic selection (Bierne et al. 2013; Li 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 25, 2016. ; https://doi.org/10.1101/026369doi: bioRxiv preprint 

https://doi.org/10.1101/026369
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

et al. 2012). All of the above provokes that, still under optimal conditions, the FST-outlier 

methods tend to produce many false positives (Lotterhos & Whitlock 2014; Perez-Figueroa 

et al. 2010). 

Recently, some promising alternatives have appeared to deal with these issues (Bonhomme 

et al. 2010; Duforet-Frebourg et al. 2014; Fariello et al. 2013; Frichot et al. 2013; Whitlock & 

Lotterhos 2015) allowing for more accurate identification of loci under local divergent 

selection (De Villemereuil et al. 2014; Lotterhos & Whitlock 2014). However, besides the fact 

that these methods come with stronger computational cost, they still present some caveats 

that difficult their use in exploratory studies with non-model organisms. For example, it is 

necessary to known the allelic state, ancestral or derived, or having information on the 

diploid genotype, or the methods are dependent on some a priori assumptions on the 

outlier model and/or need to account for the population structure.  

 

In the present work we develop two new methods specialized to detect divergent selection 

in pairs of populations with gene flow. This should be done at genomic or sub-genomic level, 

working without information on the structure of the population tree and ignoring the state, 

ancestral or derived, of the alleles. It would be also desirable that selection could be 

detected without simulating any neutral demographic scenario. The first method combines 

haplotype information with a diversity-based FST measure. It is a window-size based method 

that performs automatic decision-making to fix the adequate window. The second method is 

more useful when the haplotype information is not at hand and performs a two step GST 

outlier test. The first step of the algorithm consists in a heuristic search for different outlier 
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clusters, the second step is just an LK test that will be performed only if more than one 

outlier cluster was found and in this case the test is applied through the cluster with the 

higher GST values.  

Both methods are robust to false positives in the several scenarios assayed, proving to be 

powerful for detecting single or polygenic selection when two populations connected by 

migration undergo divergent selection.  

The design of the work is as follows: 

Firstly, the model for the haplotype-based method is developed, which includes the 

computation of a normalized variance difference for detecting specific haplotype patterns 

under selection. A high variance difference value allows the choice of candidate sites which 

are then used to perform an FST index measure by comparing the FST of each candidate with 

the mean across the genome. The significance of the FST index is evaluated by resampling the 

sequence sites using inter-population mean frequency as expectation. Secondly, the 

algorithm for a conservative, extreme outlier set test (EOS) is developed to deal with the 

case of fully unlinked SNPs. After that, a brief explanation of the implementation of both 

methods in the program HacDivSel is given. Then, in the results section we evaluate the 

methods by simulation of a two population scenario under divergent selection. Finally the 

EOS test is applied to a recently published real data set and the results are discussed.  
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The nvdFST model  

Generalized HAC variance difference  

For a given sample, let the major-allele-reference haplotype (MARH) be the one carrying 

only major frequency alleles of its constituting SNPs (Hussin et al. 2010). Define the 

mutational distance between any haplotype and MARH as the number of sites (SNPs) in the 

haplotype carrying a non-major allele. Each group of haplotypes having the same mutational 

distance will constitute a haplotype allelic class. Therefore (with some abuse of notation) we 

call HAC to the distance corresponding to each haplotype class and the HAC of a given 

haplotype corresponds to the number of non-major (i.e. minor) alleles it carries, so that 

every haplotype having the same number of minor alleles belongs to the same HAC class.  

Given the definitions above, consider a sample of n haplotypes of length L SNPs. For each 

evaluated SNP i (i[1,L]) we can perform a partition of the HAC classes into P1, the subset of 

HACs for the haplotypes carrying the most frequent (major) allele at the SNP i under 

evaluation and P2 the subset with the remaining haplotypes carrying the minor allele at i. 

That is, let '0' to be the major allele for the SNP i and accordingly is '1' the minor. Then, P1 

includes every haplotype carrying the allele '0' for the SNP i and P2 the remaining haplotypes 

carrying '1' for that SNP. In P1 we have different HAC values depending on the distance of 

each haplotype from MARH and similarly in P2. In each subset we can compute the variance 

of the HACs. That is, in P1 we have the variance v1i and correspondingly variance v2i in P2. The 

rationale of the HAC-based methods is that if the SNP i is under ongoing selection then the 

variance in the partition 1 will tend to be zero because the allele at higher frequency (i.e. in 

the partition 1) should be the favored one and the sweeping effect will make the HAC values 
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in this partition to be lower (because of sweeping of other major frequency alleles) 

consequently provoking lower variance values (Hussin et al. 2010). The variance in the 

second partition should not be affected by the sweeping effect because it does not carry the 

favored allele. So, the difference v2i - v1i would be highly positive in the presence of selection 

and not so otherwise. For a window size of L SNPs, the variance difference between P2 and 

P1 can be computed to obtain a summary statistic called Svd (Hussin et al. 2010) that can be 

generalized to 

 𝑔𝑆𝑣𝑑𝑖 =  
𝑉2𝑖−𝑉1𝑖

𝐿
× 𝑓𝑖(1 − 𝑓𝑖)

𝑎 × 𝑏.  

Where fi is the frequency of the derived allele of the SNP i, and the parameters a and b 

permit to give different weights depending on if it is desired to detect higher frequencies (a 

= 0) or more intermediate ones (a > 0) of the derived allele. If a = 0 and b = 1 the statistic 

corresponds to the original Svd and if a =1 and b = 4 it corresponds to the variant called 

SvdM (Rivas et al. 2015). Note that when taking a = 1 it is not necessary to distinguish 

between ancestral and derived alleles because fi and 1- fi are interchangeable. 

A drawback in the gSvd statistic is its dependence on the window size as has already been 

reported for the original Svd (Hussin et al. 2010; Rivas et al. 2015). Although gSvd is 

normalized by L, the effect of the window size on the computation of variances is quadratic 

(see Appendix A-1 for details) which explains why the normalization is not effective in 

avoiding a systematic increase of the statistic under larger window sizes. This impact of the 

window size is important because the two different partitions may experience different 

scaling effects, which would increase the noise in the estimation. Additionally, the change in 

the scale due to the window size will be dependent on the recombination and selection 
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rates. Thus, it is desirable to develop a HAC-based statistic not dependent on the window 

size. In what follows, the between-partition variance difference is reworked in order to 

develop a new normalized HAC-based statistic, specially focused on detecting divergent 

selection in local adaptation scenarios with migration. 

Note that, for a sample of size n, the corresponding means and variances at each partition 

are related via the general mean and variance in that sample. Consider m, m1, m2 the mean 

HAC distances in the sample and in the partitions P1 and P2 respectively, for any candidate 

SNP i. We have the following relationships for the mean m and sample variance S2 values 

(the subscripts 1 or 2 identify the partition, see Appendix A-2 for details) 

 𝑚 =  
𝑛1𝑚1+𝑛2𝑚2

𝑛
;  𝑆2 − 𝑆 =  

𝑛

𝑛−1
∆ (1) 

with 𝑆 =  
(𝑛1i−1)𝑆1i

2 +(𝑛2i−1)𝑆2i
2

𝑛−1
 ; n1 and n2 are the sample sizes (n1  n2 by definition) and 

∆=
𝑛1𝑛2

𝑛2 (𝑚1 − 𝑚2)2. 

Using the relationships in (1), the between partitions variance difference can be recomputed 

and some non-informative term discarded (see details in the Appendix) to finally obtain a 

new statistic for the variance difference of the candidate i  

 𝑣𝑑𝑖 =  
(𝑛−1)𝑆2−(𝑛−2)𝑆1i

2

𝑛2𝑖−1
× 4𝑓𝑖 1 − 𝑓𝑖  with n2i > 1  (2) 

Note that (2) will augment with decreasing S1 and increasing S2 (because the latter increases 

S). Therefore, if selection is favoring the major allele of the SNP i, then the variance S1
2

 will 

tend to zero, the sample variance S2 will be a function of the variance S2
2 and the value in (2) 

will be positive. Because we are interested in detecting intermediate allele frequencies (see 
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below), the parameters a and b from gSvd have been substituted by a = 1 and b = 4 as these 

are the values that permit to ignore the allelic state while maximizing (2) for intermediate 

frequencies.  

 

Variance upper bound and normalized variance difference 

Note that HAC values vary in the range [0, L] which provokes that the sample variance S2 has 

an upper bound at nL2 / [4(n-1)]. Then the maximum variance difference occurs when fi = 

0.5, S1
2 = 0, n2 = n/2 and by substituting in (2) we get an upper bound 

 𝑣𝑑𝑖 ≤ 
𝑛𝐿2

2(𝑛−2)
 (3) 

If we divide (2) by the right side in (3) we have a normalized variance difference  

 𝑛𝑣𝑑𝑖 =  
2 n−2 [(𝑛−1)𝑆2−(𝑛−2)𝑆1i

2 ]

(𝑛2𝑖−1)nL2 × 4𝑓𝑖 1 − 𝑓𝑖   (4) 

The quantity from (4) can be computed for each SNP in a sample of sequences of a given 

length L and the SNP giving the maximum nvd considered as a candidate for selection. 

Furthermore, it is possible to compute (4) for each population or to combine the two 

populations in a unique sample. The latter is better for our purpose of looking for divergent 

selection in populations undergoing gene flow. When pooling both populations the 

frequencies tend to be intermediate in the divergent selective sites. Therefore, we compute 

the normalized variance difference in (4) for the data obtained by merging the shared SNPs 

from the two population samples. Note however that the reference haplotype (MARH) is 

computed just from one of the populations (the population 1, by default). 
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Recall that (4) is already normalized by the square of the window size L. However, the 

problem of choosing an optimal window size remains. A solution to this problem is to 

automate the choice by selecting the size which gives the maximum value for the statistic 

(Rivas et al. 2015). Therefore, we focus on the candidate having maximum nvd from every 

SNP and window size. 

 

At this point we already have a HAC-based statistic, nvd, that is independent of the window 

size and that should produce higher positive values for pairs of populations undergoing 

divergent selection. However, if there is no selection, the maximum nvd value would be a 

false positive. Unfortunately, we ignore the distribution of the statistic and cannot decide if a 

given value is supporting the hypothesis of selection or not. As well we might not have 

enough information on the species to simulate its evolution under a given neutral 

demography. Therefore, we still need to identify if the value obtained for a given sample is 

due to the effect of selection. By doing so, we will compute two more measures before 

giving a diagnostic about the presence of divergent selection. The first is a sign test based on 

the lower bound of (4), the second is the FST of the SNP having the maximum nvd compared 

with the global FST. 

 

Sign test 

From a lower bound of (4) we derive the quantity called divergent selection sign (dss, see 

Appendix A-2 for details) 
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 𝑑𝑠𝑠 =
4 𝑛−1 𝑆2−2  hac 1i

2
i

𝑛𝐿2  (5) 

where hac1i are the HAC values measured at each haplotype i in the partition 1 and the sum 

is over the n1 sequences in that partition. A negative sign in (5) suggests that the value of nvd 

is not the result of divergent selection. Indeed, we require (5) to be positive to count a given 

candidate as significant.  

 

Combined method: nvdFST 

The sign test defined above is a good strategy for discarding some false candidates.  

However, we still lack a method for obtaining p-values associated to the sites chosen by the 

nvd algorithm. We can add a second measure to diagnose divergent selection by combining 

the information on candidate SNPs as given by nvd with the interpopulation differentiation 

measure at that site. The significance of the obtained quantity is far easier to assess.  The 

joint use of these methods produces the combined measure nvdFST. The rationale of the 

approach is that if divergent selection acts on a specific site then the FST at that site will be 

higher compared to the overall FST. To obtain the p-value we do not perform an LK test 

(Lewontin & Krakauer 1973) because first, the candidate was not chosen for being an outlier 

and second we are assuming that the sites are not independent given that we are 

considering more or less linked haplotypes. Instead, we proceed as follows, let i be the 

candidate site chosen because it has the maximum nvd value, then we measure the index Ii =  

FSTi – FST comparing the candidate with the overall FST. To get the p-value for a given Ii, the 

data is resampled several times to generate an empirical distribution. By doing so, the mean 
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frequency for every SNP in the pooled populations is considered as the expectation under 

the homogenizing effect of migration provided that Nm > 1 (Crow & Kimura 1970). Then, for 

any iteration, the probability of a given allele at each population is obtained from a binomial 

B(p,n), where p is the mean allelic frequency at that site and n the local population sample 

size. The p-values correspond to the proportion of times that the resampled indexes were 

larger than Ii.  Note that, for each site, the resampling procedure has variance pqn which will 

be larger at intermediate frequencies. For candidates with more or less similar frequencies 

at both populations we expect low index Ii values and correspondingly high p-values. When 

the pooled frequency is intermediate two situations are possible, first, each population has 

similar intermediate frequencies which again imply high p-values or alternatively, the 

frequencies can be extreme and opposite at each population. In the latter, Ii is high and its p-

value low. Recall that we are looking for selection in populations connected by migration 

and working only with SNPs shared between them. Thus, the SNPs that are fixed in one of 

the populations are not considered.  

The FST values were computed following the algorithm in Ferretti et al (Ferretti et al. 2013). 

The number of resamplings for each site was set to 500 times. 

 

Effective number of independent SNPs, significance and q-value estimation 

We have computed nvd and the FST index and got a candidate site with its p-value. Since nvd 

was obtained after testing a number of positions on a given window size, it is desirable to 

apply a multiple test correction for the number of independent SNPs in the window. To 

roughly estimate the number of independent SNPs, we calculate the linkage disequilibrium 
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measure D' (Devlin & Risch 1995; Lewontin 1988) at each pair of consecutive sites and then 

store the quantity r' = 1 – |D'| for each pair. The effective number of independent SNPs 

(Meffs) between site wini and wend is then obtained as one plus the summation of the r' values 

in the interval [wini , wend). The Šidák correction (Cheverud 2001; Sidak 1967) can now be 

applied to get the corrected significance level c = 1 – (1 - )1/Meffs with nominal level  (= 0.05 

by default). Thus, the algorithm nvdFST will finally suggest a candidate as significant only 

when its p-value (computed as explained in the previous section) is lower than c and the sign 

in (5) is positive. 

False discovery rate and q-values (Storey 2003) has been proposed as unified approach for 

evaluating method performance in terms of false discoveries (De Villemereuil et al. 2014) 

and we estimate the q-value corresponding to each significant p-value (see Appendix A-3 for 

details on the calculation).  

 

The k-means extreme outlier set test (EOS) 

The nvdFST method assumes the existence of a dense map of linked genetic markers. If the 

data consists mostly in independent markers this would provoke the failure to detect 

selection by the nvdFST method because the HAC-based information will not exists. To deal 

with this situation, a second method was implemented consisting in a heuristic two-step 

procedure that performs a conservative test for identifying extreme outliers.  

We intend our method to be conservative because, as mentioned, the variance of the FST 

distribution is quite unpredictable under a variety of scenarios. This provokes high rates of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 25, 2016. ; https://doi.org/10.1101/026369doi: bioRxiv preprint 

https://doi.org/10.1101/026369
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

false positives associated with the FST outlier tests. Therefore, our heuristic strategy takes 

advantage of the fact that, independently of the demographic scenario, the involved regions 

under divergent selection may produce extreme outliers that would be clustered apart from 

the neutral ones. Only when this kind of outliers is detected the subsequent LK test is 

performed. 

The rationale of the algorithm is as follows: 

The first step consists in computing the extreme positive outliers in the sense of Tukey  i.e. 

those sites having a FST value higher than 3 times the interquartile range (Tukey 1977). The 

second step identifies different classes inside the extreme outlier set (EOS). This is done by a 

k-means algorithm (Schubert et al. 2012; Vattani 2011). Here, a k-modal distribution is 

assumed and all the elements of the set are classified in one of the k classes. The class with 

lower values is discarded and only the elements, if any, in the upper classes having values 

higher than a cutoff point are maintained in the set. By default k = 2 and two modes {0, FSTu} 

were used corresponding to lower and upper bound for the FST estimator (see Appendix A-

5). The cutoff is defined as the overall FST plus FSTu / 3 i.e. the mean plus the square root of 

the variance upper-bound under an asymmetric unimodal distribution (Dharmadhikari & 

Joag-Dev 1989). Finally, for each of the candidates remaining in the EOS the LK test 

(Lewontin & Krakauer 1973) is performed to compute its p-value. The Šidák correction 

(Cheverud 2001; Sidak 1967) for the number of remaining outliers in the set is applied to get 

the significance level. 
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Software description 

Both nvdFST and the EOS test have been implemented in the program HacDivSel.  Complete 

details of the software can be found in the accompanying manual. We here just mention 

that the input program files may be in MS (Hudson 2002) of Fasta formats for the haplotype-

based test or in Genepop (Rousset 2008) or BayeScan (Foll & Gaggiotti 2008) formats if the 

data do not include haplotype information. In any case the data should contain sequence 

samples from two populations. A typical command line for calling the program to analyze a 

file named sel.txt containing 50 sequences from each population would be  

HacDivSel -input sel.txt  -sample 50 -candidates 10 -SL 0.05 -output anyname -format ms 

Where -sample is the sample size for each population and the label -candidates 10, indicates 

that the ten highest nvd values should be included in the output. The program would analyze 

the file and produce as output the highest 10 values and its significance at the 0.05 level for 

different window sizes after the nvdFST test. It also performs the EOS test and gives the 

candidate outliers, if any, and their significance. Only the SNPs shared by the two 

populations are considered. Which imply that there are at least 4 copies of each SNP in the 

metapopulation. 

 

Results 

In what follows, the power of a test is measured as the % of runs where selection was 

detected from simulated selective scenarios and the false positive rate is measured as the % 

of runs where selection was detected from simulated neutral scenarios (see Appendix A-6 
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for details on the simulations setting). In addition, the accompanying q-value (Storey 2003) is 

an estimate from the data (see Appendix A-4 for details on the estimation process). 

 

Combined Method (nvdFST) 

Under a single locus architecture, the power of nvdFST vary between 79-94% for both 

medium (60 SNPs/Mb) and high density (250 SNPs/Mb) maps (Table 1). These results can be 

compared with published analysis (Rivas et al. 2015). In the previous study the methods Svd, 

SvdM and OmegaPlus (Alachiotis et al. 2012) were evaluated with best powers of 63-79% 

obtained by Svd and SvdM in cases with high mutation and recombination (Rivas et al. 

2015). When these methods were applied considering the pooled data from the merged 

populations then the best powers were attained by SvdM ranging from 42 to 94% (Rivas et 

al. 2015). Recall that the methods Svd, SvdM and OmegaPlus oblige the user to perform 

simulations of a neutral demography to obtain the p-values for the tests. As it can be 

appreciated from rows 1 to 6 in Table 1, that coincides with the scenarios of (Rivas et al. 

2015), nvdFST performs quite well (from 79 to 94%) without the need of performing 

additional neutral simulations. The given results are for 10,000 generations; the results for 

5,000 generations were quite similar and are therefore omitted.  

Under the polygenic architecture (n = 5 in Table 1) at least one candidate was found 99% of 

the times and more than one were found 80% of the time. However, the number of correctly 

identified sites was quite variable ranging between 1 and 3.  
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The last row in Table 1 corresponds to the case when all SNPs segregate independently. In 

this case, the method fails to detect selection which is not surprising because the 

information from the haplotype allelic classes is absent under linkage equilibrium; the 

adequate patterns are not found which provokes both a negative sign in the nvd test and a 

candidate with low FST index measure. 

 

Table 1.  Performance of the combined method (nvdFST) with n = 1 selective site located at 
the center of the chromosome or n = 5 (see Appendix A-6). Selection was  = 600 and Nm = 
10. Mean localization is given in distance kb from the real selective position. 

∑  ρ n %Power %FPR ( = 5%) q-value Localization (kb) 

        

65 12 0 1 87 2.1 0.0058 ±458 

63 12 4 1 94 2.7 0.0008 ±200 

60 12 12 1 90 1.0 0.0003 ±33 

251 60 0 1 79 1.8 0.0048 ±60 

232 60 4 1 84 6.2 0.0011 ±17 

249 60 60 1 86 2.4 0.0002 <±1 

282 60 60 5 99 2.4 0.0002 <±1 

318 60  1 0 0 - - 

∑: Mean number of shared SNPs per Mb. : Mutation rate. ρ: Recombination rate. FPR: false positive rate. q-

value: mean estimated q-value for the significant tests. : Independently segregating sites.  
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Short-term Strong and Long-term Weak Selection Scenarios 

The performance of nvdFST under the strong selection scenario (α = 6000) is presented in 

Table 2. Not surprisingly, the number of segregating sites is considerably reduced. In fact the 

minimum window size allowed by the program had to be shortened from 51 to 25 to 

perform the analyses. The power of detection range between 44-67% with 0 false positive 

rate. These results can be compared with Svd and SvdM methods from Rivas et al. (Table 6, t 

= 500 generations Rivas et al. 2015). Those results were more dependent on the 

recombination rate having low powers (14-28%) under full linkage and great power (70-96%) 

with high recombination. Recall however that to assess significance with these methods the 

exact neutral demography was simulated by Rivas and coworkers. 

Concerning very weak selection in long-term scenarios (Table 2, α = 140) the power varied 

between 49-52% with false positive rate between 2.2 and 5.7%. 

Table 2. Performance of the combined method (nvdFST) with a single selective site in the 
short-term strong ( = 6000) and the long-term weak ( = 140) selection scenarios. Nm was 
10. Mean localization is given in distance kb from the real selective position. 

∑  ρ  t %Power %FPR ( = 5%) q-value 
Localization 

(kb) 

         

112 60 0 6000 500 44 0 0 ±66 

32* 60 4 6000 500 63 0 0.0014 ±5 

62 60 60 6000 500 67 0 0.0008 ±93 
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165 60 0 140 5,000 49 3.6 0.0280 ±33 

156 60 4 140 5,000 52 5.7 0.0219 ±14 

135 60 60 140 5,000 49 2.2 0.0054 ±6 

∑: Mean number of shared SNPs per Mb. : Mutation rate. ρ: Recombination rate. t: number of generations. 

FPR: false positive rate. q-value: mean estimated q-value for the significant tests. *: only 40 runs having a 

minimum of 25 SNPs. 

 

Extreme Outlier Set Test (EOS) 

The EOS test is quite conservative as can be observed in Table 3 where the false positive rate 

is below the nominal 0.05 in every case. Its power increases with the density and the 

independence of the markers reaching 61% of detection in the case of independent SNPs 

and maps with 250-300 SNPs/Mb. As expected for an outlier test, the power undergoes a 

breakdown under a polygenic setting (row with n = 5 in Table 3). Therefore, the EOS test is 

complementary to nvdFST having its maximum power when the latter has its minimum and 

viceversa. 

Table 3.  Performance of the extreme outlier test (EOS) with n = 1 selective site located at 
the center of the chromosome or n = 5 (see Simulations section above). Selection was  = 
600 and Nm = 10. Mean localization is given in distance kb from the real selective position. 

∑  ρ n %Power EOS %FPR ( = 5%) q’-value Localization (kb) 

        

65 12 0 1 0 0 - - 
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63 12 4 1 0.2 0 0.46 ±3 

60 12 12 1 1.1 0 0.45 ±77 

251 60 0 1 0.7 0 0.10 0 

232 60 4 1 1.3 0 0.20 ±150 

249 60 60 1 58 0.4 0.5 <±1 

282 60 60 5 1.6 0.4 0.49 ±5 

318 60  1 61 1.2 310-6 ±7 

∑: Mean number of shared SNPs per Mb. : Mutation rate. ρ: Recombination rate. FPR: false positive rate. q’-

value: mean corrected (see appendix A-4) estimated q-value as estimated for the significant tests. : 
independently segregating sites. 

 

In the last three rows of Table 3, note that the false positive rate is indicating the percentage 

of outliers detected as selective after EOS test in a given neutral scenario. The q-value, 

however, refers to the minimum estimated false discovery rate (FDR) that can be committed 

when calling significant one test at a given threshold. It can be appreciated that for 

independently segregating sites the q-value is very low (310-6) but rise up to 0.5 for the 

same scenario when markers are linked. In the case of unlinked markers the EOS is quite 

efficient and just detects the single true selective SNP. On the contrary, with linked markers 

the FST estimates are less reliable; more outliers are detected, which inflates the FDR and the 

corresponding q-values. 
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Position Effect 

The ability to locate the position of the selective site increased with the marker density and 

the recombination rate (Table 1). The localization is given in kilobases away from the correct 

position. The values are averages through the runs. Standard errors are omitted since they 

were low, in the order of hundreds of bases or few kilobases (below 5) in the worst case 

(fully linked markers). Thus, when the target site is located at the centre of the studied 

region (Table 1) and the overall recombination rate is at least 0.3 cM/Mb (ρ 12), the nvdFST 

method performs acceptably well under weak selection (α  600), with the inferred location 

within 33 kb of distance from the true location in the worst case. However, under strong 

selection (Table 2, α = 600), the localization is worst, 93 kb, but this could be due to the 

lower number of segregating sites (only 62 in Table 2).  

The localization is also dependent of where the selective site is placed within the 

chromosome. The farther from the center the worse the ability to correctly localize the 

selective positions (Table 4). In this case, with recombination of 1.5 cM/Mb, the inferred 

location changes from an almost perfect localization (<1 kb from Table 1) to distances of 10-

122 kb as the target is shifted away. This issue has already been shown for other HAC-based 

methods (Rivas et al. 2015). The problem is partially solved under high recombination using 

the EOS test because in such cases the selective sites are localized at distances ranging from 

few base pairs to 40 kb from its real position about 67-93% of the times (cases with ρ = 60 in 

Table 4). In the case of independent markers with the selective site located at the center 

(Table 3) the localization was perfect in 98% of the replicates but the average appears as ±7 
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kb because of two runs where the localization failed by almost 400 kb. These cases coincide 

with lower FST values that are marginally considered given the cutoff for selecting the SNPs 

thus making a bit more astringent the EOS classification in the upper class will already 

discard them. For example if we change the cutoff from FST + FSTu / 3 to FST + 1.2FSTu / 3 we 

decrease the power from 61 to 59% and get already perfect localization of the selective SNPs 

in every run.  

 

Table 4.  Performance of nvdFST and EOS with a single selective site located at different 
positions. Selection was  = 600 and Nm = 10. Mean localization is given in distance kb from 
the real selective position. FPRs are the same as in Table 1. q-value refers to the mean q-
value for the significant nvdFST tests. 

∑  ρ 
%Power 

nvdFST, EOS 

Position (kb) nvdFST q-value Localization (kb) 

nvdFST, EOS 

       

259 60 0 81, 1 0 0.0044 +483, +457 

255 60 0 81, 1.5 10 0.0049 +433, +496 

256 60 0 82, 0.9 100 0.0041 +350, +413 

255 60 0 78, 0.6 250 0.0039 ±194, ±185 

230 60 4 75, 2.5 0 0.0014 +324, +127 

226 60 4 77, 3.5 10 0.0016 +326, +142 

233 60 4 80, 1.8 100 0.0017 +227, +140 
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229 60 4 83, 1.6 250 0.0009 ±123, ±20 

262 60 60 63, 93 0 0.0014 +122, +40 

261 60 60 68, 91 10 0.0014 +113, +34 

257 60 60 81, 84 100 0.0006 ±44, ±6 

252 60 60 87, 67 250 0.0004 ±10, ±0.06 

∑: Mean number of shared SNPs per Mb. : Mutation rate. ρ: Recombination rate. Position: real position of the 
selective site.  

 

Bottleneck-expansion Scenarios 

Bottleneck-expansion scenarios are known to leave signatures that mimic the effect of 

positive selection. Thus, we tested the robustness of the methods by applying them to this 

kind of situation under a neutral setting (a reduction of the population to 1% of the original 

size, see details in Appendix A-6). Both algorithms performed well, nvdFST false positive rate 

is maintained below the nominal level (4.6%) and for EOS test is only 1%.  

 

High Migration Nm = 50 Scenarios 

For the short-term (500 generations) scenario with Nm = 50, nvdFST is still able to detect the 

effect of selection in spite of the homogenizing effect of migration. The detection power 

ranges between 34-59% with a false positive rate of 0-0.1% (Table 5). Therefore, the test is 

very conservative under this setting. Noteworthy the power diminishes with the highest 
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recombination rate. This may occur because the sign test is rejecting several cases due to the 

combined effect of gene flow and recombination that generates intermediate values of m1 

and m2. Indeed, for a given selection intensity, the higher the Nm requires tighter linkage for 

the establishment of divergent alleles (Yeaman & Whitlock 2011). Therefore, the decrease in 

power for the higher Nm is not surprising. Concerning the EOS test it has no power to detect 

selection in the given scenario when Nm equals 50. 

Table 5. Performance of nvdFST in the short term (500 generations) with a single selective 
site. Selection was  = 600 and Nm = 50. Mean localization is given in distance kb from the 
real selective position. 

∑  ρ %Power %FPR ( = 5%) q-value Localization (kb) 

       

116 60 0 56 0 0.0098 ±152 

180 60 4 59 0 0.0042 ±123 

178 60 60 34 0.1 0.0096 ±4 

∑: Mean number of shared SNPs per Mb. : Mutation rate. ρ: Recombination rate. FPR: false positive rate. q-
value: mean estimated q-value for the significant tests. 

 

Comparison of EOS with BayeScan method 

We have used BayeScan 2.1 (Foll & Gaggiotti 2008) to analyze the data corresponding to 

independent markers (last row in Table 1) and linked markers (ρ = 60, n=1, antepenultimate 

row in Table 1). Only SNPs shared between populations and with a minimum allele 

frequency (maf) of 2 per population (4%) were considered. The parameters for BayeScan 
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were the default ones. We have assessed as significant those runs having a Bayes factor 

higher than 3 (BF3) or those having a factor higher than 100 (BF100). In Figure 1 we may 

appreciate that with linked markers the power attained using BF3 is about 47% but at the 

cost of a prohibitive 26% of false positives. The situation is better with independent markers, 

still under the very stringent BF100, Bayescan maintains a power of 82% although the cost in 

false positives is still high (8%). On the contrary EOS maintains power of 60% both with 

linked and independent markers virtually without false positives. 

 

 

Figure 1. Comparison between BayeScan (BS) and EOS methods. BF: Bayes Factor. Continuous line: Power. 
Dashed line: False positive rate. 
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Empirical Data 

We applied EOS to analyze a published data set from Littorina saxatilis species, concretely 

the separate-island filtered loci from Ravinet et al. (2016). We have discarded the loci with 

null allele frequency equal or higher than 0.5 jointly with those polymorphisms non-shared 

between ecotypes. We additionally require a maf of minimum 4 alleles per metapopulation 

sample size. Thus, we have excluded about 10-20% of the original individual-island filtered 

loci. The results of the outlier analysis between ecotypes using EOS are shown in Table 6. We 

may appreciate that the number of outliers detected as significant after EOS test is much 

less than in the original study since we find a total of 69 outliers in the three islands while 

they found 406 (RAD loci in Table 2 of Ravinet et al. 2016). This is not surprising given the 

conservative nature and low false positive rates of EOS. Note that, the shared by all outliers 

apart, Jutholmen and Ramsö share 2 outliers while Saltö has no outlier in common with 

Jutholmen and just 1 with Ramsö. 

Table 6. Outliers detected after EOS analysis of individual-island filtered loci from Littorina 
saxatilis data (Ravinet et al. 2016). 

Island Unique Only with 
Jutholmen 

Only with 
Ramsö 

Only with 
Saltö 

Shared all Total 

       

Jutholmen 27 __ 2 0 2 31 

Ramsö 24 2 __ 1 2 29 

Saltö 6 0 1 __ 2 9 

 

For the outliers in EOS, the FST between ecotypes ranges between 0.4-0.6 (Table 7). The q-

values are high (0.52 – 0.76) although we already saw in the simulations that this may be 
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indicating high linkage between the markers more than an inflated false positive rate (see 

also De Villemereuil et al. 2014).  

Table 7. Summary of EOS analysis for the between ecotypes Littorina saxatilis data (Ravinet 
et al. 2016). 

Island Nonoutliers Outliers not in 
EOS 

EOS FST FST_EOS pvalEOS qvalEOS 

        

Jutholmen 4564 91 31 0.045 0.40 0.004 0.52 

Ramsö 4602 82 29 0.064 0.53 0.005 0.63 

Saltö 4632 51 9 0.060 0.60 0.002 0.76 

FST: Mean FST for the analyzed loci.  FST_EOS:  Mean FST for the loci included in the extreme outlier set. pvalEOS:  
Mean p-values across the loci included in the extreme outlier set. qvalEOS:  Mean q-values across the loci 
included in the extreme outlier set.  

 

Discussion 

The goal in this work was to develop two methods, haplotype-based and outlier-based, for 

detection of divergent selection in pairs of populations connected by migration with the 

requisite of being protected from false positives which is a known concern for 

differentiation-based methods (De Mita et al. 2013; De Villemereuil et al. 2014; Lotterhos & 

Whitlock 2014). Additionally, the methods should be useful for non-model species and it 

should not be necessary to perform neutral simulations to obtain critical cut-off values for 

the candidates.  

For the first method, it has been shown that combining haplotype-based and FST 

differentiation information, the so-called nvdFST, is a quite powerful strategy for detecting 

divergent selection. However, when the whole set of markers is segregating independently 
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there is no haplotypic information. Therefore, a second method was developed based on the 

idea that outliers due to the effect of divergent selection would cluster apart from those 

caused by different demography issues. This extreme outlier set test, EOS, was intended to 

be conservative because the mentioned tendency of outlier-based methods to produce false 

positives. Under the simulated scenarios, the EOS test behaves acceptably well when 

markers are independent or under weak linkage, reaching powers between 60-90% while 

maintaining false positive rate below the nominal level. On the contrary, BayeScan, one of 

the state-of-the-art genome-scan methods, commits 8% of false positives in the best case.  

 

Polygenic Architecture 

In general, the FST-based methods cannot detect selection in polygenic scenarios (Bierne et 

al. 2013; De Villemereuil et al. 2014) because those tests are specifically designed for finding 

larger than average FST values which are difficult to discover if the frequency differences are 

slight for the polygenic loci. On the contrary, the nvdFST performs even better in this scenario 

because the distributed selective signal facilitates the discovery of the corresponding 

patterns by nvd. Since only the FST of the specific site indicated by nvd is compared with the 

overall FST and the null distribution is obtained using inter-population mean frequencies, the 

nvdFST maintains high power under the polygenic setting for detecting at least one selective 

site.   

 

Position Effect 
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Besides the detection of the signal of selection, we have also inferred the location of the 

selective site. It has been shown that under nvdFST the localization is better when the 

selective site is at the center of the chromosome. The EOS test is not so affected by the 

position of the selective site. The ability of localizing the selective position is still a pending 

issue for many of the selection detection methods. There is also plenty of room for 

improvement under the nvdFST and EOS methods in this regard, for example, trying to 

further explore the relationship between recombination and the window sizes producing the 

highest scores. Indeed, the interplay among divergent selection, recombination, drift and 

migration should be considered for further improving the efficiency of the methods. 

 

Empirical Data 

Local adaptation can occur most probably due to alleles with large effect but also under a 

polygenic architecture (Whitlock 2015; Yeaman 2015). In the latter, it is possible that the 

genes responsible for the adaptation be transient so that they vary over time. Hence, the 

geographic structure and the migration selection balance can generate complex patterns on 

the distribution of genetic variation (Debarre et al. 2015). Thus, there is great complexity in 

the natural systems where local adaptation occurs (Whitlock 2015). That been said, the L. 

saxatilis ecotypes are an especially interesting system to study local adaptation in presence 

of gene flow (Johannesson 2015). This system has an exceptional level of replication at 

different extent as country, distinct localities within country and finally the micro-

geographical level of the ecotypes. In the case of the Swedish populations, the pattern of 

differentiation can be separated in factors such as localities and habitats variation among 
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islands, that may be caused by genetic drift, and variation between habitats, that may be 

caused by divergent selection (Johannesson 2015). There are also different mechanisms by 

which parallel adaptation may occur, resulting in different predictions about the proportion 

of shared adaptive variation among localities. Moreover, the combined effect of population 

structure with the local adaptation pressures may help to explain the proportion of shared 

outliers that can be encountered when studying such parallel adaptation processes. 

Regarding the L. saxatilis system in Spanish and Swedish populations it seems to involve a 

small proportion of shared genomic divergence (Hollander et al. 2015; Johannesson 2015; 

Ravinet et al. 2016). The EOS analysis of Ravinet et al. data supports their finding that the 

majority of genomic variation linked to the evolution of ecotypes is not shared between the 

studied islands. At the same time, we identify far fewer outliers, with Saltö having the lowest 

number. This may explain our results showing reduced shared divergence between Saltö and 

the two other islands. On the contrary, Ravinet et al. find more outliers in the Saltö data and 

correspondingly, increased numbers of shared outliers between Saltö and the other islands. 

This could be due to an excess of false positive outliers hiding the pattern or alternatively 

our finding can be an artefact due to the low number of outliers detected by EOS. 

 

 As a conclusion, nvdFST combines haplotype and population differentiation information and 

may be a helpful tool to explore patterns of divergent selection when knowledge of the 

haplotype phase is at hand. Alternatively, the EOS method is a conservative outlier test 

useful when the full set of SNPs is unlinked or under weak linkage. Both strategies have low 

false positive rate and can be applied without the need of performing neutral simulations.  
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Software and Data Accessibility 

The computer program HacDivSel implementing the methods explained in this article jointly 

with the user manual, are available from the author web site 

http://acraaj.webs.uvigo.es/software/HacDivSel.zip.  

Data: DRYAD entry doi: . 
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Appendix 

 

A-1) Effect of window size on variance difference original statistics 

 

We can appreciate the effect of a window size L on the computation of the original gSvd 
measure as follows. Recall that the HAC distance d between and haplotype h and a reference 
R both of length L is 

 𝑑 =   𝐼 𝑕𝑖 ≠ 𝑅𝑖 
𝐿
𝑖=1    

where I(A) is the indicator function of the event A. Thus, d [0, L] so that, given an increase 

of the window size by Q (Q > 1), then d [0, QL]. Therefore, the change in window size is a 
change in the scale of the HAC distances. Depending on the distribution under the new 

window size the magnitude of the change in the scale can be Q or more generally Q' (1, Q].  

Thus, a window size increase of Q has a quadratic impact onto s2 and  as defined in (1). 
Then, if we define gSvd under LA, we have 

 𝑔𝑆𝑣𝑑𝑖 =  
𝑉2𝑖−𝑉1𝑖

𝐿𝐴
× 𝑓𝑖(1 − 𝑓𝑖)

𝑎 × 𝑏   

and if we change to window size LB = QLA we might have 

 gSvdLB = QgSvdLA  

For the equation to be exact it is also necessary that the change of window size do not alter 

the frequency distribution so that the relationship vB = Q2 vA and B = Q2
A holds on, if not, 

the change will be better defined by Q' (1, Q]. In any case this explains why the 
normalization of gSvd by L is not very effective on avoiding a systematic increase of the 
statistic under higher window sizes (Hussin et al. 2010) (Rivas et al. 2015). 

 

A-2) General variance difference 

 

Consider the frequencies of a given haplotype i in the partition 1 and 2  

𝑓𝑖1 =  
𝑛𝑖1

𝑛1
 𝑓𝑖2 =  

𝑛𝑖2

𝑛2
 𝑓𝑖 =  

𝑛𝑖1+𝑛𝑖2

𝑛
=

𝑓𝑖1𝑛1+𝑓𝑖2𝑛2

𝑛
 (A-2-1) 

Let di be the HAC distances for each haplotype i and with some abuse of notation F, F1, F2 the 
frequency distribution in the whole sample and in the partitions P1 and P2 respectively. 

𝑚 =   
𝑑𝑖

𝑛

𝑛

𝑖

=   𝑑𝑖𝑓𝑖

𝐹

=  𝑑𝑖

𝑓𝑖1𝑛1 + 𝑓𝑖2𝑛2

𝑛

𝐹

=    𝑑𝑖

𝑓𝑖1𝑛1

𝑛

𝐹1

+   𝑑𝑖

𝑓𝑖2𝑛2

𝑛

𝐹2
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Note that 

𝑚1 =  𝑑𝑖𝑓𝑖1
𝐹1   and 𝑚2 =  𝑑𝑖𝑓𝑖2

𝐹2  and then 

𝑚 =  
𝑛1𝑚1+𝑛2𝑚2

𝑛
 (A-2-2) 

Now consider the variance 

𝑣 =   (𝑑𝑖 −  𝑚)2𝑓𝑖
𝐹 =  𝑑𝑖

2𝐹 𝑓𝑖 − 𝑚2 (A-2-3) 

𝑣1 =   𝑑𝑖
2𝐹1 𝑓𝑖1 − 𝑚1

2  𝑣2 =   𝑑𝑖
2𝐹2 𝑓𝑖2 − 𝑚2

2. 

Substituting (A-1) in (A-3) and after some rearrangement we finally get 

𝑣 − 𝑉 =  ∆  (A-2-4), 

where n1 and n2 are the sample sizes and  v1 and v2 the variances at each partition, 

𝑉 =  
𝑛1𝑣1+ 𝑛2𝑣2

𝑛
 and ∆=

𝑛1𝑛2

𝑛2 (𝑚1 − 𝑚2)2 =
𝑛1𝑛2

𝑛2  ∆𝑚
2 . 

Note that max() = L2/4 = max(v) and min() = 0. 

If we consider the sampling variance S2 instead of the variance we have similarly  

 𝑆2 − 𝑆 =  
𝑛

𝑛−1
∆  (A-2-5) 

being 𝑆 =  
(𝑛1−1)𝑆1

2+(𝑛2−1)𝑆2
2

𝑛−1
. 

From (A-2-5) and defining k as the fraction of sequences in the minor partition then n1 = (1-

k)n and n2 = kn with k (MAF, 0.5) then we can express s2 as 

𝑆2 =
  1−𝑘 𝑛−1 𝑆1

2+ (𝑘𝑛−1)𝑆2
2

𝑛−1
+  

𝑛 1−𝑘 𝑘

𝑛−1
∆𝑚

2  and 

𝑆2
2 =

(𝑛 − 1)𝑆2 −   1 − 𝑘 𝑛 − 1 𝑆1
2 − 𝑛 1 − 𝑘 𝑘∆𝑚

2

𝑘𝑛 − 1
 

So that the variance difference is broken down in the sum of two terms 

𝑆2
2 − 𝑆1

2 =
(𝑛−1)𝑆2−(𝑛−2)𝑆1

2

𝑘𝑛−1
− 

𝑛 1−𝑘 𝑘∆𝑚
2

𝑘𝑛−1
  

Reordering terms we have  

𝑆2
2− 𝑆1

2

 1−𝑘 𝑘
=

(𝑛−1)𝑆2−(𝑛−2)𝑆1
2

(𝑘𝑛−1) 1−𝑘 𝑘
− 

𝑛∆𝑚
2

𝑘𝑛−1
 (A-2-6) 

Realize that the first term in the sum is contributing to increase the variance difference 
whenever (n-1)S2 ≥ (n-2)S1

2. Note also that (1-k)k in the denominator has it maximum value 
when k = 0.5. In the second term, m

2 increases with directional selection (m1 => 0 because 
the haplotypes in P1 are expected, by definition, to be closer to the reference configuration) 
while kn (= n2) decreases, so both are contributing to increase the negative term under 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 25, 2016. ; https://doi.org/10.1101/026369doi: bioRxiv preprint 

https://doi.org/10.1101/026369
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 
 

selection and diminish the value of the statistic. Thus, it is adequate to discard the second 
term in the variance difference (A-2-6). Now, recall the generalized Svd (gSvd, see Model 
section) defined for any SNP i as 

𝑔𝑆𝑣𝑑𝑖 =  
𝑉2𝑖 − 𝑉1𝑖

𝐿
× 𝑓𝑖(1 − 𝑓𝑖)

𝑎 × 𝑏 

 

and, after discarding the second term in (A-2-6) substitute the (V2i – V1i)/L term in gSvdi to 
obtain 

 

𝑣𝑑𝑖 =  
(𝑛−1)𝑆2−(𝑛−2)𝑆1

2

𝑘𝑛−1
× 𝑓𝑖(1 − 𝑓𝑖)

𝑎 × 𝑏 (A-2-7) 

that corresponds to formula (2) in the main text. 

 

A-3) Lower bound and sign test 

 

If the selective gene is at intermediate frequencies then 4f(1-f) would be close to 1, n1 = n2 = 

n/2 and the maximum variance in the first partition is (n-2) S1
2

max = nL2/4. By substituting in 

(4) we get  

 
4 𝑛−1 𝑆2−𝑛𝐿2

𝑛𝐿2
  (A-3-1) 

which is a lower bound for nvd under a given S2. Note that the variance in the first partition 

should not be at its maximum if selection is acting. Therefore a value as low as in (A-3-1) is 

not expected under selection. The lower bound still depends on the variance in the second 

partition and on the absolute value of the difference between the partition means |m1 - 

m2|. If the variance in the second partition is maximum it will be equal to the variance in the 

first and (A-3-1) becomes zero. With small variance in the second partition, the lower bound 
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will be negative only if |m1 - m2| is low, just like can be expected under neutrality. Note that, 

if n1 = n/2, (A-3-1) is equal or lower than 

  
4 𝑛−1 𝑆2−2  hac 1i

2
i

𝑛𝐿2  (A-3-2) 

where hac1i are the HAC values measured at each haplotype i in the partition 1 and the sum 

is over the n1 sequences in that partition. However if n1 > n/2, the quantity in (A-3-2) could 

be higher or lower than (A-3-1) depending on the HAC values of the first partition. In any 

case, a negative value in (A-3-2) may be caused by m1 being equal or higher than m2 and 

suggests, whether it be n1 = n/2 or not, that the value of nvd is not the result of divergent 

selection. Indeed, we call (A-3-2) the divergent selection sign (dss, formula 5 in the main 

text) and require it to be positive to count a given candidate as significant. 

 

A-4) Bounds on FDR and q-value estimation 

 

For a given test i with p-value pi the FDR and the q-value after performing S tests is just 

(Storey 2002; Storey & Tibshirani 2003) 

 FDR(pi) = pi *0*S/max(#{p  pi} ,1)  

where 0 is the proportion of true nulls  and #{p < pi} corresponds to the position of pi in the 

sorted (in ascending order) list of p-values. Then the q-value for pi is obtained as the 

minimum of the FDR set for the p-values equal or higher to pi. 

 q(pi) = min{FDR(t)} with t  pi. 
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In this work we estimated 1, i.e. the proportion of the false null hypothesis using a method 

that is specially aided for cases when this proportion is very small (Meinshausen & Rice 

2006) and then we obtained 0 = 1 - 1. This fits our expectation of detecting some few 

positions in the genome belonging to the alternative non-neutral distribution. 

Lower bound 

In the EOS test and because we have a sample-dependent upper bound G*
STmax for the GST 

estimator we can correct for the minimum q-value achievable in that sample. Then for a 

given sample with GST mean m, the lower-bound p-value for the GST test f will be a function 

pLB = f(G*
STmax,m)  0 that can be computed for each sample and consequently we can guess 

a minimum q-value. Therefore for the lower bound p-value, pLB we have 

 FDR(pLB) = pLB *0*S/max(#{p  pLB} ,1)  pLB *0*S so that a lower-bound FDR is 

 FDRLB = pLB *0*S/max(#{p  α} ,1) < FDR(pLB) 

since #{p pLB} < #{p  α} and provided that pLB < α.  

Note that with 0 < 1 i.e. some non-null may exist and because pLB is above 0 then we cannot 

reach an FDR of 0 still in the case when the lowest p-value corresponds to the true effect. 

Now, let 

 q(pLB) = min{FDR(t)} with t  pLB then a lower bound for the q-value is 

 qLB = min{ q(pLB), FDRLB }. 
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Upper bound 

Let pi = α then we get FDR(α) = α*0*S/max(#{p  α } ,1) and q(α) = min{FDR(t)} with t  α is 

the minimum FDR that can be committed when calling significant a given test at this 

threshold. If the p-values are uniformly distributed the expected q(α) is 0 however if the 

distribution is weighted towards 0, as expected when we have a mixture of null and 

alternative distributions, then q(α) < 0  is expected. Now, if we set a threshold of 1 i.e. the 

whole distribution of values, now we get necessarily a FDR of 0 as  

 q(1) = FDR(1) = 1 *0*S/S = 0 and 0  1 so that the upper bound is qUB = 1. 

 

Corrected q value 

Under some circumstances may be of interest to correct for the bias effect of not being able 

of reaching minimum p-values due to the sample-dependent GST upper-bound. Thus we 

define  

 q'(pi) =  (q(pi) - qLB) / (1 - qLB) 

 

Dependence 

When considering many SNPs through the genome, the condition of independence is rarely 

maintained. In general, FDR-based estimates become more conservative as the dependence 

is stronger (Friguet 2012; Storey 2001; Storey et al. 2004). An important aspect when 

computing the FDR and associated q-values is the estimation of the proportion of true null 
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hypotheses, 0. As indicated above we estimate 0 through 1. The impact of dependence 

structures on the estimation of 1 has proved to be negligible compared to the conservative 

impact of the FDR estimation. This is not surprising because most SNPs belongs to the true 

null distribution so we do not expect the density of correlated values to be weighted 

towards 0, thus for pi sufficiently low it should be true that #{p  pi} < Spi i.e.  FDR(pi) >  0 

and we tend to have conservative estimates of FDR. We have confirmed this when 

comparing q-value estimates from dependent versus independent data. For example, 

comparing q-values for the EOS test in files with linked SNPs ( = 60) versus files with non-

linked SNPs we obtained q=q'= 2.4 x 10-6 on average when markers are independent versus 

q= 0.63, q' = 0.5 when each pair of markers are linked with recombination of 0.015x10-6 ( = 

60). 

 

 

A-5) Lower and upper bounds for GST and FST estimators 

 

Let Np be the number of populations, na is the number of alleles, maf is the minimum 

relative allelic frequency and ni is the sample size for population i.  

a) GSTmax 

For GST (Nei 1973) we develop the formulas just for the one locus case without loss of 

generality. We will obtain the maximum GST noted as GSTmax and an upper bound noted as  

G*
STmax = 1 – H*

smin/H*
Tmax  (A-5-1) 
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Where  

Hsmin
∗  = 1 −  1 − 𝑚𝑎𝑓 2 −  𝑚𝑎𝑓 2 

and 

𝐻𝑇𝑚𝑎𝑥
∗ = Hsmin

∗ +  1 − 𝑚𝑎𝑓 2  
𝑁𝑝 − 1

𝑁𝑝
 +  𝑚𝑎𝑓 2  

𝑁𝑝 − 1

𝑁𝑝
  

Let GST = 1 – Hs/Ht with Hs = 1 –  𝑝𝑖
2𝑛𝑎

𝑖=1  averaged for the different populations and Ht is the 

same computation performed with the allelic metapopulation frequencies (Charlesworth & 

Charlesworth 2010). Thus, we are interested in computing the maximum GST when the 

minimum allele frequency (maf) is not 0 and additionally want to show that G*
STmax is an 

upper bound of such value independently of the number of alleles considered. In doing so, 

we first compute the minimum for the subpopulation heterozigosity then we compute the 

maximum for the pooled heterozygosity and then we compute the maximum GST using these 

two values. This maximum will depend on the number of alleles segregating at each 

population. Finally we demonstrate that (A-5-1) is an upper-bound for GST whatever the 

number of alleles. 

Let first look for the minimum Hs at each population. Usually this occurs when one allele is at 

maximum frequency i.e. 1 giving Hs=0. However in our case the maximum frequency is 1 – 

maf and the sum of frequencies can be expressed as 

 𝑝𝑖 =  1 − 𝑚𝑎𝑓 +  𝑝𝑗
𝑛𝑎
2

𝑛𝑎
𝑖=1  with  𝑝𝑗

𝑛𝑎
2 = 𝑚𝑎𝑓 

Therefore 

 Hsmin = 1 −  𝑝𝑖
2 = 1 −  1 − 𝑚𝑎𝑓 2 −  𝑝𝑗

2𝑛𝑎
2

𝑛𝑎
𝑖=1  
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because   𝑝𝑗
𝑛𝑎
𝑗 =2  

2
=   𝑝𝑗

2 + 2𝑛𝑎
𝑗 =2  𝑝𝑗𝑝𝑘

𝑛𝑎
𝑗 =2
𝑘>𝑗

 then we can rewrite  

 Hsmin = 1 −  𝑝𝑖
2 = 1 −  1 − 𝑚𝑎𝑓 2 −   𝑝𝑗

𝑛𝑎
𝑗=2  

2
+ 2  𝑝𝑗𝑝𝑘

𝑛𝑎
𝑗=2
𝑘>𝑗

 𝑛𝑎
𝑖=1   

 Hsmin = 1 −  1 − 𝑚𝑎𝑓 2 −  𝑚𝑎𝑓 2 + 2  𝑝𝑗𝑝𝑘
𝑛𝑎
𝑗=2
𝑘>𝑗

 

The average for Np populations (for convenience of notation from herein we use in the 

summatory j k instead j=2 and k>j) 

 H smin  = 1 −  1 − 𝑚𝑎𝑓 2 −  𝑚𝑎𝑓 2 +
2  𝑝𝑗𝑝𝑘

𝑛𝑎
𝑗≠𝑘 +2  𝑝𝑗

′ 𝑝𝑘
′  𝑛𝑎

𝑗≠𝑘 + …+2  𝑝𝑗
𝑁𝑝 −1

𝑝𝑘
𝑁𝑝 −1

 𝑛𝑎
𝑗≠𝑘

𝑁𝑝
  

If na = 2 then 

H smin  = 1 −  1 − 𝑚𝑎𝑓 2 −  𝑚𝑎𝑓 2 = Hsmin
∗   

if na > 2 then is obvious that H smin > H smin
∗ . 

Now we are interested in HTmax i.e. the maximum pooled heterozygosity. It is easy to see that 

the maximum Ht occurs when the highest frequency allele at each population is at its 

maximum i.e. 1-maf and there are no shared alleles between populations. Therefore, for the 

case of two populations we have  

 𝑝𝑖 =  1 − 𝑚𝑎𝑓 +  𝑝𝑗
𝑛𝑎
2

𝑛𝑎
𝑖=1  for the first population and 

 𝑝𝑖
′ =  1 − 𝑚𝑎𝑓 +  𝑝𝑗

′𝑛𝑎
2

𝑛𝑎
𝑖=1  for the second population and so on if there are more 

populations. 

After pooling we have the sum of frequencies in the whole metapopulation 
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𝑝𝑖 + 𝑝𝑖

′+. . + 𝑝𝑖
𝑁𝑝−1

𝑁𝑝
 

𝑛𝑎

𝑖=1

=  

=
 1 − 𝑚𝑎𝑓 

𝑁𝑝
+

 1 − 𝑚𝑎𝑓 

𝑁𝑝
+ ⋯ +

 1 − 𝑚𝑎𝑓 

𝑁𝑝
 +

 𝑝𝑗
𝑛𝑎
2

𝑁𝑝
+

 𝑝𝑗
′𝑛𝑎

2

𝑁𝑝
+ ⋯ +

 𝑝𝑗
𝑁𝑝−1𝑛𝑎

2

𝑁𝑝
 

Thus noting now pi as the pooled frequency of allele i 

 Ht =   1 −  𝑝𝑖
2𝑁𝑝∗𝑛𝑎

𝑖=1  = 

= 1 −
 1−𝑚𝑎𝑓  2

𝑁𝑝2 − ⋯−
 1−𝑚𝑎𝑓  2

𝑁𝑝2 −
  𝑝𝑗

𝑛𝑎
2  

2

𝑁𝑝2 − ⋯−
  𝑝𝑗

𝑁𝑝 −1𝑛𝑎
2  

2

𝑁𝑝2
 = 

= 1 −
 1−𝑚𝑎𝑓  2

𝑁𝑝
−

  𝑝𝑗
𝑛𝑎
2  

2

𝑁𝑝2 − ⋯−
  𝑝𝑗

𝑁𝑝 −1𝑛𝑎
2  

2

𝑁𝑝2 =  

= 1 −  1 − 𝑚𝑎𝑓 2 +  1 − 𝑚𝑎𝑓 2 −
 1−𝑚𝑎𝑓  2

𝑁𝑝
−

  𝑝𝑗
𝑛𝑎
2  

2

𝑁𝑝2 − ⋯−
  𝑝𝑗

𝑁𝑝 −1𝑛𝑎
2  

2

𝑁𝑝2 =  

= 1 −  1 − 𝑚𝑎𝑓 2 +  1 − 𝑚𝑎𝑓 2(
𝑁𝑝 −1

𝑁𝑝
) −

  𝑝𝑗
𝑛𝑎
2  

2

𝑁𝑝2 − ⋯−
  𝑝𝑗

𝑁𝑝 −1𝑛𝑎
2  

2

𝑁𝑝2 =  

and rearranging terms for maf in a similar way as we did for Hs we finally get 

𝐻𝑇𝑚𝑎𝑥 = HTmax
∗ +

2  𝑝𝑗𝑝𝑘
𝑛𝑎
𝑗≠𝑘 +2  𝑝𝑗

′ 𝑝𝑘
′  𝑛𝑎

𝑗≠𝑘 + …+2  𝑝𝑗
𝑁𝑝 −1

𝑝𝑘
𝑁𝑝 −1

 𝑛𝑎
𝑗≠𝑘

𝑁𝑝
 (A-5-2) 

with 

𝐻𝑇𝑚𝑎𝑥
∗ = Hsmin

∗ +  1 − 𝑚𝑎𝑓 2  
𝑁𝑝 − 1

𝑁𝑝
 +  𝑚𝑎𝑓 2  

𝑁𝑝 − 1

𝑁𝑝
  

We already has obtained the maximum GST which is  GSTmax = 1 – Hsmin/HTmax. Now we need 

only to show that Hsmin/HTmax >  H*
smin/H*

Tmax (A-5-3). First note that Hsmin = H*
smin + C  
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with 𝐶 =
2  𝑝𝑗𝑝𝑘

𝑛𝑎
𝑗≠𝑘 +2  𝑝𝑗

′ 𝑝𝑘
′  𝑛𝑎

𝑗≠𝑘 + …+2  𝑝𝑗
𝑁𝑝 −1

𝑝𝑘
𝑁𝑝 −1

 𝑛𝑎
𝑗≠𝑘

𝑁𝑝
. 

Similarly HTmax = H*
Tmax + C and from (A-5-2) we appreciate that H*

smin < H*
Tmax so we can 

express H*
Tmax = kH*

smin  with k>1. We will proof (A-5-3) by contradiction so let assume that 

Hsmin/HTmax   H*
smin/H*

Tmax this implies that  

(H*
smin + C)/ (kH*

smin + C)   H*
smin/ kH*

smin rearranging terms we get k  1which is false. Thus, 

Hsmin/HTmax >  H*
smin/H*

Tmax  and therefore GSTmax = 1 – Hsmin/HTmax < G*
STmax = 1 – H*

smin/H*
Tmax 

so G*
STmax is an upper bound of GSTmax.  

b) GSTmin 

It is quite immediate to show that GSTmin = 0. Consider a scenario in which every population 

has the same heterozygosis with the same alleles then Hs = HT and GSTmin =0 and this is in fact 

the minimum and the lower bound. 

3) FSTmax  

For a sequence of biallelic SNPs we will use the FST estimation as defined in (Ferretti et al. 

2013) to obtain as an upper bound   

𝐹𝑆𝑇𝑚𝑎𝑥 =
(𝑁𝑝 − 1)  𝑁𝑝 − 2 1 − 𝑚𝑎𝑓 𝑚𝑎𝑓 

𝑛𝑘

𝑛𝑘 − 1
𝑁𝑝
𝑘=1  

𝑁𝑝 𝑁𝑝 − 1 + 2 1 − 𝑚𝑎𝑓 𝑚𝑎𝑓 
𝑛𝑘

𝑛𝑘 − 1
𝑁𝑝
𝑘=1

 

 

Thus we proceed as follows; first we will show that the maximum pooled heterozygosity 

depends on the mean population heterozygosity. Then we compute the minimum for the 
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subpopulation heterozigosity and show that the corresponding pooled heterozygosity is a 

maximum so finally the maximum FST is again FSTmax = 1 – Hsmin/HTmax. 

In (Ferretti et al. 2013) HT is defined as  

𝐻𝑇 =
𝐻 𝑆

𝑁𝑝
+

2

𝑁𝑝2
  𝜃𝜋𝑎

𝑘−1

𝑘 ′ =1

(𝑘, 𝑘′)

𝑁𝑝

𝑘=2

 

So, for computing HTmax we first seek for the maximum a. This maximum will occur when 

sequences between populations are completely different. Because there are only two alleles 

and the minimum allele frequency is not 0 but maf the value a computed in this way will 

be an upper bound and the real maximum would be more or less close to that depending on 

the relationship between the sample size n and the sequence length L. In any case this upper 

bound is valid to ensure an upper bound for FSTmax. 

𝑚𝑎𝑥𝜃𝜋𝑎 =
𝑛𝑖𝑛𝑗𝐿

𝑛𝑖𝑛𝑗𝐿
= 1 for any given pair of populations i, j. Therefore 

𝐻𝑇𝑚𝑎𝑥 =
𝐻 𝑆

𝑁𝑝
+

2

𝑁𝑝2

𝑁𝑝(𝑁𝑝−1)

2
=

𝐻 𝑆+𝑁𝑝−1

𝑁𝑝
  and 

𝐹𝑆𝑇 = 1 −
𝐻 𝑆

𝐻𝑇𝑚𝑎𝑥
= 1 −

𝐻 𝑆

𝐻 𝑆 + 𝑁𝑝 − 1
𝑁𝑝

= 1 −
𝑁𝑝𝐻 𝑆

𝐻 𝑆 + 𝑁𝑝 − 1
 

by taking the derivative of FST with respect to Hs it is clear that FST decreases with Hs (the 

derivative is negative) so the lower the Hs the higher the FST thus we should compute the 

minimum Hs. We know that  
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𝐻𝑆 =
 𝜃𝜋𝑁𝑝

𝑁𝑝
 where  is the mean number of differences between pair of sequences of 

length L. The minimum number of differences at one site will occur if an allele frequency at 

this site is maximum e.g. if the allele is at frequency 1 the differences at this site are 0. In our 

case the maximum frequency allele is (1-maf) that in a sample of size n implies n(1-maf) 

copies of this allele and n(maf) copies of the alternative so the number of differences at this 

site are n2(1-maf)(maf) and for L sites is Ln2(1-maf)(maf). The mean is through Ln(n-1)/2 

pairs so for a given population 

𝜃𝜋𝑚𝑖𝑛 =
𝐿𝑛2 1 − 𝑚𝑎𝑓 𝑚𝑎𝑓

𝐿𝑛(𝑛 − 1)
2

=
2𝑛 1 − 𝑚𝑎𝑓 𝑚𝑎𝑓

(𝑛 − 1)
 

then for Np populations with different sample sizes 

𝐻𝑆𝑚𝑖𝑛 =
 𝜃𝜋𝑚𝑖𝑛𝑁𝑝

𝑁𝑝
=

2 1 − 𝑚𝑎𝑓 𝑚𝑎𝑓

𝑁𝑝
 

𝑛𝑘

𝑛𝑘 − 1

𝑁𝑝

𝑘=1

 

and finally the upper bound FST is 

𝐹𝑆𝑇𝑚𝑎𝑥 = 1 −
𝐻 𝑆𝑚𝑖𝑛

𝐻𝑇𝑚𝑎𝑥
= 1 −

𝑁𝑝𝐻 𝑆𝑚𝑖𝑛

𝐻 𝑆𝑚𝑖𝑛 + 𝑁𝑝 − 1
 

by substituting Hsmin and some rearrangement we get 

𝐹𝑆𝑇𝑚𝑎𝑥 =
(𝑁𝑝 − 1)  𝑁𝑝 − 2 1 − 𝑚𝑎𝑓 𝑚𝑎𝑓 

𝑛𝑘

𝑛𝑘 − 1
𝑁𝑝
𝑘=1  

𝑁𝑝 𝑁𝑝 − 1 + 2 1 − 𝑚𝑎𝑓 𝑚𝑎𝑓 
𝑛𝑘

𝑛𝑘 − 1
𝑁𝑝
𝑘=1

 

as an FST upper bound in a biallelic setting with maf frequencies in a number of Np 

populations with different sample sizes. 
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4) FSTmin  

Finally, we will show that the lower bound for FST is FSTmin = 0. Let FSTmin = 1 – Hsmax/HT.  

For simplicity and without loss of generality let assume that the sample size is even in every 

population. At any site the maximum number of differences occurs when allelic frequencies 

are at intermediate frequency and this number is n2/4 (or (n2-1)/4 if odd). So, for L sites we 

have Ln2/4 differences. The mean through Ln(n-1)/2 pairs for a given population is 

𝜃𝜋𝑚𝑎𝑥 =

𝐿𝑛2

4
𝐿𝑛(𝑛 − 1)

2

=
𝑛

2(𝑛 − 1)
 

𝐻𝑆𝑚𝑎𝑥 =
 𝜃𝜋𝑚𝑎𝑥𝑁𝑝

𝑁𝑝
=

1

2𝑁𝑝
 

𝑛𝑘

𝑛𝑘 − 1

𝑁𝑝

𝑘=1

 

which corresponds to Hsmin as computed above when maf is substituted by 0.5. 

As we already shown that FST decreases with Hs we compute the corresponding pooled 

heterozygosis the Hs is maximum 

𝐻𝑇 =
𝐻 𝑆𝑚𝑎𝑥

𝑁𝑝
+

2

𝑁𝑝2
  𝜃𝜋𝑎

𝑘−1

𝑘 ′ =1

(𝑘, 𝑘′)

𝑁𝑝

𝑘=2

 

Because there are only two alleles and the alleles in any population are at intermediate 

frequencies, the number of differences in a given site between any pair of populations i,j is 

ninj/2  and the average value for L sites and pairs of sequences, a, is (Lninj/2)/ Lninj = 1/2 for 

the pair of populations i,j. So 
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𝐻𝑇 =
𝐻 𝑆𝑚𝑎𝑥

𝑁𝑝
+

(𝑁𝑝 − 1)

𝑁𝑝

1

2
 

𝐹𝑆𝑇𝑚𝑖𝑛 = 1 −
𝐻 𝑆𝑚𝑎𝑥

𝐻𝑇
= 1 −

𝐻 𝑆𝑚𝑎𝑥

𝐻 𝑆𝑚𝑎𝑥

𝑁𝑝 +
(𝑁𝑝 − 1)

𝑁𝑝
1
2

 

𝐹𝑆𝑇𝑚𝑖𝑛 = 1 −
2𝑁𝑝𝐻 𝑆𝑚𝑎𝑥

2𝐻 𝑆𝑚𝑎𝑥 + 𝑁𝑝 − 1
=

 𝑁𝑝 − 1 (1 − 2𝐻 𝑆𝑚𝑎𝑥 )

2𝐻 𝑆𝑚𝑎𝑥 + 𝑁𝑝 − 1
  

 

Thus FSTmin > 0 implies that 1 > 2Hsmax which in turn implies  

𝑁𝑝 >  
𝑛𝑘

𝑛𝑘 − 1

𝑁𝑝

𝑘=1

 

because nk/(nk -1) > 1 then to be true the above inequality it is a necessary condition that  

𝑁𝑝 > 𝑁𝑝 so it follows that FSTmin  0. Because we force FST to be 0 the lower-bound will be  

FSTmin = 0. 

 

 

A-6) Simulations and analysis 

There are several examples of adaptation to divergent environments connected by migration 

such as the intertidal marine snail L. saxattilis (Rolan-Alvarez 2007), wild populations of S. 

salar (Bourret et al. 2013), lake whitefish species (Renaut et al. 2011) and so on. To perform 

simulations as realistic as possible, a model resembling the most favorable conditions for the 

formation of ecotypes under local adaptation with gene flow was implemented. Some 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 25, 2016. ; https://doi.org/10.1101/026369doi: bioRxiv preprint 

https://doi.org/10.1101/026369
http://creativecommons.org/licenses/by-nc-nd/4.0/


50 
 

relevant demographic information from L. saxatilis, such as migration rates and population 

size as estimated from field data (Rolan-Alvarez 2007), was used. Concerning selection 

intensities,  we considered moderate selection pressures and few loci with large effects 

(Thibert-Plante & Gavrilets 2013). Therefore, the simulation design includes a single selective 

locus model plus one case under a polygenic architecture with 5 selective loci. Two 

populations of facultative hermaphrodites were simulated under divergent selection and 

migration. Each individual consisted of a diploid chromosome of length 1Mb. The 

contribution of each selective locus to the fitness was 1-hs with h = 0.5 in the heterozygote 

or h = 1 otherwise (Table S1). In the polygenic case the fitness was obtained by multiplying 

the contribution at each locus. In both populations the most frequent initial allele was the 

ancestral. The selection coefficient for the ancestral allele was always s = 0 while s = ± 0.15 

for the derived. That is, in population 1 the favored allele was the derived (negative s, i.e. 1 + 

h|s| in the derived) which was at initial frequency of 10-3 while in the other population the 

favored was the ancestral (positive s, i.e. 1 - h|s|  in the derived) and was initially fixed.   

 

Table S1.  Fitness Model. The ancestral allele is noted with uppercase A and the derived as a. 

Population Genotypes 

 AA Aa aa 

1 1 1 + |s|/2 1 + |s| 

2 1 1- |s|/2 1 - |s| 

|s|: absolute value of the selection coefficient. 
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In the single locus model the selective site was located at different relative positions 0, 0.01, 

0.1, 0.25 and 0.5. In the polygenic model the positions of the five sites were 4×10-6, 0.2, 0.5, 

0.7 and 0.9. Under both architectures, the overall selection pressure corresponded to  = 

4Ns = 600 with N = 1000. Simulations were run in long term scenarios during 5,000 and 

10,000 generations and in short-term scenarios during 500 generations. Some extra cases 

with weaker selection  = 140 (s = ± 0.07, N = 500) in the long-term (5,000 generations) and 

stronger selection,  = 6000 (s = ± 0.15, N = 10,000) in the short-term were also run. 

The mating was random within each population. The between population migration was Nm 

= 10 plus some cases with Nm = 0 or Nm = 50 in a short-term scenario. Recombination 

ranged from complete linkage between pairs of adjacent SNPs (no recombination,  = 0), 

intermediate values  = 4Nr = {4, 12, 60} and fully independent SNPs. 

A bottleneck-expansion scenario was also studied consisting in a neutral case with equal 

mutation and recombination rates, ρ = 60, and a reduction to N = 10 in one of the 

populations in the generation 5,000 with the subsequent expansion following a logistic 

growth with rate 2 and Kmax = 1000.  

For every selective case, 1000 runs of the corresponding neutral model were simulated. To 

study the false positive rate (FPR) produced by the selection detection tests, the significant 

results obtained in the neutral cases were counted. The simulations were performed using 

the last version of the program GenomePop2 (Carvajal-Rodriguez 2008). 
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In most scenarios, the number of SNPs in the data ranged between 100 and 500 per Mb. 

However, only the SNPs shared between populations were considered thus giving numbers 

between 60-300 SNPs per Mb i.e. medium to high density SNP maps. 

 

The interplay between divergent selection, drift and migration (Yeaman & Otto 2011) under 

the given simulation setting should permit that the adaptive divergence among demes 

persists despite the homogeneity effects of migration (see Critical migration threshold 

below). 

 

A-7) Critical migration threshold 

Our simulation model is a particular case (with symmetric migration and intermediate 

dominance) of the model in Yeaman and Otto (2011). These authors develop the model to 

study the interplay of drift, divergent selection and migration on the maintenance of 

polymorphism between interconnected populations. They provide a measure, the critical 

migration threshold, below which adaptive divergence among demes is likely to persist. By 

rearranging terms in equation (11) from Yeaman and Otto (2011) and after substituting the 

fitness relationships from our system, we obtain the critical migration threshold for our 

model: 

𝑚𝑐𝑟𝑖𝑡 =
1

2

 
𝛼

2
 

2
−1

 
𝛼

2
 

2
+4𝑁

 (A-7-1) 
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where  = 4Ns . For each selective pressure, we can therefore compute the critical number 

of migrants (Nmcrit) below which the selective polymorphism should be present in the data. 

The weaker the selection the lower the threshold so, for  = 140 the minimum critical 

number of migrants is 355 individuals. Thus our highest migration Nm = 50 is far below the 

threshold. This means that both scenarios Nm = 10 and 50, would tend to maintain the 

locally adaptive allele for every selective scenario assayed (weak, intermediate and strong) 

despite the homogeneity effects of migration. 
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