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Abstract

With the increasing availability of functional genomic data,1–3 incorporating genomic
annotations into genetic association analysis has become a standard procedure. However,
the existing methods often lack rigor and/or computational efficiency and consequently do
not maximize the utility of functional annotations. In this paper, we propose a rigorous
inference procedure to perform integrative association analysis incorporating genomic an-
notations for both traditional GWAS and emerging molecular QTL mapping studies. In
particular, we propose an algorithm, named “Deterministic Approximation of Posteriors”
(DAP), which enables highly efficient and accurate joint enrichment analysis and identifica-
tion of multiple causal variants. We use a series of simulation studies to highlight the power
and computational efficiency of our proposed approach and further demonstrate it by ana-
lyzing the cross-population eQTL data from the GEUVADIS project and the multi-tissue
eQTL data from the GTEx project. In particular, we find that genetic variants predicted
to disrupt transcription factor binding sites are enriched in cis-eQTLs across all tissues.
Moreover, the enrichment estimates obtained across the tissues are correlated with the cell
types for which the annotations are derived.

∗xwen@umich.edu

1

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 26, 2016. ; https://doi.org/10.1101/026450doi: bioRxiv preprint 

https://doi.org/10.1101/026450


Introduction

Association analysis has become a powerful tool for identifying genetic variants that impact
complex traits at both the organismal and molecular levels: in the past decade, genome-wide
association studies (GWAS) have successfully identified a rich catalog of genetic variants that
are linked to many human diseases. Most recently, molecular QTL mapping has revealed an
abundance of quantitative trait loci (QTLs) for cellular phenotypes such as gene expression,3,4

chromatin accessibility,5 histone modifications6 and DNA methylation.7 Nevertheless, the causal
molecular pathways from genetic variants to complex phenotypes remain poorly understood.8

This is mainly because a good proportion of identified trait-associated variants are located in
the non-coding regions of the genome, and our knowledge of the functional roles of non-coding
variants is generally lacking. With the recent advancements in high-throughput experimental
technologies, functional annotations for regulatory variants have become increasingly available.1–3

As a consequence, it is now feasible to perform association analysis incorporating functional
genomic annotations. The integrative analysis strategy presents two obvious advantages: first,
it improves the power of association analysis by prioritizing functional variants; second, it helps
to reveal the underlying molecular mechanisms that lead to the observed associations.

In the past, integrative analysis was typically performed by searching for overlaps between pu-
tative association signals and SNP annotations. This analysis strategy implicitly assumes that
a SNP with specific genomic annotations is likely causal. To justify the results from the post-
hoc overlapping analysis, quantitatively validating this implicit assumption from the observed
association data, which essentially requires estimating the enrichment levels of the annotations
in the association signals, is critical. This point becomes particularly crucial when multiple
types of annotations are used, and a rigorous quantitative enrichment analysis should help to
determine which annotations are relevant and how much we should weigh each annotation. The
availability of functional annotations also enables high-resolution multi-SNP genetic association
analysis. From both GWAS and molecular QTL mapping studies, it is increasingly evident that
multiple independent association signals can co-exist in a relatively small genomic region. Multi-
SNP fine-mapping analysis has now become a standard procedure to tease out potential multiple
association signals. It is only natural that genomic annotations are integrated into this process.

Recently, a few computational approaches for integrative enrichment and association analysis
have been proposed and successfully demonstrated in molecular QTL mapping9,10 and GWAS.11,12

However, these existing approaches make simplifying assumptions for either enrichment analy-
sis12 or multi-SNP fine-mapping analysis.9,11 Therefore, the power of integrative analysis has not
been maximized and can be further improved. In addition, computational efficiency has always
been a hurdle in terms of applying a probabilistic integrative analysis approaches to genetic data
at the genome-wide scale.

In this paper, we propose a probabilistic hierarchical model that is generalized from our re-
cent work13 to describe multi-SNP genetic associations while accounting for functional genomic
annotations. Based on this model, we consider analyzing genetic association data in two set-
tings: traditional GWAS and molecular cis-QTL mapping studies. Note that a distinct feature
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of molecular QTL mapping is that tens of thousands (or hundreds of thousands) of molecular
phenotypes (e.g., gene expression, DNA methylation) are simultaneously measured and analyzed,
which imposes some unique statistical challenges. In addition, the candidate genomic region for
each molecular phenotype is typically defined in the proximity of relevant genomic landmarks
of the corresponding molecular phenotypes (e.g., transcription start site of a target gene for
expression phenotypes) and much smaller in length (usually spanning 1 to 2 Mb) comparing to
GWAS. We outline a 3-stage inference procedure to sequentially perform enrichment analysis,
QTL discovery and multi-SNP fine-mapping. One of our main contributions is a computation-
ally efficient algorithm for Bayesian multi-SNP association analysis. This fast fitting algorithm,
named Deterministic Approximation of Posteriors (DAP), facilitates the proposed rigorous in-
tegrative inference procedure. Compared to the alternative fitting algorithm, i.e., the Markov
Chain Monte Carlo (MCMC) algorithm, we show that the DAP is several hundreds times faster
and more accurate for genetic association analysis. Taking full advantage of the DAP algorithm,
we lay out the analytic strategies for analyzing genetic association data from GWAS and molec-
ular cis-QTL mapping studies, and we demonstrate the proposed procedures through a series of
simulation studies and real data applications.

Methods

Model and Notation

First, we consider a generic setting of association analysis of a single quantitative trait and p
SNPs both measured for n unrelated individuals. We model the genotype-phenotype association
using a multiple linear regression model,

~y = µ1 +

p∑
i=1

βi~gi + ~e, ~e ∼ N(0, σ2I). (1)

For each SNP i, we denote its binary association status, γi, by dichotomizing its corresponding
genetic effect βi, i.e, γi = 1 if βi 6= 0 and 0 otherwise. In particular, we refer to the causal
SNPs for which γi = 1 as the quantitative trait nucleotides (QTNs).9 Our primary interest for
association analysis is the inference of ~γ := (γ1, ..., γp). To integrate genomic annotation into the
association analysis, we assume that having certain genomic features will increase (or decrease)
the odds that a particular SNP is a QTN. Equivalently, certain genomic features are enriched (or
depleted) in QTNs. We quantitatively represent this assumption using an a priori independent
logistic model for each γi, i.e.,

log

[
Pr(γi = 1)

Pr(γi = 0)

]
= α0 +

q∑
k=1

αkdik, (2)

where ~di := (di1, . . . , diq) denotes q genomic annotations that are specific to SNP i at a particular
locus and α1, ..., αq are referred to as the enrichment parameters. Note that the annotations can
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be either categorical or continuous in this framework. We assume that the phenotype data, ~y,
the genotype data, G := (~g1, ...,~gp), and the annotation data, D := (~d1, ..., ~dp), are observed,
while the enrichment parameters, ~α := (α0, α1, ..., αq), are unknown.

For molecular QTL mapping, tens of thousands of phenotypes are simultaneously measured, and
we denote the collection of all measured phenotypes by Y := (~y1, ..., ~yL). For each phenotype,
a small genomic region, typically spanning 1 to 2 Mb and on average containing a few thousands
of SNPs, is pre-defined as the candidate locus in the proximity of relevant genomic landmarks of
the corresponding molecular phenotypes, and we denote the union of the SNP genotypes from all
candidate loci by G := (G1, ..., GL). Similarly, we use D := (D1, ..., DL) and Γ := (~γ1, ...,~γL)
to denote the collections of annotations and latent association status, respectively.

In GWAS, there is usually only one phenotype of interest, which can be viewed as a special case
of molecular QTL mapping. Nevertheless, it is important to note that the candidate region for
GWAS spans the whole genome.

Inference Procedure

We propose an inference procedure consisting of three inter-related stages to fit the proposed
hierarchical model. Sequentially, these stages are as follows:

1. estimating the enrichment parameter ~α using the full data Y ,G and D for enrichment
analysis

2. screening candidate loci for QTL discovery

3. performing multi-SNP fine-mapping for the high-priority loci identified in stage 2

The maximum likelihood estimate (MLE) of ~α can be obtained by the EM algorithm proposed
in our recent work.13 Briefly, the EM algorithm treats Γ as missing data and pools information
across all available loci. In the E-step, the posterior inclusion probability (PIP) for each SNP i

at each locus l (namely, Pr(γli = 1 | ~yl,Gl, ~α
(t))) is computed given the current estimate of ~α; in

the M-step, a logistic regression model is fit by plugging in the PIPs as the response variables and
SNP annotations as predictors. The estimate of ~α is subsequently updated by the corresponding
fitted regression coefficients.

Given the MLE of the enrichment parameter, ~̂α, we then attempt to identify genomic loci that
are likely to harbor causal QTNs. This is achieved by testing the null hypothesis, H0 : ~γ l = 0, for
each candidate locus l using a Bayesian false discovery rate (FDR) control procedure. Specifically,

the null hypothesis is rejected if the locus-level posterior probability Pr(~γ l = 0 | ~yl,Gl, ~̂α) is
smaller than the pre-defined threshold determined by the observed data and desired FDR control
level.14 At the end of this stage, we gather a list of potential QTLs for fine-mapping.

Finally, we perform multi-SNP fine-mapping analysis for the identified QTLs. In particular, we
compute the posterior distribution for each locus l, namely, Pr(~γ l | ~yl,Gl, ~̂α), to i) identify
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potentially multiple independent association signals within locus l and ii) assess the importance

of each SNP by computing its PIP, i.e., Pr(γli = 1 | ~yl,Gl, ~α
(t)). A credible set of potential

causal SNPs for each independent signal can then be constructed from the resulting PIPs in
a manner similar to previously proposed methods.13,15 This Bayesian approach for multi-SNP
analysis has been known to present some unique advantages over the traditional conditional
analysis approach. For example, it fully accounts for patterns of linkage disequilibrium (LD) and
shows superior power in discovering independent association signals.13,16

This 3-stage procedure represents a coherent empirical Bayes strategy to fit the proposed hier-
archical model for inference. In all three stages, the computational difficulty lies in the efficient
evaluation of the posterior probability Pr(~γ l | ~yl,Gl, ~α). We propose an algorithm to tackle
this problem in the following sections. The software package implementing the computational
approaches (in C++ programming language) is freely available (Web Resources).

Deterministic Approximation of Posteriors

The computation of the target posterior probability Pr(~γ l | ~yl,Gl, ~α) is conceptually straight-
forward by applying the Bayes theorem, i.e.,

Pr(~γ l = ~γ | ~yl,Gl, ~α) =
Pr(~γ | ~α) BF(~γ)∑
~γ
′ Pr(~γ ′ | ~α) BF(~γ ′)

, (3)

where the Bayes factor

BF(~γ) :=
P (~yl | Gl,~γ l = ~γ)

P (~yl | Gl,~γ l ≡ 0)

represents the marginal likelihood function of ~γ l evaluated at ~γ. Based on (3), the PIP of each
candidate SNP can be subsequently marginalized from Pr(~γ l | ~yl,Gl, ~α).

For any given ~γ value, both the Bayes factor (whose computation involves integrating out the
the nuisance parameters µ, β and σ2) and the prior probability can be analytically evaluated.17,18

The difficulty lies in evaluating the normalizing constant

C :=
∑
~γ

Pr(~γ l = ~γ | ~α) BF(~γ).

For a locus consisting of p candidate SNPs, the exact computation requires enumerating all 2p

possible ~γ values; hence, it is intractable even for modest p. Previously, the only feasible solution
was to employ a Markov Chain Monte Carlo (MCMC) algorithm.13,16,19 However, the MCMC
algorithm is computationally too costly in our grand scheme for integrative genetic association
analysis: the evaluation of Pr(~γ l | ~yl,Gl, ~α) for every locus is required for each E-step in the EM
algorithm for enrichment analysis. Furthermore, the inherent stochastic variation in the MCMC
algorithm may affect the performance and reproducibility of the overall analysis.

Here, we present an alternative algorithm to perform deterministic approximation of posteriors
(DAP) for each locus and efficiently compute PIPs for all candidate SNPs. This algorithm
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is mainly motivated by two observations in genetic association analysis. First, in almost all
genetic applications, the number of convincing QTLs (i.e., those have relatively large effect
sizes) discovered from the association data are typically small compared with the number of
candidate SNPs within a candidate locus (typically 1 to 2 Mb). In molecular QTL mapping,
this observation is also supported by many recent experimental work.20–22 It implies that the
vast majority of the posterior probability mass in the space of all possible combinations of
SNPs must be concentrated in a much lower-dimensional subspace. That is, only association
models containing a few SNPs are likely to have non-negligible posterior probabilities within
a locus. Second, noteworthy QTL SNPs, as reflected by their non-negligible PIP values, are
thought to typically show modest to strong marginal association signals in either single-SNP
or conditional analysis. Based on the above observations, we design the DAP algorithm to
adaptively select a small subset of noteworthy candidate QTL SNPs and thoroughly explore
the low-dimensional model space composed by these SNPs within each candidate locus. In
addition, the DAP algorithm applies a combinatorial approximation to estimate the posterior
probability mass from the unexplored model space. Unlike the MCMC, the DAP algorithm
is highly parallelizable, and our implementation takes full advantage of this property. More
specifically, the proposed DAP algorithm approximates the normalizing constant C by

C∗ =
∑
~γ
′
∈Ω

Pr(~γ l = ~γ ′ | ~α) BF(~γ ′) + ε, (4)

where Ω denotes a subset of the selected most plausible models to be explored explicitly and ε
is an estimate of the approximation error C −

∑
~γ
′
∈Ω

Pr(~γ l = ~γ ′ | ~α) BF(~γ ′). The key to the

DAP algorithm is the construction of the set Ω: it is desirable that models in Ω capture the
vast majority of the posterior probability mass; on the other hand, Ω should be compact enough
for efficient exploration. In this paper, we propose two different approaches to construct Ω. In
both cases, we define the size of the association model, ||~γ l||, as the number of assumed QTNs
(also known as the 0-norm of the vector ~γ l), i.e., ||~γ l|| =

∑p
i=1 γli , and partition the complete

model space of {~γ l} by the size of association models, i.e., {~γ l} = {||~γ l|| = 0} ∪ {||~γ l|| =
1} ∪ · · · ∪ {||~γ l|| = p}.

Adaptive DAP Algorithm

The first approach, named adaptive DAP, includes the null model and all the single SNP asso-
ciation models in the candidate set Ω. For a larger size of candidate models, it approximates
Cs :=

∑
||~γ ||=s Pr(~γ | ~α) BF(~γ) by a corresponding estimate C∗s =

∑
~γ∈Ωs

Pr(~γ | ~α) BF(~γ),

where Ωs consists of a subset of association models with size s but is constructed only from a
set of adaptively selected high-priority SNPs. The adaptive selection of the high-priority SNPs
is similar to a Bayesian version of conditional analysis23 that naturally accounts for LD. More
specifically, suppose that a “best” model with the maximum posterior probability for ||~γ|| = s−1
has been identified. The SNP selection procedure then goes through all candidate SNPs, adding
a single SNP at a time to the existing best model, and evaluates their posterior probabilities of
being the sole additional QTN (see the details in the Appendix A). Note that this procedure is
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similar to single-SNP analysis and is computationally trivial. The candidate SNPs whose poste-
rior probabilities in the conditional analysis are greater than a pre-defined threshold λ, which is
a valid probability measure (by default, we set λ = 0.01), are then added to the existing subset
of high-priority SNPs. Finally, the DAP algorithm enumerates the updated subset of priority
SNPs for all combinations of ||~γ|| = s to compute C∗s and, in the process, records the “best”
posterior model with the increased model size.

Additionally, the adaptive DAP only extensively explores the model partitions with relatively
small sizes. Suppose that there are truly K QTLs in p candidate SNPs. It should be clear that
{Cs} becomes a (sharply) decreasing sequence as s > K and that the behavior of this decreasing
sequence is mathematically predictable (Appendix B). This behavior occurs because the marginal
likelihood becomes saturated as the model size exceeds the number of true associations and
because the additional prior term imposes a hefty penalty on the overall product. Utilizing this
fact, we derive an approximate recursive relationship between Cs and Cs+1 as s ≥ K (Appendix
B). Based on this relationship, the stopping rule for explicit exploration is determined, and we
estimate ε by

ε =

p∑
s=t+1

R∗s with R∗s+1 =
p− s
s+ 1

ωR∗s for s = t+ 1, ..., p, (5)

where t is the stopping point of the extensive exploration, R∗t = C∗t , and ω = 1
p

∑p
i=1 exp (α0 +

∑q
l=1 αldil)

represents the average prior odds ratio across SNPs. This estimation essentially assumes that
the marginal likelihood is completely saturated for the partitions with s > t, and the overall
contribution to the normalizing constant from each size partition can be roughly estimated by
re-calibrating the prior changes (see the details in Appendix B). To ensure a high accuracy for the
approximation, we also build in an optional criterion on top of the stopping rule by monitoring
the convergence of the partial sum Sk =

∑k
i C
∗
i and enforcing the exploration until

log10

[
St
St−1

]
< κ, κ > 0,

or, equivalently
C∗t∑t−1
i C∗i

< 10κ − 1. By default, we set κ = 0.01. This additional criterion

only makes a difference for the partitions whose model sizes barely exceed the estimated size of
the saturated models: instead of using the combinatorial estimate of the corresponding C∗s , it
enforces additional DAP explorations for more accurate evaluations.

Finally, it should be recognized that the built-in tuning parameters (λ, κ) enable great flexibility
to run the adaptive DAP. As both λ→ 0 and κ→ 0, the adaptive DAP enumerates all models
and becomes an exact calculation with no loss of precision, whereas when λ is very large, the
behavior of the DAP algorithm becomes very similar to the commonly applied step-wise condi-
tional analysis that has very high computational efficiency. In practice, we attempt to strike a
good balance between the precision and efficiency.
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DAP-K Algorithm

Instead of adaptively selecting a subset of high-priority SNPs from all the model size partitions,
the DAP algorithm can also be applied by pre-fixing the maximum model size (namely, K) while
allowing the exploration of all possible SNP combinations under the restriction. We refer to
this variant of the algorithm as the DAP-K algorithm. In the special case of K = 1 (DAP-1),
the algorithm essentially assumes that at most one causal QTL exists in the region of interest.
Although this very assumption has been successfully utilized by many other approaches,9,11,17,23

it has always been formulated as an explicit prior assumption and hence requires a somewhat
non-natural parameterization that also complicates the maximization step when used in the EM
algorithm for enrichment analysis (Appendix C). The DAP-1 algorithm provides the advantage
of considerably faster computation, even when compared with the adaptive version of the DAP
algorithm. More importantly, it can be applied using only summary statistics from single-SNP
association analysis (in the form of the marginal estimate of the genetic effect and its standard
error for each SNP). This feature is particularly attractive, especially when the individual-level
genotype and phenotype information is difficult to access. We provide the derivation and other
technical details for the DAP-K algorithm in the Appendix C.

Applying DAP in Inference

We use both variants of the DAP algorithms in our inference procedure. Specifically, we propose
applying the DAP-1 algorithm in the EM algorithm for enrichment analysis and the adaptive
DAP for multi-SNP fine-mapping at the last stage.

The performance of the enrichment analysis mostly relies on the average accuracy of the PIP es-
timates. We show, both theoretically (Appendix E) and numerically (Figure 4), that the DAP-1
algorithm provides on average precise estimates suitable for enrichment analysis. Most impor-
tantly, the DAP-1 algorithm exhibits the best computational efficiency among the appropriate
alternatives (e.g., adaptive DAP, MCMC).

For the multi-SNP analysis in the final fine-mapping stage, we strongly recommend applying the
adaptive DAP algorithm. Although the DAP-1 algorithm only yields inferior results for a small
proportion of the loci that harbor multiple QTNs, we argue that identifying multiple independent
association signals from those loci is of particular importance for the overall analysis. To achieve
better accuracy for all loci, the adaptive DAP seems a logical choice for multi-SNP fine-mapping
analysis.

Application to GWAS

In practice, the DAP works well for small genomic regions harboring a handful of QTNs. This is
typically the case in molecular QTL mapping, where candidate loci usually span no more than 2
Mb. When there are more QTNs (e.g., > 5) in a locus, the adaptive DAP exploration with high
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precision may become time consuming because the size of the candidate set Ω grows exponentially
fast with the increasing number of independent signals. Nevertheless, in applications of GWAS,
we essentially consider a single locus that spans the whole genome, and for a single trait, the
number of independent association signals may range from hundreds to thousands.

To apply the DAP to GWAS (or molecular QTL mapping with considerably larger candidate
loci), we propose an additional approximation that factorizes Pr(~γ l | ~yl,Gl, ~α) (where locus l
spans a much larger genomic region) into

Pr(~γ l | ~yl,Gl, ~α) ≈
K∏
k=1

Pr(~γ [k] | ~yl,Gl, ~α), (6)

where {~γ [k] : k = 1, ..., K} represents a partition of ~γ l by sets of non-overlapping LD blocks. This
factorization is based on previous theoretical results.18,24 Recently, Berisa and Pickrell25 provided
a working recipe to segment the full genome based on the population-specific LD structures.
Based on these results, we provide mathematical arguments to justify the factorization (Appendix
D). Briefly, applying the analytic approximation of the Bayes factors,18 it can be shown that

BF(~γ) ≈
K∏
k=1

BF(~γ [k]).

This result, along with the fact that our priors are independent across SNPs, naturally leads to
the approximate factorization of the posterior probability. As an important consequence, the
factorization (6) suggests that the DAP can be applied to each LD block independently.

Results

First, we perform a series of simulation studies to examine the accuracy and efficiency of the
proposed DAP algorithms in our inference procedure. We then apply the proposed approach to
analyze two large-scale eQTL data sets.

Simulation Studies

Enrichment Analysis with DAP

The integration of DAP into the EM algorithm enables the efficient estimation of enrichment
parameters using large-scale QTL data sets. To investigate the performance of the enrichment
analysis, we simulate a modest-scale eQTL data set to mimic the genome-wide investigation
of cis-eQTLs. Specifically in each simulation, we select a subset of 1,500 random genes from
the GEUVADIS data.4 For each gene, the real genotypes of 50 cis-SNPs from 343 European
individuals are used in the simulation. We annotate 20% of the SNPs with a binary feature. For
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each SNP, we determine its binary association status by performing a Bernoulli trial with the
success rate p = exp(−4+α1d)

1+exp(−4+α1d)
. Given the QTNs, we then simulate the expression levels according

to a multiple linear regression model with residual error variance set to 1. More specifically, the
genetic effect of each QTN is drawn from an independent normal distribution N(0, 0.62). As a
result, the simulated data sets resemble the practically observed cis-eQTL data (Figure 1). We
vary the α1 values from 0.00 to 1.00, and we generate 100 data sets for each α1 value.
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Figure 1: Comparison of simulated data set with the actual GTEx whole blood
cis-eQTL data

For each gene in each data set, we find the best associated SNP based on single-SNP testing, and
compute the heritability explained by the best SNP using a simple linear regression model. The
histograms show the distribution of the heritability across all genes. The similarity of the two
histograms indicates that the simulated data sets closely resemble the real observed cis-eQTL
data.

We analyze the simulated data sets using two different implementations of the EM algorithm
with the E-step approximated by the DAP-1 and the adaptive DAP. For evaluation, we also
estimate α1 by fitting a logistic regression model using the true association status of each SNP.
This analysis represents a theoretical best-case scenario, and its results should be regarded as the
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bound of the most optimal outcome from any analysis that infers the latent association status
(Γ) from observed data.

Figure 2 shows that the estimates from the adaptive DAP and DAP-1 are both seemingly un-
biased. As expected, the variability of the point estimates from both DAP implementations is
higher than that from the best-case method because of the uncertainty in determining the true
association status of each SNP. The estimates of the 95% confidence intervals from the indi-
vidual simulations also confirm this finding (Figure 3). Although the adaptive DAP seemingly
generates more accurate estimates on average, we conclude that the numerical performance of
DAP-1 is very comparable. Importantly, DAP-1 provides superior computational efficiency: the
average running time for the DAP-1-embedded EM algorithm (with 10 parallel threads in the
E-step) is 65.05 seconds; in comparison, the adaptive DAP-embedded EM runs for 387.30 sec-
onds on average (which is a combination of slightly longer iterations and longer running times
per iteration).
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Figure 2: Point estimates of the enrichment parameter produced using various anal-
ysis methods in different simulation settings

The point estimate of the α1 ± standard error (obtained from 100 simulated data sets) for each
method is plotted for each simulation setting. The “best case” method uses the true association
status and represents the optimal performance for any enrichment analysis method. Both the
adaptive DAP and DAP-1 methods yield unbiased estimates in all settings, although the adaptive
DAP-embedded EM algorithm generates slightly smaller standard errors.
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Figure 3: Comparison of individual estimates of the enrichment parameter and their
uncertainty quantification

Each panel represents a different simulation setting. We plot the point estimates of α1 along
with their 95% confidence intervals for each method using 10 randomly selected simulated data
sets. In all settings, all the methods compared (“best case”, EM with adaptive DAP and EM
with DAP-1) show the desired coverage probability. The figure also highlights the considerable
uncertainty in enrichment analysis.

Finally, we note that both the adaptive DAP and DAP-1 algorithms underestimate the α0 pa-
rameter: on average, DAP-1 estimates α̂0 = −4.62, and the adaptive DAP yields α̂0 = −4.32
(recall that the truth is α0 = −4.00). This is fully expected, largely because of the limitation
of the statistical power in detecting weak association signals. The practical consequence is that
the empirical Bayes priors constructed for the final stage of multi-SNP fine mapping analysis are
slightly conservative. However, we argue that the conservative priors generally lead to reduced
false discoveries and may be welcomed in practice for fine-mapping analysis.

Accuracy of the Adaptive DAP Algorithm

In the second numerical experiment, we compare the performance of the adaptive DAP algorithm
with the exact Bayesian computation. In particular, we are interested in evaluating the accuracy
of the approximation Pr(~γ l | ~yl,Gl, ~α) and the induced SNP-level PIP values from the adaptive
DAP algorithm. The simulation setting mimics multi-SNP fine-mapping analysis at the final
stage of our proposed inference procedure.

For the exact Bayesian computation with reasonable computational cost, we have to limit the
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number of candidate SNPs in a locus. Specifically, in each simulation, we randomly select geno-
types of p = 15 neighboring cis-SNPs of a gene from the GEUVADIS data set. We then uniformly
select 1 to 5 QTNs and generate the phenotype measure using a multiple linear regression model.

We apply both the adaptive DAP algorithm and the exact Bayesian posterior computation on a
total of 1,250 simulated data sets using the identical prior specification. The exact computation
evaluates all 215 = 32, 768 association models for each simulated data set. We apply the adaptive
DAP algorithm by varying the threshold value for selecting high-priority candidate SNPs, λ,
from 0.01 to 0.05.

First, we compare the true normalizing constant C with the estimated value C∗ from the adaptive
DAP by computing the ratio C∗/C in each simulated data set. Utilizing all SNPs of all the
simulated data sets, we also calculate the root-mean-square error (RMSE) to characterize the
precision of the PIP approximations. The results indicate that for stringent λ values, the DAP
can indeed estimate the normalizing constant with very high accuracy (Table 1 and Figure
4), which ensures the high precision of the estimated PIPs. As the λ threshold is relaxed, the
approximation of C becomes less accurate in some cases; nevertheless, we observe that the overall
precision level of the approximate PIPs is still reasonably high.

λ Mean of C∗/C RMSE of approximate PIP

0.01 0.994 2.36× 10−3

0.02 0.986 5.32× 10−3

0.03 0.963 9.83× 10−3

0.04 0.921 1.40× 10−2

0.05 0.854 2.42× 10−2

Table 1: Numerical comparison of the exact calculation and the adaptive DAP
algorithm at different threshold values in the second simulation study
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Figure 4: Assessment of the accuracy of the adaptive DAP algorithm at different
threshold values

In the top panel, the individual PIP approximations from the DAP are compared to the exact
calculations. In the bottom panel, the distribution of C∗/C is plotted. The simulation results
are obtained for threshold values λ = 0.01, 0.02, 0.05 for the DAP algorithm.

Next, we examine the derived stopping rule and the analytic estimation of the approximation
error. Overall, we find that the stopping rule and the error approximation work extremely well
for these simulations, and we summarize the results in Figure 5.
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Figure 5: Examination of the recursive approximation of Cs by equation (B.4) in
the simulated data sets

Each panel represents a simulated data set containing K true QTLs. The ratio of the estimated
value C#

s (computed using the true value of Cs−1) over the true value Cs is plotted on a log 10
scale for all model size partitions. The red vertical line indicates the size of the true association
model, and the blue dotted line represents the actual stopping point at which the adaptive DAP
halts explicit exploration. As the model size s exceeds K, the estimation by C#

s becomes very
accurate in all settings.

Using the simulated data set, we also benchmark the average computational time for each simu-
lation/analysis setting and present the results in Table 2. All runs are performed with 10 parallel
threads using the OpenMP library. For the exact calculation, the average time remains constant
regardless of the number of true QTNs. The DAP algorithm represents a much reduced compu-
tational time compared to the exact calculation. The general trend of the DAP running time is
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also clear (albeit a few small deviations): with an increasing number of true QTNs, the running
time increases, and with more relaxed λ values, the running time decreases.

Running Time (seconds)
Number of True QTLs

Method 1 2 3 4 5

DAP (λ = 0.01) 0.097 (0.234) 0.275 (1.180) 0.733 (3.704) 1.276 (7.140) 2.527 (13.181)
DAP (λ = 0.02) 0.093 (0.268) 0.208 (0.776) 0.663 (3.128) 1.275 (6.816) 2.368 (12.965)
DAP (λ = 0.03) 0.087 (0.238) 0.133 (0.408) 0.252 (1.060) 0.844 (4.644) 1.422 (7.876)
DAP (λ = 0.04) 0.063 (0.116) 0.122 (0.312) 0.230 (0.732) 0.615 (3.064) 0.571 (2.596)
DAP (λ = 0.05) 0.050 (0.072) 0.120 (0.280) 0.139 (0.320) 0.184 (0.448) 0.180 (0.276)

Exact 19.8 (121.4)

Table 2: Benchmark of the average computational time required for the DAP and
exact computation

The running time is measured in seconds by the UNIX utility program “time”. In each cell, we
show the actual running time (“real” time), which is greatly reduced by parallel processing with
10 threads; in the parentheses, the “user” time is reported, which objectively reflects the actual
computational cost, i.e., this measurement is not reduced by the parallelization.

Power Comparison of the Multi-SNP Analysis Algorithms

In the final simulation study, we compare the performance of the adaptive DAP with other
existing algorithms in identifying multiple association signals. Specifically, we directly use the
simulated multiple-population eQTL data sets from Wen et al.,13 where a genomic locus consist-
ing of 100 relatively independent LD blocks (with 25 neighboring SNPs per block) is artificially
assembled using real genotype data from the GEUVADIS project and 1 to 4 QTNs are randomly
assigned to different LD blocks per simulation.

In Wen et al.,13 we compared three competing approaches, i) a single SNP analysis method,
ii) a conditional analysis method, and iii) a multi-SNP analysis method based on an MCMC
algorithm, regarding their abilities to correctly identify the QTN-harboring LD blocks. We run
the adaptive DAP algorithm on the simulated data sets and compare the results with the three
existing methods. Our results indicate that the adaptive DAP algorithm presents a significant
improvement in performance (Figure 6) and a remarkable reduction in computational time com-
pared with the MCMC algorithm (Table 3), and both approaches outperform the single SNP
analysis and conditional analysis approaches. In addition, Figure 6 also shows that with pro-
longed sampling steps, the MCMC outputs seemingly “converge” to the DAP results. We also
run a fast version of the adaptive DAP algorithm with tuning parameter λ = 0.05 (Figure 7),
and the results indicate that the decrease in performance from the default setting (λ = 0.01) is
minimum.
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Figure 6: Comparison of DAP and MCMC algorithms in simulation study III

(a) Performance comparisons for multi-SNP QTL mapping. We apply different analytical ap-
proaches to a simulated data set reported in Wen et al.13 to evaluate their abilities to identify
multiple independent LD blocks harboring true QTLs. The methods compared include a single-
SNP analysis approach (navy blue line), a forward selection-based conditional analysis approach,
the MCMC algorithm described in Wen et al.,13 and the DAP algorithm. Each plotted point
represents the number of true positive findings (of LD blocks) versus the false positives ob-
tained by a given method at a specific threshold. The MCMC algorithm and the DAP algorithm
are based on the Bayesian hierarchical model and clearly outperform the other two commonly
applied approaches. Most importantly, the DAP algorithm presents a significant performance
improvement compared with the MCMC in both accuracy and computational efficiency. (c) -
(e) Comparison of PIP values estimated by adaptive DAP and MCMC with various running
lengths. We randomly selected 10 simulated data sets and ran MCMC with 4 different lengths
of sampling steps, ranging from 15,000 to 1 million (the results shown in panel (a) are based on
75,000 sampling steps for each data set). With the prolonged MCMC runs, the MCMC outcomes
seemingly “converge” to the DAP results.
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Figure 7: Additional comparisons for multi-SNP QTL mapping

We show the additional simulation results by running the adaptive DAP with λ = 0.05, which
is most similar to the DAP outcome with the default setting (λ = 0.01) and, for the most part,
still outperforms the MCMC algorithm.
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Table 3: Average running time and PIP comparison using MCMC runs with varying
sampling steps in simulation study III

The actual running time reported from the UNIX “time” command is shown for each experiment.
The DAP algorithm runs with 10 parallel threads, and the average user time (i.e., approximate
running time without parallelization) is 1 minute and 8.66 seconds.

MCMC (reps) DAP
15K 75K 250K 1M λ = 0.01

Running Time (real) 4m 2.79s 10m 28.37s 28m 50.00s 107m 46.75s 28.44s
RMSE of PIP (w.r.t DAP) 0.080 0.052 0.034 0.030 −

Re-analysis of the GEUVADIS Data

We re-analyze the cross-population eQTL data set generated from the GEUVADIS project (Web
Resources) using the proposed 3-stage inference procedure. In this re-analysis, we focus on
examining two types of genomic annotations that are known to impact the enrichment of eQTNs:
the SNP distance to the transcription start site (TSS) of the target gene and annotations assessing
the ability of a point mutation to disrupt transcription factor (TF) binding. Following Wen et
al.,13 we group all SNPs within 100 kb of a gene into 1 kb non-overlapping bins according to their
distances from the TSS and use the label of the corresponding bin for each SNP to represent its
distance to TSS (DTSS) as a categorical variable. In addition, a SNP is classified as a binding
SNP if it is computationally predicted to strongly disrupt TF binding by the CENTIPEDE model
using the ENCODE DNaseI data26,27 (Web Resources). If a SNP is located in a DNaseI footprint
region but there is no strong evidence for disrupting TF binding, it is classified as a footprint
SNP; otherwise, the SNP is labeled as a baseline SNP. Due to the computational restraint, our
previous enrichment analysis reported in Wen et al.13 was based on a single iteration of the
MCMC-within-EM (or EM-MCMC) algorithm (i.e., the E-step is carried out by the MCMC
algorithm), as our main goal was enrichment testing. Although the evidence is sufficiently strong
for testing purposes, the enrichment parameters were known to be severely underestimated.

We ran the complete DAP-1-embedded EM algorithm to perform the enrichment analysis. The
full EM algorithm runs for 25 iterations to meet our convergence criteria, which require an
increment ≤ 0.01 in the log-likelihood between two consecutive iterations (Figure S5). The
complete EM run takes 21 minutes on a Linux box with a single 8-core Intel Xeon 2.13 GHz
CPU. In comparison, the MCMC algorithm takes approximately 84 hours of computational time
to fully process all 11,838 genes in a single E-step on the same computing system.

After a single iteration, the DAP-1-embedded EM algorithm yields point estimates for the TF
binding annotations that are very similar to our previous results reported in Wen et al.13 (Table
4). As expected, the final estimates from the complete EM run have very high enrichment values:

21

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 26, 2016. ; https://doi.org/10.1101/026450doi: bioRxiv preprint 

https://doi.org/10.1101/026450


the binding SNPs have an estimated log odds ratio α̂1 = 0.94, or fold change of 2.56, with the
95% CI [0.84, 1.05], whereas the footprint SNPs have a much lower enrichment estimate (log
odds ratio α̂1 = 0.53 or fold change of 1.70, with the 95% CI [0.40, 0.67]). Note that the two
confidence intervals are non-overlapping. In comparison, our previously reported estimates of the
corresponding enrichment parameters are 0.40 (95% CI [0.32, 0.49]) and 0.14 (95% CI [0.04, 0.24])
for binding and footprint SNPs, respectively.

Footprint SNPs Binding Variants
Method α 95% C.I. α 95% C.I.

EM-MCMC 0.14 (0.04, 0.24) 0.39 (0.32, 0.49)
EM-DAP1 0.12 (−0.01, 0.25) 0.41 (0.30, 0.51)

Table 4: Comparison of enrichment estimates by EM-DAP1 and EM-MCMC after
a single iteration in analysis of GEUVADIS data

The binding SNPs refer to the genetic variants that are computationally predicted to disrupt TF
binding, and the footprint SNPs are those simply located in the DNaseI footprint region but not
predicted to affect TF binding. The enrichment estimates from both methods are very similar.
The MCMC algorithm accounts for multiple independent association signals and yields slightly
tighter confidence intervals, as expected. However, the EM-DAP1 is much more computationally
efficient: it runs almost one thousand times faster than the EM-MCMC algorithm.

Next, we repeat the multi-SNP fine-mapping analysis using the adaptive DAP algorithm and the
new set of the empirical Bayes priors obtained from the enrichment analysis. For most genes,
the results (i.e., the number of independent signals for each gene) are qualitatively unchanged
compared to the previous MCMC results. Nevertheless, we find that fine-mapping with the
adaptive DAP is much more efficient, and the annotated SNPs, especially the binding SNPs, are
further prioritized in the new fine-mapping results (Figure 9).
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Figure 8: Traceplots of the marginal likelihood (in Bayes factor on the log scale)
during the DAP-1-embedded EM run for analyzing the GEUVADIS data.
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Figure 9: Output from the re-analysis of GEUVADIS data

(a) - (b) Traceplots of estimates of the enrichment parameters for binding variants and footprint
SNPs during the DAP-1-embedded EM iterations for analyzing the GEUVADIS data. Both
estimates are stabilized after approximately 8 iterations. (c) - (d) Comparison of multi-SNP
cis-eQTL mapping with and without incorporating functional annotations. We plot the multi-
SNP QTL mapping results of LY86 [MIM 605241] using the GEUVADIS data. Panel (c) shows
the results assuming that all SNPs are equally likely to be associated a priori, i.e., no functional
annotation is used. Panel (d) shows the results using the functional annotations with enrichment
parameters estimated by the DAP-1-embedded EM algorithm. In both cases, we use the adaptive
DAP algorithm to perform the multi-SNP QTL mapping and plot the SNPs with PIP > 0.02
with respect to their positions relative to the transcription start site. SNPs in high LD are plotted
with the same color, and the filled circles indicate that a SNP is annotated as disrupting TF
binding. It is clear that three independent cis-eQTLs exist because in both panels, the sums of
the PIPs from the SNPs with the same color all→ 1. When incorporating functional annotation
to perform integrative QTL mapping, the binding variants show much greater PIP values and
are prioritized over the non-annotated SNPs in high LD.
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Analysis of the GTEx Data

We analyze the cis-eQTL data from the GTEx project (Web Resources). One of the most unique
advantages of the GTEx data is that they enable the study of the commonality and specificity
of the eQTLs in multiple tissues. Taking advantage of the high computational efficiency of the
EM-DAP1 algorithm, we perform the enrichment analysis of the TF binding annotations, derived
from the ENCODE data and the CENTIPEDE model, in eQTLs across 44 human tissues while
controlling for the SNP distance to TSS. More specifically, for each gene, we consider a 2 Mb cis
region centered at the transcription start site. For each tissue, we perform the enrichment analysis
using two sets of TF binding annotations, one derived from the ENCODE LCL cell-line and the
other from the ENCODE liver-related HepG2 cell-line27 (Web Resources). This exercise aims to
assess the impact of the cell type-specific annotations on the proposed integrative analysis.

Our results indicate that the binding variants are significantly enriched in eQTLs in all tissues
regardless of the origin of the annotations. Furthermore, the point estimates of enrichment levels
for binding variants are consistently higher than those for footprint SNPs, except in one occasion
(small intestine tissue with LCL-derived annotations) where the two estimates are indistinguish-
able. Importantly, we find that the enrichment estimates in specific tissues are quantitatively
correlated with the origins of the annotations. Figure 10 shows the results of the enrichment
level estimates (α̂1) of the binding variants in each tissue using the LCL- and HepG2-derived
TF binding annotations. Most interestingly, the LCL-derived annotations yield the highest en-
richment estimates in LCLs and whole blood from the GTEx data sets, whereas the liver-related
HepG2-derived annotations obtain the highest enrichment estimate in the GTEx liver tissue.
Overall, our results suggest that TF binding annotations derived from different tissues must
have substantial overlaps; nevertheless, the annotations from the relevant tissues may provide
better functional interpretations for expression-altering causal SNPs in a specific tissue.
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Figure 10: Enrichment estimates for binding variants in GTEx tissues

The estimates in panel A are based on the annotations derived from the DNaseI data of the
ENCODE LCLs, whereas the estimates in panel B are based on annotations derived from the
ENCODE liver-related HepG2 DNaseI data. In each panel, we plot the point estimate of the
enrichment parameter and its 95% confidence interval in each tissue. The tissues are ranked in
descending order according to the magnitude of the point estimates. All estimates are obtained
controlling for the SNP distance from TSS. All estimates are significantly far from 0 (at the 5%
level). Interestingly, when the tissue and origin of the annotations match, the point estimates
for enrichment are the highest.
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Figure 11: Posterior expected number of cis-eQTL signals per eGene in GTEx liver,
lung and whole blood tissues

The top, middle and bottom panels display the histogram of the posterior expected number
of cis-eQTLs from all the eGenes in the liver, lung and blood tissues, respectively. For most
genes, we can only identify a single association signal. However, for a non-trivial number of
eGenes, multiple independent association signals can be confidently identified by the adaptive
DAP algorithm. The sample size is seemingly an important factor related to the ability to
identify multiple independent signals in a cis region.27
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We then proceed to identify genes that harbor QTNs (i.e., eGenes) using a Bayesian FDR control
procedure that we recently developed.14 Subsequently, we perform multi-SNP fine-mapping
analysis for the identified eGenes incorporating the enrichment estimates using the adaptive
DAP algorithm. We present the analysis results for the liver (sample size 97), lung (sample
size 278) and whole blood (sample size 338). There are 2,788, 8,605 and 7,937 eGenes that are
identified from the lung, liver and whole blood, respectively. We suspect that the number of
differences in eGenes discovery is largely attributed to the sample sizes but is also correlated
with the levels of experimental noise in measuring the gene expression in each tissue. For each
fine-mapped eGene l in each tissue, we compute the posterior expected number of independent
signals using

∑p
i=1 Pr(γli | ~yl.Gl, ~̂α) and plot the histogram for each tissue in Figure 11. In all

three tissues, we identify single eQTL signals for the vast majority of eGenes. Nonetheless, for
a non-trivial number of genes, we are able to confidently identify multiple independent signals.
Comparing the fine-mapping results among the three tissues, we find that the ability to identify
additional independent signals is also seemingly correlated with the sample sizes.

We further examine some known individual genes to validate our integrative analysis results. In
particular, we examine SORT1 [MIM 602458], whose function is related to plasma low-density
lipoprotein cholesterol (LDL-C [MIM 613589]) metabolism through modulation of hepatic VLDL
secretion. Through GWAS meta-analysis and extensive functional analysis,28 a single SNP,
rs12740374, is identified to cause variations in LDL-C. More specifically, the major allele disrupts
the binding site of C/EBP transcription factors in human hepatocytes. Our integrative fine-
mapping analysis using the GTEx liver data yields a Bayesian 95% credible set, narrowed down
to only two potential causal eQTNs for SORT1: rs12740374 (PIP = 0.473) ranks second very
closely only to SNP rs7528419 (PIP = 0.526). Moreover, the direction of the genetic effect
for rs7528419 fits the description provided in Musunuru et al.28 The two SNPs in the credible
set are in high LD (r2 > 0.95), except that the genotypes of rs12740374 in the GTEx samples
are not directly genotyped but imputed. Upon further investigation, we find that the binding
site reported by Musunuru et al.28 is not captured by the ENCODE DNaseI experiments in
HepG2, and hence, rs12740374 is not correctly annotated. We then include the annotation of
rs12740374 as a binding SNP based on the functional study of Musunuru et al.28 and re-run
the fine-mapping analysis using the adaptive DAP. We find that rs12740374 yields the highest
PIP value (PIP = 0.752) among all the candidate SNPs (the PIP for rs7528419 drops to 0.247).
The lesson learned here is that the completion of the genomic annotations may have a profound
impact on the integrative analysis, and efforts should be made to generate a more comprehensive
set of genomic annotations by both accumulating new experimental data and integrating them
with all the existing data.

Discussion

The proposed EM-DAP1 algorithm provides an efficient and flexible framework to perform en-
richment analysis with respect to genomic annotations using genetic association data – there is
no restriction on the types of annotations (categorical or continuous) or the number of annota-
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tions that can be simultaneously investigated. Some of the commonly applied ad-hoc enrichment
analysis methods in the same context attempt to first classify the binary latent association sta-
tus Γ for all candidate SNPs based on their single SNP testing results. However, it is worth
noting that the classification based on hypothesis testing typically has very stringent controls
over type I errors but is much more tolerant (in practice, it may be too tolerant) and has little
control over type II errors, which are a major source of the overall mis-classification errors for
Γ.13 As a consequence, most ad-hoc procedures of this type provide poor quantification of en-
richment levels. Recently, probabilistic model-based enrichment analysis approaches have been
proposed based on the “one QTN per locus” assumption and applied to both molecular QTL
mapping and GWAS.11 A common feature of these approaches is that they treat each locus as
the exchangeable/comparable unit in the analysis: in the simplest case, each locus has the com-
mon prior probability, π1, of harboring causal QTNs. Although the DAP-1 algorithm implicitly
also makes the same assumption and enjoys the benefit of fast and efficient computation using
only summary statistics, it presents some significant differences/improvements compared to the
aforementioned approaches. The DAP-1 algorithm, built on the proposed hierarchical model,
considers each SNP as the unit of analysis. This modeling strategy leads to a straightforward
EM algorithm for parameter estimation, where the target function in the M-step is convex with
well-known optimization solutions. In comparison, with the parameterization including π1, the
target function in the M-step is no longer guaranteed to be convex, which can cause convergence
issues in EM estimation and prevent the simultaneous investigations of many annotations (see
the details in the Appendix C). Furthermore, π1 parameterization essentially assumes that ge-
netic loci consisting of many SNPs are equally likely to harbor causal QTNs as loci consisting
of only a few SNPs. From the empirical evidence produced by eQTL analysis, we find that this
assumption is likely false : the genes with more cis candidate SNPs are more likely to harbor
eQTNs.13 In summary, the proposed hierarchical model and the EM-DAP1 algorithm represent
better alternatives.

The proposed Bayesian hierarchical model does not explicitly consider potential polygenic back-
ground. To evaluate the performance of the proposed enrichment analysis method under an
explicit polygenic model, we modify the simulation settings for enrichment analysis by imposing
a small yet non-zero genetic effect on every candidate SNP. Under such setting, γi should be
interpreted as an indicator whether the genetic effect of SNP i is significantly larger than the
polygenic background. The simulation results (Figure 12) indicate that the estimates of the
enrichment parameters are biased toward 0 in the presence of polygenic background: although
the bias is negligible when the polygenic effects are small. We plan to extend our current work
to fully account for polygenic background in our future work by considering a more appropriate
model like the Bayesian sparse linear mixed model (BSLMM).29
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Figure 12: Estimates of the enrichment parameters for data simulated from poly-
genic models

In this experiment, the simulation scheme is mostly similar to the first simulation study described
in the main text, except that in addition to the SNPs sampled to have large effects, we assign a
non-zero genetic effect from an independent N(0, φ2) distribution for all the remaining candidate
SNPs. (In this case, γi should be interpreted as an indicator of large genetic effect.) We select
φ = 0.02, 0.05 and 0.1 to represent different magnitude of polygenic background. The point
estimate of the α1 ± standard error (obtained from 50 simulated data sets using DAP-1-embedded
EM algorithm) for each φ value is plotted. In all cases, the non-zero α1 estimates are biased
toward 0, however when φ is small (φ = 0.02), the bias seems negligible.

Our analysis of multi-tissue eQTL data yields many interesting findings that are worthy of in-
depth follow-up investigation. In particular, our results suggest that the cell type specificity
and the completeness/accuracy of the genomic annotations may have profound impacts on the
integrative association analysis in terms of different aspects as follows: the cell-type specificity
of the annotations affects the global enrichment estimates and the multi-SNP analysis results of
every subsequently fine-mapped locus, whereas mis-annotations of certain variants likely impact
functional interpretations of specific loci but are not likely to alter the global enrichment estimates
as long as the annotations are accurate on average . These findings should motivate efforts to
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generate a more comprehensive and accurate catalog of genomic annotations to improve the
overall quality of genetic association analysis. Furthermore, it should be noted that all the
annotations could have additional levels of complexity (e.g., cis regulatory grammar) that can
be consistently analyzed within the same framework by extending our logistic prior model in a
straightforward manner to allow interactions. To aid these efforts, our proposed genome-wide
scale enrichment analysis has provided a principled way of assessing the tissue/cell type specificity
of the genomic annotations.
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Web Resources

The URLs for data presented herein are as follows:

DAP software and tutorial, http://github.com/xqwen/dap/

GUEVADIS data, http://www.geuvadis.org/web/geuvadis/rnaseq-project
Re-analyzed multi-SNP fine-mapping results of the GUEVADIS data, http://www-personal.
umich.edu/~xwen/geuvadis/new_fm_rst/

GTEx data, http://www.gtexportal.org/home/datasets

Transcription factor binding site annotations by the extended CENTIPEDE model, http://

genome.grid.wayne.edu/centisnps/
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Appendices

Appendix A Selection of Priority SNPs in Adaptive DAP

We give a detailed account of the Bayesian conditional analysis procedure for selecting high-
priority SNPs in the adaptive DAP algorithm. For a given locus l, the procedure starts with
model size partition s = 1. Let ~γ∗ denote the model with the highest posterior probability in
the size partition s− 1 in locus l, i.e.,

~γ∗ = argmax{||~γ ||=s−1} Pr(~γ l = ~γ)BF(~γ).

For each SNP i that is not included in the current best model, we compute a Bayes factor for
the expanded model, ~γ†i = ~γ∗ ∪ {γli = 1}. Assuming that there is exactly one additional QTL
and that each candidate SNP i is equally likely to be the additional causal association a priori,
the corresponding conditional posterior probability for SNP i can be computed by

PIP∗i =
BF(~γ†i )/BF(~γ∗)∑
j BF(~γ†j)/BF(~γ∗)

=
BF(~γ†i )∑
j BF(~γ†j)

. (A.1)

The resulting quantity is a well-defined posterior probability and is solely determined by the
relative likelihood values of the expanded models. In particular, it should be noted that (A.1)
fully accounts for LD between SNPs: e.g., if two SNPs are in perfect LD, they would possess
identical values that correctly reflect the uncertainty (i.e., they are indistinguishable). The
procedure requires p − s evaluations of Bayes factors that are computationally trivial for small
s values. Given the pre-defined threshold λ, we add the SNP i into the existing set of high-
priority SNPs if it is not already in the set and PIP∗i ≥ λ. For s ≥ 2, we then enumerate all
s-combinations from the resulting set of priority SNPs to compute C∗s . During this enumeration,
we also record the new ~γ∗ for the increased model size.

Intuitively, the threshold parameter λ is related to the precision of the approximate PIPs. The
selection procedure roughly estimates the probability, Pr(γli = 1 | ~y,Gl, ~α, ||~γ l|| = s), for SNP
i. Note the relationship

Pr(γlk = 1 | ~yl,Gl, ~α) =

p∑
s=1

Ci
C
· Pr(γlk = 1 | ~yl,Gl, ~α, ||~γ l|| = s).

The following can be concluded:

1. If Pr(γli = 1 | ~yl,Gl, ~α, ||~γ l|| = s) < λ for a given SNP at all s values, then it must be the
case that the overall PIP < λ.

2. The loss of precision of the PIP of SNP i due to the selection screening for a particular size
partition must be < λ.
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Appendix B Stopping Rule and Estimation of the Ap-

proximation Error in Adaptive DAP

When a non-associated SNP is added to an existing association model, the marginal likelihood
of the model is typically non-increasing. In fact, the marginal likelihood measured by the cor-
responding Bayes factor usually decreases slightly due to the effect of Occam’s razor built into
the Bayes factor computation.30 We utilize this property to reduce the computation of DAP by
eliminating unnecessary explicit explorations of the model partitions once the sizes of the mod-
els are considered saturated. To achieve this goal, the DAP starts the exploration with model
size partition s = 1 for increasing s values until a stopping rule is met. The contribution of
the unexplored size partitions (i.e., the approximation error) is then estimated by an analytic
combinatorial approximation.

To explain the stopping rule and the combinatorial approximation, we assume that there are K
detectable true QTNs. In each model size partition where s > K, we can classify all models into
(K+1) mutually exclusive categories according to the number of true QTNs (0 to K) included in
each association model. In the category including exactly m true QTLs, each member association
model also includes (s−m) non-associated SNPs, and the total number of the association models
in the category is given by

(
p−K
s−m

)(
K
m

)
. We estimate the contribution to

∑
~γ Pr(~γ l = ~γ; ||~γ l|| =

s)BF(~γ) from this particular category by the equation(
p−K
s−m

)(
K

m

)
P̃r(~γ l; ||~γ l|| = s) BF{m},

where P̃r(~γ l; ||~γ l|| = s) represents the average prior value within the category and BF{m} is the
average Bayes factor across models including m out of K detectable QTNs. The use of BF{m}
is mainly based on the assumption that including non-associated SNPs in an association model
does not, on average, increase the marginal likelihood/Bayes factor. Hence, we obtain

Cs ≈
K∑
m=0

(
p−K
s−m

)(
K

m

)
P̃r(~γ l; ||~γ l|| = s) BF{m}.

To relate Cs+1 to Cs, we note that

Cs+1 ≈
K∑
m=0

(
p−K

s+ 1−m

)(
K

m

)
P̃r(~γ l; ||~γ l|| = s+ 1) BF{m}

=
K∑
m=0

p−K +m− s
s+ 1−m

(
p−K
s−m

)(
K

m

)
P̃r(~γ l; ||~γ l|| = s+ 1) BF{m}

≤ p− s
s+ 1−K

K∑
m=0

[(
p−K
s−m

)(
K

m

)
P̃r(~γ l; ||~γ l|| = s) BF{m}

]
P̃r(~γ l; ||~γ|| = s+ 1)

P̃r(~γ l; ||~γ l|| = s)

≈ p− s
s−K + 1

ω Cs.

(B.1)
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In the last step, we approximate the quantities
P̃r(~γ l;||~γ l||=s+1)

P̃r(~γ l;||~γ l||=s)
in all K + 1 categories by the

average prior odds ω = 1
p

∑p
i=1 exp (α0 +

∑q
l=1 αldil). Similarly, we can derive an approximate

lower bound for Cs+1

p− s−K
s+ 1

ω Cs. (B.2)

Thus, we have shown

p− s
s−K + 1

ω Cs & Cs+1 &
p− s−K
s+ 1

ω Cs. (B.3)

Because K is unknown, we estimate Cs+1 from Cs by the following approximation

Cs+1 ≈
p− s
s+ 1

ω Cs, (B.4)

which does not depend on K and lies in the interval
(
p−s−K
s+1

ω Cs,
p−s

s−K+1
ω Cs

)
. Our numerical

experiment shows that this approximation is surprisingly accurate (Figure S3).

Our stopping rule is built upon the upper bound specified by the inequality (B.3). Specially, the
adaptive DAP stops explicit exploration at partition size s = t if

C∗t ≤ (p− t+ 1)ω C∗t−1. (B.5)

The inequality essentially tests K ≥ t− 1. In addition to utilizing the combinatorial approxima-
tion, the DAP further monitors the increment of the partial sum Sk =

∑k
i C
∗
i . To ensure a high

accuracy of the approximation, we also add an optional criterion to the stopping rule on top of
(B.5), i.e.,

log10

[
St
St−1

]
< κ, κ > 0,

or, equivalently,
C∗t∑t−1
i C∗i

< 10κ − 1.

By default, we set κ = 0.01, which further ensures that the subsequent model size partitions
make no substantial contributions to the normalizing constant. This additional criterion provides
practical flexibility for running the DAP: as κ→ 0, it enforces the DAP to explore all the model
size partitions, whereas when κ is large, only the stopping rule (B.5) is effective.

Once the stopping rule is invoked, we estimate ε by

ε =

p∑
s=t+1

R∗s,

where we define R∗t = C∗t and

R∗s+1 =
p− s
s+ 1

ωR∗s, for s = t, ..., p.
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Appendix C Derivation of the DAP-1 Algorithm

In this section, we provide a detailed derivation for the DAP-1 algorithm. It should be noted
that the derivation can be generalized to the DAP-K algorithm with K > 1.

The key assumption of the DAP-1 is that posterior probabilities of single-QTL association models
dominate the posterior probability space of {~γ}, i.e.,

C −
∑
||~γ ||≤1

Pr(~γ l = ~γ)BF(~γ)→ 0. (C.1)

Consequently, it follows that

Pr(~γ l = ~γ | ~yl,Gl, ~α) ≈


Pr(~γ l=~γ |~α)BF(~γ)∑

||~γ
′
||≤1

Pr(~γ l=~γ
′
)BF(~γ

′
)

if ||~γ|| ≤ 1

0 otherwise.

The model space of {~γ : ||~γ|| ≤ 1} contains only the null model, ~γ = 0, and all single-SNP
association models. For the null model, it is clear that BF(~γ = 0) = 1, and we denote

π0 := Pr(~γ = 0 | ~α) =

p∏
i=1

(
1 + exp(~α′ ~di)

)−1

.

We use ~γ◦j to denote the single-SNP association model where the j-th SNP is the assumed QTN.
Clearly,

Pr(~γ◦j | ~α) = exp(~α′ ~dj)

p∏
i=1

(
1 + exp(~α′ ~di)

)−1

= π0 · exp(~α′ ~dj),

and
BF(~γ◦j) = BFj.

We recall that BFj denotes the Bayes factor based on the single-SNP analysis of SNP j. The com-
putation of BFj has been detailed by many authors.17,31,32 It typically requires only summary-
level statistics, e.g., the estimated genetic effect of the target SNP and its standard error,31,32

and it is computationally trivial.

Finally, we note that given the restrained model space, the PIP of SNP j, Pr(γj | ~y,G, ~α),
coincides with Pr(~γ◦j | ~α). Given all of the above, it follows from simple algebra that

Pr(γi = 1 | ~y,G, ~α) =

∑p
k=1 e

α0+
∑q

l=1 αldkl BFk

1 +
∑p

k=1 e
α0+

∑q
l=1 αldkl BFk

· e
∑q

l=1 αldil BFi∑p
k=1 e

∑q
l=1 αldkl BFk

=
[
1− Pr(~γ l = 0 | ~y,G, ~α)

]
· e

∑q
l=1 αldil BFi∑p

k=1 e
∑q

l=1 αldkl BFk
,

(C.2)

where the first term assesses the probability that the p-SNP locus contains a QTL and the
second term is the conditional probability that the i-th SNP is the sole QTL. The expression
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(C.2) bears great similarity to the previously proposed Bayesian approaches,9,11,23 which also
impose the “single QTL per locus” assumption. However, all the aforementioned approaches
formulate it as a prior assumption, which results in a very different parametrization. More
specifically, they use a locus-level quantity, π0, to denote the probability that a locus does not
contain a QTL. Conditioning on the case that the locus does contain a QTL, the prior for SNP
i being the causal SNP is assigned

Pr(γi = 1 | ~γ l 6= 0,~δ) =
e
∑q

l=1 δldil∑p
k=1 e

∑q
l=1 δldkl

, (C.3)

where the parameter ~δ is similar to our enrichment parameter. As a result, this parametrization
yields a similar expression for the PIP of SNP i,

Pr(γi = 1 | ~y,Gl, π0,~δ) =
[
1− Pr(~γ l = 0 | ~y,Gl, π0)

]
· e

∑q
l=1 δldil BFi∑p

k=1 e
∑q

l=1 δldkl BFk
. (C.4)

Despite the algebraic similarity, the parameters (π0 and ~δ) in (C.4) cannot be directly inter-
preted as ~α in our logistic priors, partly due to the conditional nature of the prior specification
(C.3). Furthermore, in enrichment analysis, the M-step of the EM algorithm becomes much

more involved for optimizing the objective function jointly with respect to (π0,~δ). In compari-
son, we have shown that under the parametrization of DAP-1, the maximization in the M-step
is equivalent to fitting a logistic regression model for which the solutions are well known.

Appendix D Factorization of the posterior probability by

LD blocks

For integrative association analysis for loci spanning very large genomic regions, especially in
GWAS settings, we recommend an additional approximate factorization, Pr(~γ | ~y,G, ~α) ≈∑L

k=1 Pr(~γ [k] | ~y,G, ~α), before applying the DAP to each genomic region independently. We
provide the necessary mathematical justification for this factorization.

It is sufficient to show that

Pr(~γ | ~α) BF(~γ) ≈
L∏
k=1

Pr(~γ [k] | ~α) ·
L∏
k=1

BF(~γ [k]).

Recall that {~γ [k] : k = 1, 2, 3...} are non-overlapping segments of the vector ~γ. Because the prior
probabilities are assumed to be independent across SNPs, it follows trivially that Pr(~γ | ~α) =∏L

k=1 Pr(~γ [k] | ~α).

To show that

BF(~γ) ≈
L∏
k=1

BF(~γ [k]),
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we note the previous result on the Bayes factors,18

BF(~γ) =

∫
P (~β | ~γ) BF(~β) d~β,

where the probability P (~β | ~γ) defines the prior effect size given association status ~γ. Further-
more, note the independent relationship of the prior effect sizes across SNPs,

P (~β | ~γ) =

p∏
i=1

P (βi | γi).

If γi = 1, βi is assigned a normal prior, whereas if γi = 0, βi = 0 with probability 1 (or is
represented by a degenerated normal distribution, βi ∼ N(0, 0)). Equivalently, we write

~β | ~γ ∼ N(0,W ),

where W is a diagonal prior variance-covariance matrix, and for ~γ 6= 1, W is singular.

Without loss of generality, we assume that both the phenotype vector ~y and the genotype vectors
~g1, ...,~gp are centered, i.e., the intercept term in the association model is exactly 0. Furthermore,
we also assume that the residual error variance parameter τ is known. It then follows from the
result of Wen18 that

BF(~β;W ) = |I + τG′GW |−
1
2 · exp

(
1

2
~y′G

[
W (I + τG′GW )−1

]
G′~y

)
. (D.1)

This expression provides the theoretical basis for the factorization. In particular, the p×p sample
covariance matrix 1

n
G′G is a well-known estimate of Var(G). In other words, G′G can be viewed

as a noisy observation of nVar(G). Using population genetic theory, Wen and Stephens24 show
that Var(G) is extremely banded. Based on this result, Berisa and Pickrell25 recently provided an
algorithm to segment the genome into L non-overlapping loci utilizing the population parameter
of the recombination rate, i.e.,

G = (G[1], . . . ,G[L]),

and we approximate G′G by a block diagonal matrix

Ĝ′G = G′[1]G[1] ⊕ · · · ⊕G′[L]G[L], (D.2)

where “⊕” denotes the direct sum of the matrices. It is important to note that (D.2) should
be viewed as a de-noised version of G′G with non-zero entries outside the LD blocks shrunk to
exactly 0. By plugging (D.2) into (D.1), it follows that

BF(~β;W ) =
L∏
k=1

BF[k], (D.3)

where

BF[k] = |I + τG′[k]G[k]W [k]|−
1
2 · exp

(
1

2
~y′G[k]

[
W [k](I + τG′[k]G[k]W [k])

−1
]
G′[k]~y

)
. (D.4)
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In particular, (W [1], . . . ,W [[L]) is a decomposition of the diagonal matrix W compatible with
the decomposition of G.

Finally, we integrate out the residual error variance parameter τ for each BF[k] by applying the
Laplace approximation.18 This step results in plugging in a point estimate of τ (e.g., based on
~y and G[k] for each block k) into the expression (D.4). Taken together, we have shown that

BF(~γ) ≈
L∏
k=1

∫
P (~β[k] | ~γ [k]) BF[k] d~β[k],

and consequently,

Pr(~γ | ~y,G, ~α) ≈
L∏
k=1

Pr(~γ [k] | ~yl,Gl, ~α).

Appendix E Average Accuracy of PIP Estimates using

DAP-1

In this section, we provide some mathematical arguments to justify that DAP-1 (or adaptive
DAP with less stringent threshold values) algorithm can provide on average accurate estimate.
Specifically, we write the expression for the exact calculation of the PIP for SNP k at locus l as

Pr(γlk = 1 | ~yl,Gl, ~α) =

p∑
s=1

Ci
C
· Pr(γlk = 1 | ~yl,Gl, ~α, ||~γ l|| = s). (E.1)

In the case of DAP-1, we essentially use the following expression to approximate the PIP,

Pr(γlk = 1 | ~yl,Gl, ~α) ≈ C1

C0 + C1

· Pr(γlk = 1 | ~yl,Gl, ~α, ||~γ l|| = 1). (E.2)

Note that in genetic association analysis, the vast majority of SNPs have overall PIPs→ 0 within
any given locus; hence, it must be the case that for such a SNP k,

Pr(γlk = 1 | ~yl,Gl, ~α, ||~γ l|| = s)→ 0, for all s.

Therefore, even C1 +C0 approximates C poorly, and (E.2) still provides an adequately accurate
PIP estimation for the majority of SNPs that are not QTNs. The same argument can also
be applied to candidate QTNs with very strong evidence for associations, especially when the
“primary” association signals have strengths of associations that are orders of magnitude higher
than the remaining candidate SNPs within a locus (e.g., Pr(γlk = 1 | ~yl,Gl, ~α, ||~γ l|| = s) → 1
for all s). Therefore, the only SNPs whose PIPs are poorly approximated by DAP-1 are those
secondary QTL signals (if there are any), but in most practical cases, it can be assured that such
SNPs are small in number.
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