Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Characterizing and comparing phylogenies from their Laplacian spectrum

Eric Lewitus, Hélène Morlon
doi: https://doi.org/10.1101/026476
Eric Lewitus
1Institut de Biologie (IBENS), École Normale Supérieure, Paris, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hélène Morlon
1Institut de Biologie (IBENS), École Normale Supérieure, Paris, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Phylogenetic trees are central to many areas of biology, ranging from population genetics and epidemiology to microbiology, ecology, and macroevolution. The ability to summarize properties of trees, compare different trees, and identify distinct modes of division within trees is essential to all these research areas. But despite wide-ranging applications, there currently exists no common, comprehensive framework for such analyses. Here we present a graph-theoretical approach that provides such a framework. We show how to construct the spectral density profiles of phylogenetic trees from their Laplacian graphs. Using ultrametric simulated trees as well as non-ultrametric empirical trees, we demonstrate that the spectral density successfully identifies various properties of the trees and clusters them into meaningful groups. Finally, we illustrate how the eigengap can identify modes of division within a given tree. As phylogenetic data continue to accumulate and to be integrated into various areas of the life sciences, we expect that this spectral graph-theoretical framework to phylogenetics will have powerful and long-lasting applications.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted September 09, 2015.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Characterizing and comparing phylogenies from their Laplacian spectrum
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Characterizing and comparing phylogenies from their Laplacian spectrum
Eric Lewitus, Hélène Morlon
bioRxiv 026476; doi: https://doi.org/10.1101/026476
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Characterizing and comparing phylogenies from their Laplacian spectrum
Eric Lewitus, Hélène Morlon
bioRxiv 026476; doi: https://doi.org/10.1101/026476

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Systems Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (3502)
  • Biochemistry (7343)
  • Bioengineering (5319)
  • Bioinformatics (20258)
  • Biophysics (10008)
  • Cancer Biology (7735)
  • Cell Biology (11293)
  • Clinical Trials (138)
  • Developmental Biology (6434)
  • Ecology (9947)
  • Epidemiology (2065)
  • Evolutionary Biology (13315)
  • Genetics (9359)
  • Genomics (12579)
  • Immunology (7696)
  • Microbiology (19008)
  • Molecular Biology (7437)
  • Neuroscience (41011)
  • Paleontology (300)
  • Pathology (1228)
  • Pharmacology and Toxicology (2134)
  • Physiology (3155)
  • Plant Biology (6858)
  • Scientific Communication and Education (1272)
  • Synthetic Biology (1895)
  • Systems Biology (5311)
  • Zoology (1087)