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Abstract

Tuning curves are the functions that relate the responses of sensory neurons to various
values within one continuous stimulus dimension (such as the orientation of a bar in the
visual domain or the frequency of a tone in the auditory domain). They are commonly
determined by fitting a model e.g. a Gaussian or other bell-shaped curves to the
measured responses to a small subset of discrete stimuli in the relevant dimension.
However, as neuronal responses are irregular and experimental measurements noisy, it is
often difficult to determine reliably the appropriate model from the data. We illustrate
this general problem by fitting diverse models to representative recordings from area
MT in rhesus monkey visual cortex during multiple attentional tasks involving complex
composite stimuli. We find that all models can be well-fitted, that the best model
generally varies between neurons and that statistical comparisons between neuronal
responses across different experimental conditions are affected quantitatively and
qualitatively by specific model choices. As a robust alternative to an often arbitrary
model selection, we introduce a model-free approach, in which features of interest are
extracted directly from the measured response data without the need of fitting any
model. In our attentional datasets, we demonstrate that data-driven methods provide
descriptions of tuning curve features such as preferred stimulus direction or attentional
gain modulations which are in agreement with fit-based approaches when a good fit
exists. Furthermore, these methods naturally extend to the frequent cases of uncertain
model selection. We show that model-free approaches can identify attentional
modulation patterns, such as general alterations of the irregular shape of tuning curves,
which cannot be captured by fitting stereotyped conventional models. Finally, by
comparing datasets across different conditions, we demonstrate effects of attention that
are cell- and even stimulus-specific. Based on these proofs-of-concept, we conclude that
our data-driven methods can reliably extract relevant tuning information from neuronal
recordings, including cells whose seemingly haphazard response curves defy conventional
fitting approaches.
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Introduction

Tuning curves represent a sensory neuron’s response profile to a continuous stimuli
parameter (such as orientation, direction of motion, or spatial frequency in the visual
domain) and are an ubiquitous tool in neuroscience. In order to describe such
selectivities in simple terms, tuning curves are commonly modeled by fitting suitable
shape functions to the data, such as, for example, Gaussian distributions [1-4], arbitrary
polynomials [5] or generic Fourier series 6] for orientation and direction tuning curves,
or other smooth functions like splines [7] for non bell-shaped tuning profiles.

However, the measured tuning curve shapes are tremendously variable and they
often deviate from the assumed reference shape [8H11]. More than thirty years ago, De
Valois, Yund and Hepler already observed that no single function could adequately
describe the tuned response of all cells [8] they had recorded. A few years later,
Swindale found that several models fit his data equally well and further questioned the
existence of a single all-encompassing model, observing, moreover, that the preferred
stimulus deduced from a fitted tuning curve depended on the chosen model [9]. These
and other studies thus manifest that the choice of a model to fit can affect the
conclusions reached about tuning properties and their contextual modulations.

Here, we will first systematically investigate the problem of ambiguous model
selection, highlighting the possible consequences of the choice of a “wrong” model. We
will then introduce alternative methods which allow the extraction of features of interest
directly from the measured neuronal responses, without the need of fitting any model to
the empirical neuronal responses to a small subset of possible values from the
continuous stimulus dimension. To illustrate the applicability and the heuristic power of
our data-driven methods, we will carry out analyses of attentional modulation effects in
single unit recordings in the middle temporal visual area (MT) of four rhesus monkeys,
where neurons exhibit characteristic direction selective responses to moving visual
stimuli [12}/13]. We will consider responses to stimuli consisting of either one or two
random dot patterns (RDPs) in the receptive field where the two RDPs could be either
spatially separated or transparently superimposed. In these experimental paradigms,
tuning curves are expected to display either one or two peaks. The expected effects of
attention include gain modulations leading to changes in the amplitude of these response
peaks. However, due to the high number of experimental conditions and the difficulty of
the animal’s behavioral task, only relatively few trials could be recorded for each
stimulus. This limited sampling, combined with the heterogeneity of response profiles,
make the measured tuning curves very “noisy”. The dataset, thus, besides its intrinsic
interest, provides a perfect test-bed to reveal the drawbacks of fitting techniques and to
benchmark alternative methods. We will discuss two complementary strategies in detail.

First, we will parse the trial-averaged responses of single neurons to obtain, through
a set of algorithmic rules, a list of features characterizing the neuron’s response profile.
For instance, a set of rules will be used to estimate the direction of a cell’s preferred
stimulus, solely based on the data points themselves. Analogously, other rules will be
used to capture into suitable index quantities generic variations of the average response
profile of a cell across different experimental conditions (e.g. different types of stimuli,
or targets of attention). As a shared prerequisite, all these rules must be able to operate
by just receiving as input the set of average responses to each of the different stimuli
from the small set used in the experiment. Although such an approach might seem too
coarse compared to continuous interpolations, we will show an excellent agreement
between the conclusions reached by feature extraction and fitting methods, whenever
reliable model-based estimates can be derived. In addition, the same feature extraction
rules will straightforwardly generalize even to the most irregular tuning curves, for which
model fitting would be questionable. By the same token, the unbounded flexibility in
rule design will allow the extraction of ad hoc features, revealing aspects of shape and
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shape change which elude a parameterization in terms of conventional fitted models.

Second, we will make use of the full information conveyed by the stochasticity of
individual trials. For each neuron and for each different stimulus direction we will
quantify the distribution of responses across trials, and compare them across different
experimental conditions. This approach will show that attention frequently significantly
modulates the response of a cell only for specific stimulus directions rather than a
general modulation across the whole tuning profile.

Thus, through proof-of-concept analyses, we demonstrate the potential of
data-driven methods for harnessing the heterogeneity of tuned responses. We prove that
our approach robustly captures complex effects of attention, avoiding excessive reliance
on illustrative well-behaved cases and circumventing the narrow constraints exerted by a
fitting framework.

Results

The experiment: attentional influences on single-cell responses
to composite stimuli

To illustrate drawbacks with fitting approaches and test novel methodology on a
concrete representative example, we focused on extra-cellular recordings of single
neurons from area MT in the visual cortex of rhesus monkeys [14,/15]. The aim of these
recordings was to investigate how attention affects the tuning curves obtained by the
simultaneous presentation of two directions of motion within the receptive field of a
given neuron.

Neuronal responses were recorded under different conditions (Fig. 7E; see
Methods for details). In the first experimental paradigm (Fig. fB), random dot

patterns (RDPs) moving within two spatially separated stationary apertures were used.

They were sized and positioned for each recorded neuron to fit within its classical
receptive field (RF). In a second experimental paradigm (Fig. 7D), both RDPs were
fully overlapping. This single aperture contained two sets of random dots, moving
transparently in two directions of motion and covered most of the RF. In all conditions
a fixed angular separation of 120° between the two RDPs was used.

In each of the two paradigms, attention could be directed either to a fixation spot
outside the recorded RF (condition “afiz”), or to one of the RDPs inside the RF
(condition “@in”). In addition, the study included conditions in which only one of the
two RDPs was shown while attention was directed to the fixation spot (condition “uni”;
see Fig. for an explanatory cartoon of a spatially separated “uni” trial). Overall,
data from six different experimental configurations (spatially separated afix, ain and
uni; transparent afix, ain and uni) were analyzed (see also Materials and Methods).

Based on previous studies the “uni” experiments should generate unimodal tuning
curves, while 120° separation between the spatially separated and transparent “afiz”
and “ain” stimuli should result in bimodal tuning curves |16], with the peaks occurring
whenever one of the two stimulus components moved in the cell’s preferred direction.
Fig. [[F shows an example tuning curve from the spatially separated afix condition.
Responses were sampled using 12 different directions across the full 360° range with an
angular resolution of 30°. This sampling resolution is typical, as direction-tuning curves
are most frequently assessed using 8 or 12 evenly spaced directions to account for the
constraints of a behavioral paradigm where the number of trials that can be run is
limited. Note that for plotting, stimulus directions were aligned for each cell such that

the attended directino in the 240° stimulus was moving in the cell’s preferred direction.
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“Noisy” tuning curves: not one model to rule them all

To model bell-shaped tuning curves, Gaussian curves are commonly used [1}{4] and they
are usually wrapped, due to the circular nature of the fitted data [17]. This is
exemplified in Fig. [IF' where we fitted a sum of two Gaussians (brown curve) to a
bimodal dataset. In this case, the fit looks adapted to the data, at least according to
visual inspection. However, not all the cases are equally “well-behaved”, as evinced, e.g.,
by comparing the tuning curve of Fig. [[F with a second example in Fig. 2JA.

Two aspects need to be emphasized. First, the coarse sampling of the response
profile because of the 30° separation between measurement points and second, the large
trial-by-trial response variability to a given stimulus, visualized by the error bars.
Indeed, the estimated coefficient of variation (i.e. the standard deviation in units of the
mean) has a median of 38 % for the spatially separated paradigm and of 72 % for the
transparent paradigm, as shown by Fig. 2B. Given this large uncertainty in the data it
is thus not surprising that a “well fitted” linear combination of Gaussians lies within the
error bars. However, within these large ranges of uncertainty, fitted curves obtained
from model functions other than Gaussians could be accommodated as well, and there
is no general a priori argument that a Gaussian model is the best suited model for such
tuning curves.

To corroborate our intuition, we fitted eight different model functions to our data,
testing for their compatibility with Gaussian and non-Gaussian shapes (Fig. |3). The
used functions were a wrapped Gaussian (brown color) [9], a wrapped Cauchy function
(yellow) [17], a symmetric Beta function (violet) [18], a wrapped generalized bell-shaped
membership function (pink) [19], a von Mises function [9[17] (orange), and Fourier
series of order 2 (red), 3 (blue) and 4 (green) |6]. Details on the used models are
provided in the Materials and Methods section. In Fig. A, we show an example neuron
for which all tested models provided reasonably looking fits at visual inspection (in the
transparent attend fix condition).

We rigorously quantified goodness-of-fit by evaluating a score @ , giving the null
hypothesis probability to observe by mere chance a sum of squared errors larger than in
our fit. Small values of @ thus indicate poor fits (see Materials and Methods). We
termed a fit “good” whenever @) > 0.1 but even lower values have been considered
acceptable elsewhere [20]. We computed goodness-of-fit for every model type and for
every cell, and we assessed the fraction of cells for which each given model type
provided a fit deemed to be good. Fig. 3B shows that—at least according to the @

Figure 1 (following page). Attentional experiments. Direction selective
responses of MT cells were measured using different direction combinations of stimuli
and different attentional conditions. The stimuli in the receptive field (RF) of the
recorded cell were either two random dot patterns (RDP) moving in directions 120°
apart and placed in spatially separated (panels A-B) or overlapping (panels C-D)
apertures or just one single (unidirectional) RDP (panel E). A cue instructed the
monkey to attend to either: a luminance change of the fixation point (FP), in the
attend-fix condition (afix, panels A and C) and single stimulus (uni, panel E)
conditions; or to changes of the direction or velocity of the cued RDP (orange) in the
RF, in the attend-in conditions (ain, panels B and D). The transparent uni condition
was taken to be the cue-period of the ain condition (panel D). F: Example of a
“well-behaved” tuning curve from the spatially separated paradigm in the afix condition.
Gray circles denote trial-averaged firing rates and error bars their standard deviation. A
sum-of-two-gaussians fit is also shown (brown). The stimulus directions are aligned for
each cell, so that the attended direction corresponds to the preferred direction in the
uni condition at 240° (see Materials and Methods for details).
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measure—nearly all cells could be well fitted by every model function, in every
experimental condition. This statement still holds even when adopting more
conservative thresholds for goodness-of-fit testing. As detailed in Supporting [ST Fig]
even for threshold criteria as stringent as ¢ > 0.7, nearly all models provided good fits
for more than 80% of the cells in most conditions.

Thus, for a majority of cells, goodness-of-fit alone was not enough to select the best
model. We therefore adopted a model comparison approach and calculated the Akaike
information criterion AIC [21] for different models (see Materials and Methods).
Smaller AIC values indicate better reproduction of the data by the model. Differences
between AIC values for different models quantify how much information is lost
describing the data with the model with a higher AIC value compared to the model
with a smaller AIC value. Let, for a given cell, AIC;, be the minimum AIC value
across all tested models. We then compute for each model m the relative information
loss AAIC(m) = AIC(m) — AIC,in. Hence, for the best model AAIC = 0.
However—as a conventional rule of thumb—models with a small increase (AAIC < 1)
should not be ruled out by model comparison but rather considered as equally good
contenders for the “best fit” [22].

We show in Fig. BC, the fraction of cells for which every tested model was evaluated
as the “relative best”, i.e. obtained a value of AAIC = 0, as well as the fraction of cells
in which it scored as an “equally good contender” with AAIC < 1. The outcome was
qualitatively similar across all conditions. There was not a single model which scored
systematically at the top for all cells, but each of the eight tested model types scored
AAIC = 0 at least for a fraction of neurons. Even considering the softer criterion of
AAIC < 1, none of the models appeared to be good enough to be used to fit all cells.
Interestingly, for all experimental paradigms, Gaussian fits only quite rarely scored as
the relative best (6-15 %, depending on paradigm and condition). On the contrary,
Fourier series fits were the more frequent winners (72-100 %, taken together Fourier
series of all used orders).

Some studies suggest that when the number of available samples is small, the
corrected Akaike information criterion AICc [22] (see Materials and Methods) should be
preferred to the AIC. This AICc penalizes models with a larger number of parameters
more then the AIC already does (i.e. it implements a sharper “Occam’s razor”). We
thus repeated the same analysis of Fig. replacing the AIC with the AICc. Results
are presented by the Supporting [S2 FiglA, which also presents the full statistical
distributions of the observed AIC and AICc values —C). It turned out that the
best model according to AICc was always one with few parameters: either four or five
in the uni condition and five in the afix and ain conditions. This indicates that models
with only few parameters are enough to describe our highly irregular data. While no
clear winner emerged in the unidirectional paradigm, the second order Fourier series fit
model clearly outperformed the other models in the bidirectional paradigms, due to its
reasonable fidelity in rendering the shapes of the measured tuning curves, combined
with a smaller number of parameters.

In summary, model comparisons show that no single model can fit all cells equally
well and that more than one model should be used when looking for the continuous
interpolation of discretely sampled noisy tuning curves. Among parametric models
tested (using both the AIC and the AICc criterion), Fourier series (rather than the
commonly used Gaussian curves) tended to be the relative best in a larger number of
cases. This reflects the substantial diversity of tuning curve shapes present in our
representative dataset, since Fourier series do not have a single shape, but can faithfully
render very dissimilar circularly wrapped profiles.
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Figure 2. Many tuning curves are not “well-behaved”. A: typical example of
tuning curve from the spatially-separated afix condition (compare with Fig. ) The
shape of the curve—including the position of the two peaks that should be elicited by
the composite RDP stimulus—cannot reliably be inferred due to large error bars (std.).
B: Histogram of estimated firing rate standard deviations (expressed in relative units, as
ratios between std. and a matching mean), obtained by lumping together all stimulus
directions and attentional conditions, for the spatially separated (left) and the
transparent (right) paradigms. Both these histograms are strongly right-skewed,
denoting the existence of cells with highly variable responses to certain stimuli.
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Figure 3. Many models are consistent with the data. A) Eight model
functions were fitted to an example tuning curve (gray error bars denote std.) from the

transparent afix condition. Due to the tuning curve’s large error bars all models

provided good fits even though they clearly differ. B) According to a goodness-of-fit
score (see main text) all eight models provided good fits for almost all cells, independent
of experimental condition and paradigm. C) The Akaike Information Criterion AIC was
thus employed to select the best (AAIC=0) or at least close to best (AAIC< 1) model
for each cell. The fraction of cells for which each model constitutes the respective best
or almost best model is illustrated with full and light bars. No model was chosen for all
cells, still the most widely selected model was the fourth order Fourier series (F'4). Both
of these facts mirror the high heterogeneity in the data that is hard to capture in a
single tuning curve shape. Color code red: 2nd order Fourier (F2); blue: 3rd order
Fourier (F3); green: 4th order Fourier (F4); violet: symmetric Beta (sf3); orange - von
Mises (vM); yellow: wrapped Cauchy (wC); brown: wrapped Gaussian (wG); pink:
wrapped generalized bell-shaped membership function (wB).
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Intermezzo: how to compare the shapes of different parametric
fits

When fitting a model to data-points (X,Y) (such as a Gaussian profile

Y (X, a,b,c,d) = aexp(—.5(X —¢)?/b?) + d ), the set of the parameters of the model
(a,b,c,d in this case) form a vector of descriptors of the shape of the relation linking X
and Y. In the case of the Gaussian, indeed, the parameter a represents the peak
amplitude, b the peak width, ¢ the xz-position of the peak amplitude and d the baseline
level. For this reason, the shape of tuning curves and its alterations have often been
analyzed in terms of the values of the parameters of a fitted model [3}23]. However
comparisons between fitted parameters are feasible only if a same underlying parametric
model is used to fit tuning curves for all cells and in all experimental conditions. We
have seen, on the contrary, that selecting a unique all-encompassing model to describe
tuning might not be the best choice. Furthermore, fitted parameters do not have a
direct geometric interpretation for every model. For instance, for Fourier series models,

small changes of the internal parameters can lead to large changes in the resulting shape.

In order to compare between tuning curve shapes generated by different models in
an intuitive way, we introduced generalized descriptive features that do not correspond
to model parameters, but are extracted directly from the fitted curves through
appropriate algorithmic rules (Fig. )

The first step for the extraction of descriptive features is to select a certain number
of points sampled along a fitted tuning curve profile and to note their coordinates
(X,Y). Since the fitted profile is continuous, the number of selected points can be made
arbitrarily large (unlike the number of actual measured data-points), but it is important
to stress that the feature extraction approach that we introduce here always operates on
a discrete set of points (a fact that will later allow us to apply it directly to the
data-points themselves).

The second step is to apply the desired feature extraction rule to the sampled points.

Consider, for example, a unimodal tuning curve, for which we could extract a feature
GLOBALMAXIMUM, by finding the maximum Y coordinate among the points sampled
along the profile. Analogously, we could introduce a feature MAXIMUMANGLE,
corresponding to the preferred direction, by finding the X coordinate of the point whose
Y coordinate corresponds to the feature GLOBALMAXIMUM. These and other features
can easily be generalized to the case of bimodal tuning curves (cf. Fig. ) In this case
the evaluation rules would be modified to limit the search just to the right (left) half of
the sampled points to identify peak positions and amplitude of the right (left) peak
respectively. Note that these features are based on points sampled along the fitted
profiles, rather than on the parameters of these fitted profiles, which they reflect
therefore only in a highly indirect manner.

Describing the extraction of a peak amplitude and position as a feature extraction
procedure could be seen as a (generally non-linear) projection method [24] through
which a continuous—or, at least, finely discretized—tuning curve shape is converted
into a vector with a much smaller finite number of entries. This might seem
unnecessarily complex, however there are several good reasons for doing so.

First, computed features may but do not need to mirror classic model parameters.
For example, while the feature MAXIMUMANGLE would be equivalent to the parameter
¢ in the case of a Gaussian fit, Fourier series don’t have any parameter directly
reflecting peak position. More generally, all kind of convenient features can be designed,
independent of the underlying model and tailored to describe specific shape aspects,
such as, e.g., in a bimodal tuning curve, the position INNERMINIMUMANGLE of the
location of the lowest response between the two maxima —mnot necessarily centered
between the two peaks— or the shape of the peak themselves whose OUTERWIDTH and
INNERWIDTH could differ, indicative of skewness or asymmetries. Table 1 gives a list of
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Table 1. Selected features for the description of tuning curve shape. The complete list of features that we used as

selected features, Supporting Tables S1-S4 provide the full list of features that we used

as well as the detailed algorithm by which they were computed.

well as the algorithm for their computation can be found in Supporting Tables S1-S4

Feature name

Description

GLOBALMINIMUM [Hz]
GLOBALMAXIMUM [Hz]
Maximvumieftrisht [Hy]
PEAKTOPEAK!®ftri8ht [Hy)
INNERMINIMUM [Hz]
INNERMINIMUMANGLE [°]
OUTERMINIMUMANGLE |[°]
GLOBALMINIMUMANGLE [°]
MAXIMUMANGLE'®ft:right [0]
INNERWIDTH!efright [o]

AINNERWIDTH [°]
OUTERWIDTHleft,right [o]

AOUTERWIDTH [°]
left,right ro
BANDWIDTH y o7 [°]
SKEWNESSTght
MINUSSKEWNESSs!®ft
ASKEWNESS
CIRCULARVARIANCE

lowest firing rate of all samples

highest firing rate of all samples

highest firing rate in left, right peak

Maxmvumlettright - GrLoBaLMINIMUM

minimum firing rate occuring at an angle between the left and right peak
stimulus angle at which firing rate is INNERMINIMUM

minimum firing rate right of right peak and left of left peak

stimulus angle at which firing rate is GLOBALMINIMUM

angle of left, right peak at which firing rate assumes the value MAXIMU
INNERMINIMUMANGLE - MAXIMUMANGLE'®*

MAXIMUMANGLE"#! - INNERMINIMUMANGLE

INNERWIDTH' 8! - INNERWIDTH!®! [°]

MAXIMUMANGLE"™ - OUTERMINIMUMANGLE,
OUTERMINIMUMANGLE - MAXIMUMANGLE" 80t

OUTERWIDTH"8" - OQUTERWIDTH!®!

distance between left, right peak’s angles at which baseline-subtracted
firing rate drops below X % of PEAKTOPEAK!ft-right

skewness of right peak

negative of skewness of left peak

SKEWNESS"8" - MINUSSKEWNESS'®ft

circular variance of tuning

Mleftﬂ‘ight

Second, as features are detached from the model itself, they allow a straightforward
comparison of aspects of the tuning curves between parametrically incompatible models,

which was a central aim in our study.

Third, as already anticipated, feature extraction rules can be applied directly—or

with only minor modifications—to the observed data points themselves (Fig. ),

without need of previously interpolating any continuous model curve. We will apply this

direct approach, after completing our discussion of drawbacks inherent to model
selection, by using feature extraction as a tool for comparing different fits.

Different models can lead to different quantitative and
qualitative results

As indicated above, Fig. shows an example for which all eight model functions could
be reasonably well fitted to the measured neuronal data. We parsed these eight fitted
curves based on a common set of feature extraction rules (see Tables 1 and S1-S4). We

then compared the extracted shape features between the models. In Fig. the
position of the right and left peak and the inter-peak minimum are highlighted,

respectively, by circle, diamond and square symbols. Across the model fits the positions
of the left peak differed by up to 35° (10 % of 360°) and the corresponding firing rates
by up to 2Hz (15 % of the maximum trial-averaged firing rate for the afix condition in
this cell); the position of the inter-peak minimum varied by 90° (25 %), their firing rates
by 5Hz (31%); the positions of the right peak by 64° (18 %), their firing rates by 5 Hz
(35%). The example neuron of Fig. [3]A thus shows substantial differences between the
shape features inferred when applying different models.
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FEATURE MAXIMUMANGLE 19"t
TAKE ALL TUNINGCURVE SAMPLES BETWEEN
INNERMINIMUMANGLE AND 315°
FIND MAXIMUM FIRING RATE IN SAMPLES
RETURN ANGLE AT WHICH MAXIMUM OCCURS
FEATURE INNERWIDTH? 9
RETURN MAXIMUMANGLE 9" _INNERMINIMUNANGLE
FEATURE AINNERWIDTH
RETURN INNERWIDTH 9" —INNERWIDTH
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algorithmically extracted features of the sampled tc

Figure 4. Alternative to fitting: algorithmic features. A) We describe all
tuning curve properties of interest by algorithmically extracted features, as opposed to
model parameters. The panel gives pseudocode for three selected features, illustrated
also in panels B,C in corresponding colors. B) Feature extraction algorithms take as
input only the sampled fitted tuning curve. Features are thus defined independent of a
model function, allowing for their comparison between models. Furthermore, all aspects
of tuning curves can be described by suitably chosen features such as MAXIMUM'®ft
(dark red), INNERMINIMUM (orange), MAXIMUM' 8 (blue), (occuring at positions
MAXIMUMANGLE!™®! | INNERMINIMUMANGLE and MAXIMUMANGLE"8! | respectively),
INNERWIDTH'®® (pink), INNERWIDTH'8" (green). C) Due to their algorithmic nature
feature extraction rules can equally well be applied directly to the coarse measured
trial-averaged tuning curve. Thereby, tuning curve properties can be described and
analyzed without referring to the fit.
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These differences at the level of a single cell generalized to a large fraction of cells in
the dataset, creating significant differences between models at the population level. For
each of the eight models we computed the distributions of the values of different
features across cells. In addition we extracted features from a ninth model, denoted the
best model (bM). In this bM case, we selected the best among the eight tested fits, as
indicated by the AAIC = 0 criterion on a cell-by-cell basis, and for each cell we
extracted features out of its specific best fit. Comparisons among the eight models and
the ninth bM model are shown in Fig. for nine selected features. In these nine
matrices, a red entry indicates that the statistical comparison between the median
values of the extracted features are significantly different between the two corresponding
models (Kruskal-Wallis test, p < 0.05), while a blue entry denotes an agreement
between the two models. Entries below and above the diagonal refer to feature
comparisons for the spatially separated and the transparent paradigms, respectively.

For some features, the median value did not change significantly for most model
comparisons (for example the global minimum—GLOBALMINIMUM—in all conditions of
the spatially separated paradigm). For other features, there were marked differences
between Fourier series and bM on the one hand, and the remaining models on the other
hand (for example the circular variance, CIRCULARVARIANCE in the uni condition; but
also the feature GLOBALMINIMUM for the transparent paradigm). For yet other
features, almost every model yielded different results (for example: the differences
between the skewnesses, ASKEWNESS, of the left and right peak in afix and ain; the
75 %-bandwidth of the left peak, BANDWIDTHI%t%, in afix; and the 75 %-bandwidth in
the uni condition BANDWIDTH75 ¢ ). Importantly, in many cases there was a difference
between bM and some of the other models.

Altogether, Fig. [f]A demonstrates that the choice of model instead of another makes
a difference, since it may lead to quantitative changes in the evaluated features.
However, it would be even more severe if these quantitative changes in the evaluation of
specific features led to divergent qualitative conclusions on the comparison between
experimental conditions. For instance, when studying attentional modulation effects, it
is important to compare tuning curve peak amplitudes among, e.g. an afix and an ain
condition. Say, for illustration, that we estimate in the afix condition, a median
MaxiMUM feature value of 30 Hz based on fits with the i-th model function, and a
different median value of 40 Hz based on fits with the j-th model function. Let’s
suppose that the median values for the i-th and j-th model in the ain condition read 42
and 45 Hz, respectively. Besides quantitative differences, it might happen that based on
the i-th model we conclude that attention has led to a significant increase of the
MaXxIMUM feature, but that this same comparison between the afix and ain conditions
is not significant based on the j-th model. Thus, we would reach different conclusions
on the effects of attention, depending on the chosen model. To check systematically for
qualitative deviations in inter-condition comparisons, we performed comparisons
between a large number of relevant feature pairs estimated from the nine different
models (the eight tested model fit functions, supplemented by the bM model). We
analyzed inter-model consistency for three different categories of comparisons: a feature
from the spatially separate paradigm and the same feature from the transparent
paradigm (this is possible for all defined features); a same feature taken from two
conditions, e.g. uni vs afix, or afix vs ain (viable whenever the feature is defined for
both conditions); or, two comparable features from a same condition (a list is given in
supplementary table S5), e.g. MAXIMUM'®* vs MaxiMum'ieht for the peak firing rates
of the two peaks of a bidirectional condition. For each tested feature pair we counted
the number of fitted models for which the comparison was significant.

The histogram of these counts is reported, for different categories of feature pairs, in
Fig. [fB. All histograms display a marked bimodal structure with two modes at the zero
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and nine counts values. These modes correspond, respectively, to the cases of complete
agreement between models, i.e of a comparison which is never or always significant.
Since both these two cases were the most frequent, there was a robust tendency toward
a qualitative agreement between the conclusions of different models. Crucially though,
the gap between the two modes of these histograms was not empty, but there were
frequent cases in which the significance of comparisons between two features in a pair
depended on the adopted model. Thus, for all these feature pairs, the choice of a
specific model for fitting tuning curves would have led to qualitatively divergent
conclusions about the effects of attention. In particular, the reached conclusion might
differ from the one drawn from the bM model, the one which was constructed as
optimal on a cell-by-cell basis.

This makes it advisable to always fit tuning curves based on a bM mixture of models.

However, the bM approach is particularly cumbersome to calculate. Furthermore, it is
ill-defined. Indeed, given the high heterogeneity in the data, it is plausible that adding
even more models to the list of candidates among which to perform the bM choice would
lead to further qualitative differences. It seems therefore necessary to devise alternative
strategies which completely avoid the questionable step of model selection itself.

Feature extraction revisited: the direct method

Rather than relying on the extraction of tuning parameters from fitted data as
illustrated above, rules for feature extraction can be generalized to operate on the
experimental data points themselves. The main difference between a fitted profile and
the empirical data points is a coarse angular resolution of experimental measurements
that might potentially lead to a loss of precision of the extracted feature values.
However, this is a quantitative, not a qualitative difference, that does not prevent the
application of the rule, as illustrated by Fig. [AIC. We therefore extracted
shape-describing features directly from the data for all cells in all experimental
conditions and compared them with matching features estimated from different
model-based fits.

Fig. [6] depicts the results of this comparison and Table 2 reports selected feature
values obtained from the direct method and the corresponding values from the bM
model (see Tables S6-S7 for a comprehensive list). We first focus on qualitative
differences between the direct and the model-based approaches (Fig. @A), before delving
into quantitative differences (Fig. ) Fig. |§|A follows an approach similar to Fig. 7
however we now built distinct histograms for feature pairs which are significantly
different based on the direct method (blue histogram) and feature pairs which are not
significantly different based on the direct method (green histogram). As in Fig. , we
counted the number of fitted models with significant with feature differences. The blue
(green) histograms—peaking at the maximum (minimum) model value count—indicate
that when the direct method found a feature comparison to be significant (not
significant), the most frequent case was that all nine (none of the) tested models also
reached the same conclusion. Concomitantly, the left (right) tails of these histograms
fell off quickly.

Beyond the qualitative agreement, we also checked for quantitative agreements
between features extracted by the direct and the model-based methods. We computed
for each model 7 and for each feature F' a z-score variable
z;(F) = (mean(F); — mean(F)girect) / StA(F)airect- The distributions of these z-scores
over all the different features, for each different model function are plotted in Fig. [6B.
For different experimental conditions and for all the model functions, the z-score
distributions are centered on zero, indicating quantitative agreement between the direct
and model-based methods. For the spatially separated paradigm all models gave results
particularly close to the “direct” method (the difference was smaller than one standard
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Figure 5. Effects found in the data depend on model. A) Nine features,
measuring aspects of firing rate (first column), width (second column) and global shape
(third column) in all three conditions were calculated for each cell on the basis of eight
fitted models (model abbreviations are as in Fig. [3) and the “best model” (according to
the AAIC=0 criterion, see main text; abbreviated “bM”). Red (blue) indicates a
statistically significant (not sig.) difference between two models’ values of that feature.
Results from the spatially separated and transparent paradigm are plotted below and
above the diagonal, respectively. The panels indicate that, in general, models disagree
on the value of a feature, and, in particular, might contradict the optimal (bM) model.
B) Histograms count for all feature pairs (depending on their category “sp.sep vs
trans”, “sp.sep vs sp.sep” or “trans vs trans”’) the number of model functions that find
a significant difference (“effect”) between the pair. While mostly all models agree
(counts 0 and 9) there are also numerous cases in which the presence of an effect
depends on the chosen model.
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Table 2. Median values and significant differences for selected features. Numbers (numbers in parentheses)
denote the median value over the population of cells from the corresponding paradigm and condition, calculated with the
direct method (best model “bM”). Significant differences between conditions or paradigms (abbreviated here as “sp” and
“tr”) are summarized (if present) in the line below the medians. <, <, < denotes a p-value < 0.05,0.01,0.001, respectively, of
a Kruskal-Wallis test applied to the feature values of the direct method. The condition listed before the relation sign had a
smaller median than the one after it (if the medians were identical, means were compared). “NA” denotes features that were
not defined for the corresponding condition.

spatially separated transparent

Feature uni afix ain uni afix ain

GLOBALMINIMUM 450 (4.14) 714 (6.78)  7.71 (8.09)  1.96 (1.86)  2.00 (1.53)  1.93 (1.44)
sp uni < sp afix, sp uni < sp ain; tr uni < sp uni, tr afix < sp afix, tr ain < sp ain

GLOBALMAXIMUM 31.00 (30.62) 34.50 (35.15) 38.50 (37.87) 14.19 (15.01) 14.00 (12.94) 15.75 (15.93)
Sp uni < sp ain; tr uni < sp uni, tr afix << sp afix, tr ain << sp ain

MaxiMum'ett NA (NA) 29.50 (27.77) 27.11 (27.89) NA (NA) 11.00 (10.37) 12.22 (11.84)
tr afix < sp afix, tr ain << sp ain

MAXIMUM"8ht 31.00 (30.62) 29.60 (30.34) 36.29 (35.76) 14.19 (15.01) 12.00 (11.57) 13.50 (12.80)
tr uni < sp uni, tr afix < sp afix, tr ain <& sp ain

PEAKTOPEAK'"! NA (NA) 21.00 (20.89) 17.14 (16.69) NA (NA) 9.08 (9.12) 10.00 (10.06)
tr afix <« sp afix, tr ain << sp ain

PEAKTOPEAK! g 25.50 (24.52) 22.90 (23.58) 26.60 (25.40) 11.50 (11.09) 9.50 (8.70) 10.00 (9.96)
tr uni < sp uni, tr afix < sp afix, tr ain <« sp ain

INNERMINIMUM NA (NA) 16.00 (15.29) 18.80 (17.35) NA (NA) 4.00 (4.12) 5.00 (3.68)
tr afix < sp afix, tr ain << sp ain

INNERMINIMUMANGLE NA (NA) 180.00 (174.00) 150.00 (165.50) NA (NA) 180.00 (180.60) 180.00 (188.35)

GLOBALMINIMUMANGLE  60.00 (67.30) 0.00 (12.80) 0.00 (18.10) 60.00 (52.10) 30.00 (26.40) 30.00 (21.10)
sp afix < sp uni, sp ain << sp uni; tr afix < tr uni, tr ain < tr uni; sp afix < tr afix

MAXIMUMANGLE'"®f NA (NA) 120.00 (115.80) 120.00 (120.10) NA (NA) 120.00 (113.70) 120.00 (117.15)

MAXIMUMANGLE"8"* 240.00 (241.20) 240.00 (240.20) 240.00 (242.50) 240.00 (244.35) 240.00 (247.50) 240.00 (247.10)
Sp uni < sp ain; tr uni < tr ain; sp uni < tr uni

AINNERWIDTH NA (NA) 0.00 (8.70) 30.00 (23.80) NA (NA) 0.00 (7.00) 0.00 (3.45)
sp afix < sp ain; tr ain < sp ain
AOUTERWIDTH NA (NA) 30.00 (32.60)  0.00 (21.30) NA (NA) 0.00 (2.10) 0.00 (4.65)
BANDWIDTHER, NA (NA) 90.00 (53.10)  60.00 (50.50) NA (NA) 60.00 (47.90) 60.00 (48.55)
. sp ain < sp afix;
BANDWIDTH?E;; 90.00 (61.60) 90.00 (54.80) 90.00 (70.20) 90.00 (60.90) 60.00 (50.00) 60.00 (50.40)

sp afix < sp uni, sp afix < sp ain; tr afix < tr uni;
tr uni < sp uni, tr afix < sp afix, tr ain < sp ain

ASKEWNESS NA (NA) 0.11 (-0.09)  -0.13 (-0.36) NA (NA) 0.58 (-0.10) 0.42 (0.00)
sp ain < sp afix; sp afix < tr afix, sp ain < tr ain
CIRCULARVARIANCE 0.46 (0.47) NA (NA) NA (NA) 0.62 (0.59) NA (NA) NA (NA)

sp uni < tr uni
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deviation in almost all cases, i.e. z lay between -1 and 1, for at least 95 % of the
extracted features). A relatively weaker quantitative agreement was observed for the
transparent paradigm. For this paradigm, the Fourier series and the von Mises models
gave the best agreement to the direct method. However, even in the case of the
wrapped Cauchy model, which gave the worst agreement with the direct method, 88 %
of the features had z-scores between -1 and 1.

In conclusion, we observed a qualitative and quantitative agreement between the
direct method and the tested models. But note that the direct method makes less
assumptions on the expected shape of tuning curves and does not conceal their
heterogeneity.

The direct method in action: Tuning curve modulations

After focusing on methodological aspects, we will now turn to the effects of different
experimental paradigms, attentional conditions, and number of stimuli on the tuning.
We will concentrate on a narrow selection of significant feature variations
(Kruskal-Wallist test with p < 0.05) revealed by the direct method, performing
comparisons between conditions both within the same experimental paradigm and
between different paradigms (Table 2 and Fig. . Supporting Tables S8-S9 provide
then a complete list of significantly different feature pairs evaluated with the direct
method and the best model.

First, we evaluated tuning curves when one or two unattended stimuli were present
in the receptive field, i.e. in the afix and uni conditions where attention was directed
outside the receptive field (RF).

For the spatially separated paradigm, the peaks in the afix condition were smaller
than in the uni condition. We monitored peak elevation over the baseline using the ad
hoc engineered features PEAKTOPEAK™®" and NORMALIZEDPEAKTOPEAK! &t
(analogous results hold for the left peak). These features quantify for each cell the
variation between the right peak’s maximum and the response’s global minimum, which
is normalized for the latter feature by the maximum firing rate in the uni condition
(which is aligned, by convention, such that its peak overlaps the right peak in the afix
condition). This NORMALIZEDPEAKTOPEAK! 8! feature decreased from 0.86 in the uni
condition to 0.68 in the bidirectional stimulus afix condition (we report, here and in the
following, sample median values). The same trend also held in the transparent
condition, where NORMALIZEDPEAKTOPEAK' 8" decreased from 0.84 to 0.55, when
superposing a second stimulus within the RF.

As detailed in the Methods section, in the spatially separate paradigm the uni
condition was measured with attention directed to the fixation spot, whereas in the
transparent case it was taken to be the cue-period of the ain condition, that is, attention
was directed to the stimulus during the measurement. Accordingly, features regarding
uni conditions cannot be compared between the two paradigms. Please note that this is
due to the experimental design and does not limit the applicability of the method.

No significant differences were found between the amplitudes of the two peaks
present in the afix condition, within both the spatially separated and the transparent
paradigms, as monitored by the features MaXiMuM'®® and MaxiMumight,

We then evaluated the effects on tuning curves when deploying attention into the
RF, i.e. in the ain condition.

We first monitored the emergence of amplitude differences between the two peaks of
the tuning curve, computing, for instance, the feature APEAKTOPEAK, i.e. the
difference between PEAKTOPEAK" 8 and PEAKTOPEAK'®. In the spatially separated
paradigm, there was a significant increase of the amplitude difference between the
attended and unattended peaks, with APEAKTOPEAK rising from 4 Hz in the afix up to
9Hz in the ain condition, as a combined effect of a decrease of the left peak
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Figure 6. Direct method yields very similar results as fits. A) Layout is
similar to figure [5]B. Each bar from there was split into two, depending on if a
considered feature pair was judged significantly different (blue) or not (green) when
evaluated with the direct method. The panel illustrates a strong tendency to find a
significant effect with either both the direct method and all nine models, or with neither
the direct method and none of the models. B) z-scored quantitative differences between
direct and fitted method’s feature values is less than one standard deviation for almost
all features independent of the model indicating a considerable quantitative agreement
between the methods. Solid lines in violines mark 2.5 %, 50 % and 97.5 % quantiles.
Color code and model abbreviations are as in Figs. [3[ and
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(NORMALIZEDPEAKTOPEAK changes from 0.6 to 0.5) and an increase of the right peak
(from 0.68 to 0.76). In contrast, in the transparent paradigm, both peaks increased as
an effect of attention (median NORMALIZEDPEAKTOPEAK changed from 0.51 to 0.64
and from 0.55 to 0.70, for the left and right peaks, respectively). The different effect of
attention on peak amplitudes in the spatially separate and transparent paradigms is
also illustrated by scatter plots of the NORMALIZEDPEAKTOPEAK in the ain vs the afix
condition (Figs. [7A-B), where the cloud of points lies slightly below the diagonal for the
unattended (left) peak in the spatially separated paradigm and slightly above it for the
attended (right) peak in the spatially separated paradigm and for both peaks in the
transparent paradigm.

Besides analyses of the amplitude and width of tuning curve peaks, the feature
extraction approach allows the investigation of more general alterations in the response
profile. The general shape of the attended peak differed between the spatially separate
and the transparent paradigms. In particular the right peak was flatter (more
platykurtic) in the spatially separate than in the transparent paradigm, as revealed by
the median values of the feature BANDWIDTH?E)g;; (see Table 1 for its definition),
respectively, of 90° versus 60°. A usually unreported effect of attention is illustrated in
Fig. , where we analyze variations of the INNERWIDTH features, i.e. the (absolute

values of the) angular distance between each peak and the minimum between the peaks.

Usually similar for both peaks in the afix condition, differences between the
INNERWIDTH feature for the attended and the unattended peaks may signal interaction
phenomena, such as, e.g., a tendency for the attended peak to re-absorb the unattended
peak. For the spatially separated paradigm, the difference between the left and right
INNERWIDTH, given by the compound feature AINNERWIDTH, increased significantly
from 0° to 30°. On the contrary, no significant change was observed for the transparent
paradigm. Note that the values of AINNERWIDTH are discretely quantized due to the
coarse angular resolution of our measurements and the lack of interpolation in the direct
method.

Conversely, the firing rate at the minimum between the peaks, monitored by the ad
hoc feature NORMALIZEDINNERMINIMUM, increased significantly from 0.32 to 0.41, only
for the transparent paradigm. For the spatially separated paradigm a trend in the same
direction was also present, but was not significant.

Together these effects denote different shape alteration typologies for the two
paradigms, which represent an asymmetric expansion of the attended at the expense of
the unattended peak in the spatially separated paradigm and a symmetric, growth of
both peaks for the transparent paradigm, increasing responses in the inter-peak dip.

In conclusion, the composition of multiple stimuli and the attentional state affected
general global aspects of tuning curves, inducing characteristic and significant patterns
of changes. The direct method allowed to isolate known effects of attention without
need to resorting to any fit, and identified different patterns of attentional modulation
for the two tested experimental paradigms. It also cast light on usually neglected
aspects of tuning curve shapes such as peak asymmetries, which experimental condition
and attention can also modulate, besides the most commonly studied effects on peak
amplitude and width.

Cell- and stimulus-specific aspects of attentional modulation

So far, the analyses have been based on responses averaged across all trials available for
a given stimulus. While such an approach is very common, it is a simplification. Indeed,
neuronal responses fluctuate strongly from trial to trial, which may be functionally
relevant [25H28]. We therefore compared the distributions of responses across different
attentional conditions, in a cell-by-cell and stimulus angle-by-stimulus angle fashion.
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Figure 7. Effects of attention on tuning curves. Scatter plots of various features
in the afix versus the ain condition. Orange error ellipses are centered on the mean

feature values with half-axes corresponding to eigenvalues and -vectors of the

feature-pair’s covariance matrix. Some outliers were omitted for better visualization.
The indicated p-value in each panel corresponds to a Kruskal-Wallis test. A) Attention

decreased (increased) the left peak—as measured by the feature

NORMALIZEDPEAKTOPEAK'—in the spatially separated (transparent) paradigm. B)

Attention increased the right peak in both paradigms according to the feature

NORMALIZEDPEAKTOPEAK! 8. C) Attention significantly increased the difference
between left and right peak’s inner width—AINNERWIDTH—only for the spatially
separated paradigm. Size of circles in panel C illustrates density of points at each
particular coordinate (note that values of AINNERWIDTH from the direct method are
quantized in steps of 30°due to the design of experimentally used stimuli). Altogether
panels indicate that attention asymetrically expanded the right at the expense of the
left peak for the spatially separated paradigm, but increased both peaks similarly for
the transparent paradigm.
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The cartoon in Fig. illustrates this approach for a single cell. In the plot, each
dots corresponds to the response of the cell in a given trial. The two experimental
conditions (e.g., afix vs ain in the spatially separated paradigm) are represented in
different colors. Comparing responses between any two conditions for matching stimuli,
the large trial-to-trial variability stands out, as evident by scanning vertically the clouds
of colored dots for any given fixed position on the horizontal axis (stimulus
configurations). Accordingly, for some stimuli, the trial ensembles of responses may be
significantly different between the two conditions (for example, in the cartoon of Fig.
, at the 60° stimulus), while for other stimulus configurations, the trial ensembles will
not (for example at the 240° stimulus, in the cartoon).

For each given cell we identified subsets of stimulus directions for which attention
caused a significant response modulation (p < 0.05, two-sample Kolmogorov-Smirnov
test). We found that these stimulus subsets were highly cell-specific, with different cells
exhibiting robustly significant attentional modulations at different angles, not
necessarily concentrated in proximity of a specific attended direction, but scattered for
each cell over the entire range of possible stimuli (see Supporting Fig. )
Correspondingly, we will refer to these stimulus-resolved significant differences, assessed
at the single cell level as specific effects. While the statistical power of this analysis at
the single cell level was limited by the small number of trials (see Supporting Fig.
), the population level showed narrow stimulus ranges for which the fraction of
significant specific effects were larger.

Despite the irregularity and large inter-cell variability of the significance patterns of
specific effects, some weak overlap at the population level could still be identified,
identifying narrow stimulus ranges for which the fraction of cells manifesting a
significant specific effect were larger. Fig. [BB,C and D show how the response profile of
a cell was altered when adding a second stimulus component within its RF, i.e. when
going from a uni to an afix condition. The green histograms in Fig. show the
frequency distribution of the number of stimuli with significant changes, for the
spatially separated and the transparent paradigm. In the spatially separated paradigm,
29 % of cells showed significant changes for four or more stimulus directions and 16 % of
the cells did not show significant specific effects at any angle. The corresponding
numbers in the transparent paradigm are 25 % and 23 %, respectively. This means that,
for around a fifth of all cells, the entire tuning curves for the uni and afix conditions
where statistically indistinguishable.

The cells for which the addition of the second stimulus caused no significant
response modulation tended to be poorly tuned already in the uni condition (see
Supporting Figs. ,B). On the other hand, some cells with equally poor tuning in
the uni condition nevertheless displayed significant modulations of their firing rate when
adding the second stimulus component.

Fig. BB,E and F show cell- and stimulus-specific effects of attention, by comparing
the afix and the ain conditions. The pink histograms in Fig [§B show the results of such
a comparison for the spatially separated and the transparent paradigms. 7% of the cells
in the spatially separated paradigm and 10 % in the transparent paradigm showed
significant specific effects of attentional modulation in four or more stimulus directions.
The majority of cells in the spatially separated paradigm (60 %) and 50 % of the cells in
the transparent paradigm showed a significant specific effect of attention for at least one
stimulus. Note that most cells for both paradigms showed a clear tuning profile. Only
23 % (36 %) of the cells lacking any significant attentional modulation for the
spatially-separated (transparent) paradigm were among the cells irresponsive to a
second stimulus (Supporting ,D).

Figs. BIC-F also show the stimulus directions for which significant specific effects of
the addition of a stimulus component or of the allocation of attention were more
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frequently observed. The blue bars indicate the fraction of cells without a significant
response modulation for a given direction, while the green and pink bars indicate
significant increases and decreases of responses, respectively. Not surprisingly, the most
frequent significant response enhancement occurred for the direction bins around 90° in
the spatially separate uni vs afix comparison, corresponding to the cases where the
preferred or a similar direction was added to a single stimulus moving about 120° away
from the preferred direction.

For significant attentional modulations between the afix and ain conditions response
increases were more frequent than response decreases at all stimulus directions, except
90° and 120° in the spatially separate paradigm (where response decreases were more
frequent) and 60° in the transparent paradigm (where response increases and decreases
were equally rare). In addition, significant attentional modulations, occurred mostly for
stimulus angles between 180° and 330° (in the spatially separate paradigm) and 90° and
270° (in the transparent paradigm). These observations on stimulus-specific effects are
compatible with the previous observation based on the direct feature extraction method,
in that, for the transparent paradigm, both peaks are positively enhanced, while, for the
spatially separate paradigm, only the attended peak is boosted, but the unattended one
tends to be depressed. In this way the analysis of specific effects can shed light on the
cell-level genesis of global shape changes of the average tuning curves. The trial
ensemble comparison analyses presented in this section manifest how significant gain
modulations at the level of a cell population may arise from the contribution of specific
effects which are only rarely significant at the single cell level.

Discussion

We showed that the commonly used approach to analyze tuning curve by fitting an
idealized model function to the trial-averaged data may be more problematic than
usually thought. Indeed, when adopting a model-based approach, there is a clear danger
to reach model-specific conclusions (cf. [9]), which would not be confirmed by selecting
different, equally viable models and which may be spurious. Here, going beyond model
fitting and remaining within a purely data-driven framework, we extracted information
about tuning and its modulations directly from the measured data points, through the
application of rules for the extraction of suitable features. The high flexibility in feature
design provided an antidote against over-constrained angles of view, which may be
inherited by the adoption of narrow models.

Previous works already explored possible improvements on conventional
least-squares fitting when dealing with noisy tuning curve data [4|5] and a wide
alternative of possible functional models to fit, not only Gaussians [1-4], but also
typical circular statistics distributions [9/10], as well as Fourier series [6,9]. Even the
most sophisticated techniques, however, are not immune to the drawbacks inherent to
any procedure assuming a common underlying statistical model. On the contrary, as
already pointed out long ago [8] and further confirmed by our analyses, the “best model”
may vary from cell to cell, making the problem of its selection conceptually ill-posed.

Yet, fitting still remains a practical tool to inspect tuning behavior in data,
abstracting, at least as a first step, from the variety of tuning curve shapes present in
any dataset. Although the tested models all give rise to bell-shaped tuning profiles, they
differ in the geometry of the bells’ flanks and these differences might be relevant for fine
stimulus discrimination [16}[29]. Therefore, whenever fitting is used, one should carefully
explore the entire set of candidate models, rather than of a single model, as a defense
against excessive model bias. Results from our direct method itself could be included as
well in the tested mix of analyses. A common set of features could then be extracted
through a set of shared operational rules to systematically identify patterns of (or lack
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Figure 8. Effects of adding a second stimulus or attention to the receptive
field. A) Each dot in this cartoon (not based on measured data) represents the
observed spike count in one trial. For a given stimulus, spike count distributions can
differ between experimental conditions either significantly (e.g. at 60°) or not (e.g. at
240°). B) Distribution of the proportion of cells with a significant difference between
conditions for a given number of stimuli (maximum 12). The green histograms represent
the two conditions where a second stimulus was added and pink histograms the
conditions where attention was switched. C-F) Histograms show the
stimulus-dependent fraction of cells with a non-significant response modulation (blue), a
significant response enhancement (green) or response suppression (pink). The dotted
and orange arrows along the z-axes in E and F indicate the RDP direction not present
in the uni condition and the attended RDP in ain condition, respectively. Across the
population a second stimulus tended to increase firing rates around 120°(C,D) and to
decrease them around 240°. Attention asymmetrically affected the left and right peak in
the spatially separated paradigm (E) whereas it symmetrically increased both peaks for
the transparent paradigm (F). These stimulus-specific changes were compatible with the
results of the direct method discussed in the text.
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of) consistency between the diverse considered approaches. Comparisons between
experimental conditions which are found to be significant only for a narrow subset of
methods should then be looked at with suspicion, and confirmed by additional
independent verifications.

The novelty of our data-driven approach is, however, more substantial than just
providing yet another “model-less model”. First, if the correct model function cannot be
certified with certainty, much of the seemingly high precision achieved by model-based
interpolation may be just an illusion. Looking at the data in an agnostic and democratic
manner, our data-driven methods could assess the statistical significance of attentional
effects, strongly localized in both stimulus- and neuronal spaces. In particular they
highlighted that only about 40 %-50 % of cells—similar to some previous reports of
object-based attention in V1 [30}|31]—were significantly modulated attention, among
them some virtually unresponsive cells which would often be discarded in conventional
model-based studies. It remains an open question whether these specific effects are an
artifact due to the limited availability of information (too sparse sampling of stimuli,
limited number of available trials, etc.) or if they can be related to the fine-scale
synaptic structure of top-down inputs. Indeed, at the local circuit level there is evidence
for an extreme functional specificity of wiring [32,|33] and the frontal eye field, one of
the assumed source areas of attention [34], might provide not more than a couple of
synapses to excitatory (but not inhibitory) neurons in V4 [35]. In addition, models have
shown that random and sparse recurrent network architectures are compatible with
highly heterogeneous tuning curves [36}37]. In the context of the present study, it is
enough to stress that such fine-grained specific attentional effects would remain hidden
to any approach based on the fitting of a stereotyped smooth model to cell responses.
Adopting a model-free characterization of neuronal responses may thus well be necessary
to relate advances in connectomics with cell-level modulations of functional activation.

Another potential application in which data-driven approaches could prove to be
qualitatively superior to model-based approaches is the study of how attention affects
complex population codes [38] of tuned responses. Indeed, by comparing trial ensembles
of dozens of simultaneously recorded neurons previous studies already suggested that
noise correlations were essential for the attentional performance enhancements [39] and
that feature attention is coordinated across hemispheres whereas spatial attention
correlates only local groups of neurons [40]. We, on the other hand, had only single cell
recordings available, but they revealed a high degree of heterogeneity in tuning which
may be functional, not merely reflecting noise, but carrying relevant
information [26H2941-43]. In particular, such single-cell “weird” modulations may
build up in a coordinated manner to give rise to population-level representations of the
attended stimulus with a higher quality of encoding or with better and faster
decodability properties [44,45]. Until now only very few studies have addressed the
recording of the tuned response of many cells simultaneously [39}/40L/46L|47] but the fast
pace of growth of the number of simultaneously recorded neurons [48] will certainly call
for more detailed characterizations of tuned responses, such as the ones that our
methods begin to provide.

Conventional model fitting methodology is restricted to the analysis of a model’s
parameters thereby potentially overlooking some features of the tuning with high
discriminatory power. We have circumvented this problem in that we analyzed a set of
features describing a wider range of aspects of the data. In the extreme case one could
set up an all-encompassing feature library and programmatically mine for the most
relevant ones. A possible drawback of massive feature libraries may be the feature
selection analogue of over-fitting, i.e. the inevitability that some statistical comparison
will appear to be spuriously significant just in virtue of multiple comparison issues.
However, even this “data dredging” [49] is legitimate when used as an explorative
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technique for the generation of hypotheses to be verified by further studies on
independently acquired data-sets. As a matter of fact, with twenty-first-century
neuroscience entering an age of “big data” and large-scale cooperation [50], feature
selection [24], in which features with optimized classification relevance are engineered in
a (semi-)unsupervised manner, will increasingly become a method of choice for
machine-augmented data-set parsing and knowledge discovery.

To conclude, although we are still far from understanding the intricate circuit
mechanism through which attention influences information representation, routing and
processing in the brain, we hope that our general methodology will assist the
interpretation and inspire the design of future experiments necessary to advance this
research endeavor.

Methods

Experimental procedures

All animal procedures of this study have been approved by the responsible regional
government office (Niederséchsisches Landesamt fiir Verbraucherschutz und
Lebensmittelsicherheit (LAVES)) under the permit numbers 33.42502/08-07.02 and
33.14.42502-04-064/07.

The animals were group-housed with other macaque monkeys in facilities of the
German Primate Center in Goettingen, Germany in accordance with all applicable
German and European regulations. The facility provides the animals with an enriched
environment (incl. a multitude of toys and wooden structures), natural as well as
artificial light, exceeding the size requirements of the European regulations, including
access to outdoor space.

All invasive procedures were done under appropriate anesthesia and with
appropriate analgesics. The German Primate Center has several veterinarians on staff
that regularly monitor and examine the animals and consult on any procedures.

During the study the animals had unrestricted access to food and fluid, except on
the days where data were collected or the animal was trained on the behavioral
paradigm. On these days the animals were allowed unlimited access to fluid through
their performance in the behavioral paradigm. Here the animals received fluid rewards
for every correctly performed trial. Throughout the study the animals’ psychological
and medical welfare was monitored by the veterinarians, the animal facility staff and
the lab’s scientists, all specialized on working with non-human primates.

Three out of four animals were used in follow-up studies. One animal was
euthanized at the end of the study. The decision was made in consultation with the
attending veterinarian. Euthanasia was performed using an anaesthetic overdose
(Sodium-Pentobarbital (i.v.)).

Single-unit action potentials were recorded extracellularly from extrastriate cortical
area MT of four male rhesus monkeys (Macaca mulatta), using two sets of covert
attention tasks. Two of the animals were performing the “spatially separated”
paradigm, the other two the “transparent” paradigm. For the duration of every trial the
monkeys were required to maintain their gaze on a fixation point in the middle of a
computer monitor, placed at a viewing distance of 57 cm. While the animal maintained
fixation, either one or two moving RDPs appeared in apertures in the receptive field
(RF) of a given cell, as well as in the opposite hemifield outside the RF. In case of two
RDPs the direction of the RDP in aperture 2 was always shifted clockwise from the
direction of the other RDP by 120°. The direction of motion of the RDPs were varied in
steps of 30° to obtain a tuning curve. The angular difference of 120° was selected as
bi-directional tuning curves are expected to have two peaks in this case [16]. In the
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transparent paradigm the two RDPs were fully overlapping, crating just one aperture,
covering most of the RF whereas in the spatially separate paradigm the two apertures
were smaller and non-overlapping, but both still fully contained in the RF.

In the transparent condition there always existed just one aperture resulting in a
single “uni” response profile. In the spatially separate paradigm, on the other hand,
presenting the stimulus in either one of the two apertures gave rise to different
responses, “unil” and “uni2”, where the latter refers to the condition in which the
stimulus appeared in the to-be-attended aperture (in the ain condition). If not noted
otherwise, we always analyzed the “uni2” condition in the data from the spatially
separate paradigm, and for simplicity also refer to it as just “uni”.

For the spatially separate unidirectional attend-fix condition (Fig. 1E) the monkeys
were instructed to direct attention to the fixation spot, after a delay one RDP appeared
in one of the two non-overlapping apertures and the monkey needed to detect a change
of color of the fixation spot in order to receive a liquid reward. The spatially separate
attend-fix condition (Fig. 1A) was similar, but RDPs were presented in both of the
apertures. In the spatially separated attend-in condition (Fig. 1B) a RDP in one of the
apertures was presented as a cue (of 500 or 600 msec duration), indicating to the
monkey the location and the motion direction of a stimulus to be attended in the course
of the trial. After a delay (800 ms) RDPs appeared in both apertures, and the monkey
had to detect a transient change of motion velocity in the cued aperture at a random
time point till maximally 2.5 s after the stimulus onset while ignoring possible changes
in the other (distracting) RDPs.

The transparent attend-fix (Fig. 1C) and transparent attend-in (Fig. 1D) differed
from the corresponding spatially separate conditions only in that the two apertures in
which the RDPs were presented overlapped.

We generally analyzed data from the response period, which was defined as the time
window 200-700 msec after onset of the stimulus in the RF. However, as no distinct
unidirectional condition was recorded for the transparent paradigm, we used the cue
period of the attend-in condition (50-500 msec after the cue onset) as a proxy for the
uni condition in this case. That means that in the transparent uni condition attention
was directed to the stimulus, whereas in the spatially separate uni condition attention
was directed to the fixation spot. Accordingly, the uni conditions cannot be directly
compared between the two paradigms.

We had 109 and 146 cells in the spatially separate and transparent paradigm,
respectively. Uni conditions were recorded for 85 out of the 109 cells in the spatially
separate paradigm. In 3 cells of the transparent paradigm the afix rates were not
recorded and, therefore, our analysis disregarded the afix condition of those cells.

Tuning data pre-processing

Data analysis was performed using custom-written software in Python (available on
request). We did not perform spike-density estimation, but all analyses of tuning
responses were based on raw firing rates, either averaged over trials (for model fitting
and data-driven feature extraction) or estimated within each trial independently (for
trial ensemble comparisons). Cells were included in the analysis only if at least two
trials were available for every recorded condition. For some cells of the spatially
separated paradigm no uni conditions were recorded. These cells were generally

included in the analysis and exempted only in calculations concerning the uni condition.

All tuning curves were conventionally aligned, such that the maximum firing rate of
the uni condition corresponded to the angular coordinate 240°. Whenever uni
conditions had not been recorded (this was the case for some cells of the spatially
separated paradigm) the angular position of the maximum firing rate of the right peak
in the afix condition was defined to be 240°.
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Fitted models

To analyse tuning curves we fitted several model functions to the trial-averaged firing
response data. Each fit to each specific cell was fully determined by the chosen
parametric model and by a vector p’ of model parameters. The wrapped Gaussian (wG)

was given by:
N N
1/60— 360
wG(6,p) =a E exp (—2 (CZ_Z> > +d
i=—N

where p'= (a,b,c,d). We always assumed N = 4 for wrapping.
The wrapped Cauchy (wC) function was given by:
sinh(b)
cosh(b) — cos(Q2(0 — ¢))

wC(6,p) =a +d

where p'= (a, b, c,d) and Q = 27/360.
The (modified) von Mises function (vM) was given by:

vM(0,9) = a (e’“"s(%(‘"c’) — e‘k) J(e* —e®) +d

where p'= (a, k, ¢, d).
The symmetric Beta function (s8) was given by:

sB(0,p) = a(4x(1 — 2))* +d
where © = (27/360(0 — ¢) +7)/(27) mod 1 and 7= (a,b,c,d).
The wrapped generalized bell-shaped membership function (wB) was given by

wB(H,ﬁ)za(Zl —B)/(a—,@’)—i—d

i=—N 1+ |%}25

where a = ZZN:_N 1/ (1 + |3(§)0i|25>7 8= Z?L_N 1/ (1 + |7180J2360i|2s),
P = (a,b,c,d,s). We always assumed N = 4 for wrapping.

All these functions are illustrated in Fig. BJA. In their basic form, they give rise to
unimodal tuning profiles, as in the uni condition. To fit bimodal responses to composite
stimuli, in the afix and ain conditions, we used a sum of two (identical) model functions,
ie.

f(evm = g(evﬁl) + 9(9?52)

where g is either one of wG,wC, sf,wB and the total parameter vector is p'= (p1, P2).
There was some redundancy between the parameter sets for the two peaks. For the first
four functions p1 = (a1, b1, c1,d/2) and ps = (ag, be, c2, d/2), while, for the wB model,
both p; and po contained an additional component, s; and so, respectively. Hence, f
had overall seven (wG,wC,vM, sf) or nine (wB) free parameters.

In addition we also fitted Fourier series of order n = 2, 3,4, given by:

Fn(0,p) = ao + Z (a; cos(020) + b; sin(Q20))

i=1

where Q = 27/360 and 5 = (ag,a1,b1,...,an,b,). These Fourier series were fully
determined by five, seven or nine parameters respectively, depending on their order
n = 2,3, 4. Fourier fits of unimodal or bimodal tuning curves shared a common
functional form.
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Fitting methods

We used standard weighted non-linear least square fitting, relying on routines within
Python’s SciPy package (http://www.scipy.org, sequential quadratic programming)
for the minimization of the x? statistics. The applied initial conditions and boundaries
therefore are listed in Supporting Table S10. An exception was given by Fourier series.
Let p; be the ith component of the Fourier series’ parameter vector

p = (ag,a1,b1,...,an,b,) and X;(0) be the ith compoment of

(1, cos(020),sin(Q20), . .., cos(nf20), sin(n20)). Then, an exact analytical solution to the
least squares problem exists, which can be straightforwardly derived to be:

where b has components b; = y;/0;, ﬁ(m), ‘7(m) denote the mth column of U and V/,
respectively. The matrices U,V and w,, form the singular value composition of matrix
A, st. A= Udiag(ws,...,w,+1)V7T. The matrix A, in turn, has components

To quantify goodness-of-fit we also used a standard framework, as laid out in [20].
We assume that measurement errors in y; are normally distributed. For model functions
that are linear in their parameters —note, that in our library of models, this
assumption holds only for the Fourier series F'n—, the null hypothesis probability that
the sum of squared errors is equal or larger than the observed x? is given by

Q(K — (2n+1)/2,x?/2) where Q(a,z) = [ et~ dt/T'(a) is the incomplete gamma

x
function and K is the number of independent samples (here, K = 12 tested stimulus
directions). We use this quantity @ as measure for goodness of fit. If the probability @
is < 10% we term the quality of the fit “bad”, otherwise we cannot rule out the
hypothesis that the fit is an appropriate statistical models for our observations. For
general non-linear models—for which the sum of squared errors cannot be expected to
follow a conventional x? distribution—we evaluated approximately the goodness-of-fit Q

statistics through a Montecarlo resampling approach (10000 replicas, cf. [20] for details).

Model selection

We performed model selection based on the Akaike information criterion (AIC) [22,51].

The information-theoretic quantity AIC gives the expected increase in uncertainty when
using a certain model to describe the data rather than the “true” model. It can be
computed from the sum of squared errors in the least-squares procedure according to

K
AIC = K log (Z (yi — f(05,7))° /K) +2M

i=1

where K = 12 is once again the number of independent samples and M is the number of
free parameters of the model function. Importantly, this formula is only valid in the
limit of large K. Some studies [22[51] therefore recommend to use a correction factor in

the case in which K/M é 40. This corrected Akaike information criterion reads:
2M(M + 1)

AICc = Al _—

Ce C+ M —1

Such AICc converges to AIC for large K and mainly differs for it by applying a stronger
penalty to models with larger number of free parameters.
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Features

Given a tuning curve tc(f)—either as a discretized version of a fitted tuning profile, or
directly by the vector of empirically observed average responses to stimuli with different
directions—we characterized its shape in a non-parametric manner by calculating
general features. A feature F is any map of the graph of the tuning curve ¢c(6) onto
some scalar number F : tc — R. Examples of features are the maximum of the tuning
curve or the preferred direction (see Fig. [4| for an illustration). The complete list of
features that we used is given in Supporting Tables S1-S4. Although we did not perform
any feature clustering or redundancy elimination through e.g. factor analysis, willing in
reality to maintain a library of features as wide as possible, we verified that most of the
features bear complementary information, as hinted to by a sample distribution of
pairwise correlations between feature values strongly peaked around zero (not shown).

Angular features were measured in degrees, ranging from 0° to 360° (with the
exception of the feature GLOBALMINIMUMANGLE, for which we used the range
—120° < GLOBALMINIMUMANGLE < 240°) and coarsely quantized at just K = 12
equally spaced angular values. For each feature measured in units of Hz we also
computed a normalized counterpart, denoted with the prefix NORMALIZED, by dividing
the feature value by the global maximum firing rate found in the uni condition of the
cell (if available).

We run statistical tests between feature pairs to search for effects of changes of
experimental condition (transparent vs spatially separated, afix vs ain, etc.). For each
of the two compared conditions we evaluated the values of the tested feature for each
cell. We then performed two-way Kruskal-Wallis testing and dubbed a comparison as
significant, whenever the p-value of this Kruskal-Wallis test was smaller than 0.05. All
found significantly different feature pairs are listed in Supporting Tables S8 and S9, an
excerpt in Table 2. The feature pairs reported herein are also the ones used in the
systematic counting of significant comparisons reported in Figs. [ and [0}

Violin plots

Violin plots were calculated using Gaussian kernel density estimations with Scott’s rule
(as implemented by www.scipy.org; [52]) for bandwidth estimation. Highlighted
horizontal lines within the violin-shaped plot elements denote 2.5 %, 50 % and 97.5 %
quantiles.

Trial ensemble comparison

Beyond feature extraction we also compared directly vectors of firing rates measured
across different trials for a same common cell and a same common stimulus. We then
compared firing rate ensembles over trials for matching stimulus directions and cells
across different experimental conditions, by means of a between-sample two-way
Kolmogorov-Smirnov test. As for pairwise feature comparisons, we deemed a
comparison between firing rate trial ensembles to be significant, whenever the p-value of
this Kolmogorov-Smirnov test was smaller than 0.05. We call specific effects such
stimulus- and cell-dependent effects of a significant change in condition revealed by trial
ensemble comparison.
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Supporting Information

S1 Fig

The threshold value for () above which to accept a fit is not critical. Even
for Qinr > 0.7 more than 80 % of all cells lie above this threshold indicating a good fit.

S2 Fig

Model selection. A) Layout as in Fig. , but showing AAICc instead of AAIC.
Also for this criterion, none of the models is always selected, although for afix and ain
conditions second order Fourier (F'2) clearly performs best. B,C) Violinplots
illustrating the distributions of AAIC (B) and AAICc (C).

S3 Fig

Cells not signficantly modulated by the addition of a second stimulus
tended to be badly tuned but not vice versa whereas attentional
modulation was unrelated to tuning. We compared trial ensembles for a given
stimulus between conditions. Dots mark tuning properties of cells with at least one
(blue) and zero (red, brown) significantly different stimuli between A,B) uni and afix
condition, and C,D) afix and ain condition. Red dots mark cells without any significant
change in both comparisons. These cells (A,B) tended to be badly tuned, but there
were also equally badly tuned cells sensitive to this manipulation. Directing attention to
the receptive field (C,D) had no clear relation to tuning properties.

S4 Fig

Analysis of the statistical power for specific effects. A) For each cell (z-axis)
and stimulus (y-axis) colors indicate if there was a significant difference between the
trials of the conditions marked in the title of each subplot. Colors are as in Fig. [8| B)
We determined the impact of the number of trials available for our various conditions on
the number of cells exhibiting significant changes between conditions. The plot shows
how the number of cells exhibiting significant changes between conditions varied as a
function of the number of trials included in the analysis (using the smaller of the two
ensemble sizes for the z-value). The fraction of significant changes for all the tested
condition changes showed a clear trend to increase with the number of included trials,
possibly saturating when the number of trials reached about 8. Error bars denote
standard-error of the mean. Note that points are only shown in this plot when we had a
minimum of 10 samples, on average we had between 170 and 250 samples (depending on
condition).

S1 Table

List of features defined for all tuning curves. Each feature is calculated once for
uni, once for afix and once for ain condition.

S2 Table

List of features defined only for uni condition. Each feature is calculated only
for uni condition.
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S3 Table 865
List of features defined only for afix and ain condition. Each features is 866
calcualted once for afix and once for ain condition. 867
S4 Table 868
List of additional features comparing two conditions. Conditions A,B can be 869
either of uni, afix, ain. 870
S5 Table 871
Feature pair categories. The features in each row were compaired against each other e
within one condition (uni, afic or ain) and for all conditions they are defined. 873
S6 Table 74
Spatially separated paradigm’s statistics for all features. Table lists cell count, s
mean, standard deviation, minimum, 25 % quantile, median, 75 % quantle and 876
maximum for all features when evaluated with the direct method (values from best g7
model in parentheses). 878
S7 Table 879

Transparent paradigm’s statistics for all features. Table lists cell count, mean, s
standard deviation, minimum, 25 % quantile, median, 75 % quantle and maximum for all s
features when evaluated with the direct method (values from best model in parentheses). ss

SS Table 883

Significantly different feature pairs based on the direct method. List of all 884
significantly different feature pairs when evaluated with the direct method, as well as the sss
corresponding p-value of the Kruskal-Wallis test, and medians, means and cell counts.  sss

S9 Table 887
Significantly different feature pairs based on the best model. List of all 888
significantly different feature pairs when evaluated with the best model “bM”, as well as  sso
the corresponding p-value of the Kruskal-Wallis test, and medians, means and cell 890
counts. 891
S10 Table 892
Initial conditions and bounds for least-squares-fits. Model functions and their s
parameters are described in Methods subsection “Model functions”, number before 804
model indicates if the model pertained to data from the one or two stimulus conditions. s
u = min; y; + 1.2 ptp,; y; where ptp, y; = max; y; — min; y; and {y;} is the set of all 896
firing rates in the tuning curve. The values of 10.74, 2.41 and 100 for the 807

width-parameter k& of the s8 model correspond to a half-width-at-half-maximum of 45°, sos
90°and 15°. Likewise the values of k = 2.3, 0 and 20.34 for the vM model correspond to  sw
45°, 90°and 15°; As k = 0 would make the denominator in the definition of vM zero it o0
was replaced by 0.001. 901
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