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Abstract

Single-cell genomics has revolutionised modern biology while requiring the development
of advanced computational and statistical methods. Advances have been made in uncov-
ering gene expression heterogeneity, discovering new cell types and novel identification of
genes and transcription factors involved in cellular processes. One such approach to the
analysis is to construct pseudotime orderings of cells as they progress through a particular
biological process, such as cell-cycle or differentiation. These methods assign a score - known
as the pseudotime - to each cell as a surrogate measure of progression. However, all pub-
lished methods to date are purely algorithmic and lack any way to give uncertainty to the
pseudotime assigned to a cell. Here we present a method that combines Gaussian Process
Latent Variable Models (GP-LVM) with a recently published electroGP prior to perform
Bayesian inference on the pseudotimes. We go on to show that the posterior variability in
these pseudotimes leads to nontrivial uncertainty in the pseudo-temporal ordering of the
cells and that pseudotimes should not be thought of as point estimates.

1 Introduction

Single-cell RNA-seq (scRNA-seq) has emerged as a powerful method for the quantification of
gene and transcript abundance in individual cells. In only a few years it has uncovered exciting
new biology including the identification of novel cell types [1], hidden heterogeneity in gene
expression [2] and regulatory networks operating at the single-cell level [3]. It has particular
advantages over bulk RNA sequencing such as the ability to identify rare cell types and cell-to-
cell variability [4, 5], which are typically hidden in bulk analyses.

Despite being simultaneously sequenced individual cells may be of variable progression
through a variety of cellular processes due to heterogeneous responses to stimuli and inher-
ent transcriptomic variability. This has consequently lead to the idea of pseudotime as an
artificial measure of a cell’s progression through a process such as differentiation or apoptosis
[6]. The statistical problem is to assign a pseudotime label between 0 and 1 to each observation
where values near 0 indicates that the cell is in a state near the start of the biological process
and values near 1 denote cells that are toward the end of the process.

Early attempts and pseudotime ordering algorithms include Monocle[6], which uses Inde-
pendent Component Analysis (ICA) with Minimum Spanning Trees (MST) applied to scRNA-
seq data, Wanderlust [7], which uses ensembles of k-nearest-neighbour graphs applied to mass
spectrometry data and embeddr [8], which uses Laplacian Eigenmaps and principal curves to
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identify pseudotime trajectory using nonparametric curve fitting. However, a common feature
of all these algorithms is that they provide point estimates of the pseudotime for each cell and
are unable to quantify the uncertainty in each estimate1. As a result, the differential expression
of particular genes over pseudotime may simply be an artefact of that ordering and disappear
when the uncertainty is taken into account.

Here we present an innovative approach that uses full Bayesian inference for Gaussian Pro-
cess Latent Variable Models [10] combined with a repulsive prior [11] to infer posterior distribu-
tions of pseudotimes. First, a reduced dimension representation of the cells from a dimensional-
ity reduction algorithm such as principal components analysis (PCA) or Laplacian Eigenmaps
[12] is created. Subsequently, a probabilistic curve is fitted through the cells that jointly fits
posterior distributions of pseudotimes over all cells. As a result the uncertainty in each pseu-
dotime assignment can be accurately assessed as well as the extent to which the ordering of
any two cells is robust against the inherent noise. Our method does not require cell capture
times as a prerequisite. An implementation of our inference method is available in the Julia

programming language at http://github.com/kieranrcampbell/gpseudotime.

2 Gaussian Processes for pseudo-time assignment

2.1 Gaussian Process Latent Variable Models

A real-valued stochastic process {µt, t ∈ T}, where T is an index set, is a Gaussian Process (GP),
if all its finite dimensional marginal distributions are multivariate Gaussian distributions. That
is, for any given distinct values t1, . . . , tn, the random vector µ = (µt1 , . . . , µtn) ∼ N(m,K)
where m ≡ E[µ] and K ≡ cov(µ,µ).

Gaussian Processes allow us to define prior probability distributions over real-valued func-
tions in Bayesian nonparametric modelling. A popular model exploiting this property is the
Gaussian Process Latent Variable Model (GPLVM) [13]. GPLVMs are a family of non-parametric
methods that define a distribution over functions µ linking a latent variable t to an output vari-
able x, for example, through the relationship x = µ(t) + ε where ε ∼ N (0, σ2). If the prior
distribution over the latent function µ is given by a Gaussian Process then, given a set of N
observations x = {xt1 , . . . , xtN } and corresponding latent points t = {t1, . . . , tN}, the marginal
distribution p(x|t) is multivariate Gaussian with mean vector m(t) and covariance matrix given
by K + σ2IN where Kij = κ(ti, tj) for a kernel function κ and IN is an N ×N identity matrix
[10]. The specification of the kernel function κ allows us to control the favourable features of
the latent functions, e.g. smoothness.

2.2 Model Specification

In our problem, the data consists of N P -dimensional observation vectors X = {xi}Ni=1 which
are assumed to be conditionally independent given the latent, unobserved pseudo-times t =
{t1, . . . tn}, ti ∈ (0, 1], a mean function µ(t) and a observation covariance matrix Σ. The data
we begin with are ‘features’ measured across N cells that we wish to order. These features
can either be genes of particular interest or co-ordinates of some previously applied manifold
learning algorithm, such as Laplacian Eigenmaps [12]. Each dimension of the mean function µj
is given an independent Gaussian Process prior with covariance function K(j).

1In theory a bootstrap measure of uncertainty could be assigned, though this is computationally expensive.
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Our model is described succinctly in the following hierarchical representation:

xi ∼ N(µ(ti),Σ), i = 1, . . . , N,

µj ∼ GP(0,K(j)), j = 1, . . . , P,

K(j)(t, t′) = exp(−λj(t− t′)2), j = 1, . . . , P,

Σ = diag(σ21, . . . , σ
2
P )

λj ∼ Exp(γ), j = 1, . . . , P,

σj ∼ InvGamma(α, β)

t ∼ Corp(r),

(1)

where in the last line we define a repulsive prior on the pseudo-times t based on the Coulomb
repulsive process [11].

The Coulomb repulsive process models repulsions between adjacent points using a process
inspired by physical models of electrostatic potentials. In our model, this has the effect of
preferentially favouring pseudo-time configurations that ‘fill out’ the interval (0, 1]. For pseudo-
times t1, . . . , tN the prior is given by

p(t) = p(t1, . . . , tn) ∝
N∏
m=1

N∏
n=m+1

sin2r [π(tm − tn)] (2)

where r is the repulsion parameter. Under this prior, as |ti − tj | gets smaller, the probability
decreases and there is zero probability that two pseudo-times will coincide. [11] demonstrated
that embedding this process within a GPLVM gave superior results to standard alternatives
such as uniform ti ∼ U(0, 1) or normal priors ti ∼ N(0, 1) by avoiding identifiability issues due
to scale- and translational-invariance under these standard priors.

The likelihood of X given the latent pseudotimes t is conditionally independent across
features [10] so we can write it as

p(X|t,σ2,λ) =

P∏
j=1

p(xj |t, σ2j , λj)

where
p(xj |t, σ2j , λj) = N

(
xj |0,K(j)(λj , t) + σ2j I

)
.

Therefore, we can write the joint posterior as

p(t,λ,σ2|X) ∝
P∏
j=1

N
(
xj |0,K(j)(λj , t) + σ2j I

)

×
N∏
m=1

N∏
n=m+1

sin2r (π|tm − tn|)π(λ)π(σ).

(3)

Note that for maximum likelihood inference t will never leave its initial ordering as the prior
goes to zero probability when tm = tn.

Interestingly, the parameter λ has an intuitive interpretation in the context of curve fitting.
In a one-dimensional Gaussian Process regression setting, λ corresponds to the ‘horizontal’
length scale over which the function varies. Therefore, in the two-dimensional plane |λ| loosely
corresponds to arc-length, with larger |λ| generating longer curves. We effectively regularize
λ by placing an exponential prior on it, with larger γ corresponding to shorter curves passing
through the manifold.
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2.3 Statistical Inference

Statistical inference for GPLVMs is typically performed using approximate maximum a poste-
riori [11] or variational methods [10] but Markov Chain Monte Carlo (MCMC) approaches are
also possible [14]. As our primary objective is to characterise full posterior uncertainty measures
of pseudo-time, MCMC-based inference was a necessity.

We therefore adopted used a random-walk Metropolis-Hastings (MH) with normal proposals
for the unknown parameters of the model (t,λ,σ2):

ti+1 ∼ N[0,1](ti, σ
2
t I)

λi+1 ∼ N(0,∞)(λi, σ
2
λI)

σi+1 ∼ N(0,∞)(σi, σ
2
σI)

where N[a,b] is the multivariate Gaussian distribution truncated on [a, b]. The marginal prop-
erties of the Gaussian Process meant that the latent functions µ could be integrated out as
therefore we did not need to impute this infinite-dimensional quantity.

One difficulty with the proposed model is the extreme multi-modal nature of the posterior.
Many local maxima exist in the prior alone due to the N(N − 1)/2 values for which it vanishes
whenever ti = tj . As such, setting initial values to avoid becoming stuck in local maxima is
challenging2. However, we can exploit the repulsive nature of the prior, by initialising ti ∼
U(12 − ε,

1
2 + ε) for arbitrarily small ε. As the prior heavily discourages pseudo-times that are

in close proximity, the prior pushes the pseudotimes apart like charged particles being repelled
while the likelihood biases this in an order that is consistent with the data reflecting the a
posteriori more likely pseudotime orderings. We call this a “Big Bang” initialisation using an
analogy to the famous cosmological phenomenon. Note that in practice it is really the variance
σ2t in the proposal distribution for t that provides the spread of points at the first iteration
rather than the value of ε itself, so any sensible ε < σt will work.

3 Results

We applied our method to two datasets: (i) a synthetic dataset generated from the model,
and (ii) a Laplacian Eigenmaps representation of the Monocle [6] dataset of differentiating
myoblasts.

3.1 Synthetic Data

We generated data from the Gaussian Process described in Equation 1. Specifically, we set
λ = [1, 2], σ = [2 × 10−3, 2 × 10−2] and sampled n = 100 pseudotimes from U(0, 1). We
performed MH inference as described in Section 2.3 using 2 × 105 iterations thinned by 100.
We set ε = 10−6, σt = 9 × 10−3, σλ = 5 × 10−1 and σσ = 5 × 10−3. The hyper-parameters
were set to r = 10−3, α = β = γ = 1. The results of inference on the synthetic data can be
seen in Figure 1. Pseudotime estimates clearly converge to stable values that are close to the
‘true’ values and are almost always within the 95% highest probability density (HPD) credible
interval.

2The local maxima of the posterior generally have geometrically intuitive interpretations such as the posterior
mean curve folding back on itself one or more times.
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Figure 1: Pseudotime inference on synthetic data. A. The synthetic data points along
with the MAP estimate of the mean function µ(t). Points are coloured by ‘true’ pseudotime
while the curve is coloured by the MAP estimate. B. ‘True’ pseudotimes plotted against the
MAP pseudotime estimates. Error bars report the 95% HPD credible interval; the solid line
corresponds to y = x. C. MCMC traces for ten randomly chosen cells after the burn-in period.
D. The ‘big bang’ intialisation for thirty randomly chosen cells up to 104 iterations.

3.2 Single-cell RNA-seq dataset

We next applied our method to a dataset of differentiating myoblasts [6]. A Laplacian Eigen-
maps reduced-dimensionality representation of the data was used, as described at https://

github.com/kieranrcampbell/embeddr/blob/master/vignettes/vignette.Rmd. Four out-
lier cells were discarded and the points were centre scaled to have mean 0 and standard deviation
1 in each dimension. We performed MH inference as described in Section 2.3 using 5× 105 it-
erations thinned by 500. We set ε = 10−6, σt = 6.5× 10−3, σλ = 9× 10−13 and σσ = 8× 10−3.
The hyper-parameters were set to r = 10−3, α = β = 1, γ = 100.

The results of the inference can be seen in Figure 2. Clearly the GP-LVM curve traces
through the centre of the manifold in a manner similar to the principal curve fit obtained using
the embeddr [8] (Figure 2A). The MAP pseudotime values are very similar to the principal
curve values with almost all falling within the 95% CI (Figure 2B).3

The variation in pseudotime estimate can be seen in Figure 2C/D. The 95% CI for some
cells is as large as 0.5 - half the overall pseudotime window. This suggest that point estimation
of pseudotimes could severely underestimate the potential variability in the estimates (which in
the point estimate case is assumed to be negligible). Our model predicts uncertainty in such

3Although it looks like the pseudotimes are reversed, since they are ‘pseudo’ by nature they’re entirely equiv-
alent up to a parity transformation.
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Figure 2: Pseudotime inference on scRNA-seq data of differentiating myoblasts.
A. The Laplacian Eigenmaps representation of the dataset, with each point coloured by the
MAP pseudotime estimate, along with the posterior mean curve of the GPLVM. B. The MAP
pseudotime estimates compared to the principal curve fit, along with the 95% HPD credible
interval. C. The thinned MCMC traces after burn-in for 12 randomly chosen cells. D. The
width of the 95% HPD CI as a function of pseudotime.

assignments can extend to almost half of the entire biological process of interest. Visually, this
is reasonable since the pseudotime assignment depends on the relative positioning along a curve
drawn through the data points. There are clearly a range of possible curves that could be
compatible with this data and integrating out the latent function allows us to characterise this
uncertainty.

An alternative way to summarise the variation is using a non-parametric measure of cor-
relation between subsequent (thinned) MCMC pseudotime traces. We computed the mean
Kendall-Tau correlation - a non-parametric measure of rank correlation - along the entire chain
and found it to be 0.84. In other words, the ordering of cells consistently changes meaning the
idea of a well defined ordering of cells is meaningless.

4 Discussion

We have presented a novel probabilistic method for inferring pseudotimes from single-cell RNA-
seq data by applying Bayesian Gaussian Process Latent Variable modelling. We have shown
that the use of the Coulomb repulsive prior is appropriate to provide a well defined posterior
over pseudotimes. Furthermore, the use of this prior combined with the MCMC sampling can
decide the ordering of points using no prior knowledge, as opposed to the method suggested in
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[11] where the structure of the prior combined with maximum likelihood inference means the
points will never leave their initial ordering. Finally, because our method works in a reduced-
dimension space an immediate visual check of plotting the MAP mean curve exists to ensure
the inference method is not stuck in a local maximum.

By applying our method to both synthetic and real data we have shown that a pseudotime
ordering of cells can be recovered and the inherent uncertainty in it characterised. We also
uncovered a surprisingly large posterior uncertainty in pseudotimes and variability in the cell
ordering, suggesting the ideas of ‘fixed’ pseudotimes should be reconsidered.

Previous approaches to pseudotime assignment have given point estimates of temporal or-
dering [6–8] but we have been able to infer the uncertainty associated with the pseudotime
assignment to each cell with our model. Recently [9] have also used Bayesian Gaussian Pro-
cess Latent Variable Models for pseudo-time assignment allowing uncertainty to be quantified.
However, their approach requires the measurement of cell capture times upon which prior distri-
butions can be centred solving identifiability issues by providing a physical calibrated temporal
scaling. This information is often not available in single cell experiments. Our approach is more
general providing support for data sets where actual temporal information cannot be attained.
Prior capture time information can be included in our model, this would modifying the repulsive
prior to be conditional on cells which have temporal information.

In future extensions of our work we will consider closer integration with the initial dimen-
sionality reduction problem. Our simulations have assumed that the high-dimensional gene
expression measurements have already been preprocessed and reduced to a low-dimensional
representation (in our case using Laplacian Eigenmaps). The GPLVM framework provides a
natural extension to avoid the need for this preprocessing step but inference could be challeng-
ing in the Monte Carlo sampling framework we desire. We would also like to consider improved
Monte Carlo inference approaches as early experiments using standard MCMC techniques, such
as parallel tempering, have yielded no significant sampling efficiency due to the extreme multi-
modal nature of the Coulomb repulsion prior. We are developing novel sampling techniques
to address the unique properties of this prior but will also consider alternative repulsive pro-
cesses. Finally, we are also examining downstream applications of our techniques for quantifying
temporal gene expression behaviour.

5 Acknowledgements

We thank Michalis Titsias for comments and advice regarding the manuscript. K.C. is sup-
ported by the MRC. C.Y. is supported by a UK Medical Research Council New Investigator
Research Grant (Ref. No. MR/L001411/1), the Wellcome Trust Core Award Grant Number
090532/Z/09/Z, the John Fell Oxford University Press (OUP) Research Fund and the Li Ka
Shing Foundation via a Oxford-Stanford Big Data in Human Health Seed Grant.

References

1. Treutlein, B. et al. Reconstructing lineage hierarchies of the distal lung epithelium using
single-cell RNA-seq. Nature 509, 371–5. issn: 1476-4687 (May 2014).

2. Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-
sequencing data reveals hidden subpopulations of cells. Nature Biotechnology. issn: 1087-
0156. doi:10.1038/nbt.3102. <http://www.nature.com/doifinder/10.1038/nbt.
3102> (Jan. 2015).

7

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 15, 2015. ; https://doi.org/10.1101/026872doi: bioRxiv preprint 

http://dx.doi.org/10.1038/nbt.3102
http://www.nature.com/doifinder/10.1038/nbt.3102
http://www.nature.com/doifinder/10.1038/nbt.3102
https://doi.org/10.1101/026872
http://creativecommons.org/licenses/by-nc/4.0/


3. Moignard, V. et al. Decoding the regulatory network of early blood development from
single-cell gene expression measurements. Nature Biotechnology 33. issn: 1087-0156. doi:10.
1038/nbt.3154. <http://www.nature.com/doifinder/10.1038/nbt.3154> (Feb.
2015).

4. Macaulay, I. C. & Voet, T. Single cell genomics: advances and future perspectives. PLoS
genetics 10, e1004126. issn: 1553-7404 (Jan. 2014).

5. Stegle, O., Teichmann, S. a. & Marioni, J. C. Computational and analytical challenges in
single-cell transcriptomics. Nature Reviews Genetics 16, 133–145. issn: 1471-0056 (Jan.
2015).

6. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by
pseudotemporal ordering of single cells. Nature biotechnology 32, 381–6. issn: 1546-1696
(Apr. 2014).

7. Bendall, S. C. et al. Single-cell trajectory detection uncovers progression and regulatory
coordination in human B cell development. Cell 157, 714–25. issn: 1097-4172 (Apr. 2014).

8. Campbell, K., Ponting, C. & Webber, C. Laplacian eigenmaps and principal curves for
high resolution pseudotemporal ordering of single-cell RNA-seq profiles (submitted). 2015.

9. Reid, J. E. & Wernisch, L. Pseudotime estimation: deconfounding single cell time series.
bioRxiv, 019588 (2015).

10. Titsias, M. & Lawrence, N. Bayesian Gaussian Process Latent Variable Model. Artificial
Intelligence 9, 844–851 (2010).

11. Wang, Y. & Dunson, D. B. Probabilistic Curve Learning: Coulomb Repulsion and the Elec-
trostatic Gaussian Process in Advances in Neural Information Processing Systems (2015).

12. Belkin, M. & Niyogi, P. Laplacian Eigenmaps for Dimensionality Reduction and Data.
1396, 1373–1396 (2003).

13. Lawrence, N. D. Gaussian process latent variable models for visualisation of high dimen-
sional data. Advances in neural information processing systems 16, 329–336 (2004).

14. Titsias, M. K., Lawrence, N. & Rattray, M. Markov chain Monte Carlo algorithms for Gaus-
sian processes. Inference and Estimation in Probabilistic Time-Series Models, 9 (2008).

8

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 15, 2015. ; https://doi.org/10.1101/026872doi: bioRxiv preprint 

http://dx.doi.org/10.1038/nbt.3154
http://dx.doi.org/10.1038/nbt.3154
http://www.nature.com/doifinder/10.1038/nbt.3154
https://doi.org/10.1101/026872
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Gaussian Processes for pseudo-time assignment
	Gaussian Process Latent Variable Models
	Model Specification
	Statistical Inference

	Results
	Synthetic Data
	Single-cell RNA-seq dataset

	Discussion
	Acknowledgements

